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Goal: Find lower bounds for matrix factorization ranks
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Connection to quantum information theory

» CPSD cone was studied by Piovesan and Laurent in relation
to quantum graph parameters

» Connections to entanglement dimensions of bipartite quantum
correlations p(a, b|s, t) [Sikora—Varvitsiotis 2015],
[Mantinska—Roberson 2014]

» Corresponding matrix (Ap)(s,a),(t,) = P(a; bls, )
» If pis a “synchronous quantum correlation”, then A, is CPSD
» The smallest dimension to realize it is cpsd-rank(Ap)

» Combine proofs from above refs and
[Paulsen—Severini—Stahlke-Todorov—Winter 2016]
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Commutative polynomial optimization (Lasserre, Parrilo, ...):

» Let SU{f} CR[xq,...,Xn)

> inf {f(x): x €R", g(x) >0for g €S}

» Hierarchy of semidefinite programming lower bounds based on

moments (primal) and sums of squares (dual)

» Asymptotic convergence under technical condition
Eigenvalue optimization (Acin, Navascues, Pironio, ...) and tracial
optimization (Burgdorf, Cafuta, Klep, Povh, Schweighofer, ...):

» Let SU{f} CR(x1,...,Xn)

» We can evaluate a noncommutative polynomial at a tuple
X = (Xi,...,X,) of matrices

» inf{tr(f(X)):d €N, Xq,...,X, € HY, g(X) = 0 for g € S}
Commutative polynomial optimization is used by Nie for testing
membership in the CP cone and computing tensor nuclear norms
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Localizing conditions: Lx (p*(v/Aixi — x?)p) > 0
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P A) is 2% (A) with the extra constraint rank(M(L)) < oo
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m2
” MeN, dy,...,dy €N,

ii

M
=) = (D - o]
I€n

X € H for i € [n], m € [M],

M M
A= Gram(@X{”,...,@X,T)}.
m=1 m=1
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n 2
i—1 VAii
(Z:':nl—) < cpsd-rank(A)
Zi,j:l Ajj
We have )
VA
;psd(A) > (Zl—l )

ZZ,‘:1 Ajj

Sharp for the matrix A € R°*® given by Ajj = cos (4 /5(i —j))2
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The completely positive rank (cp-rank)

Fawzi and Parrilo (2014) give this SDP to lower bound cp-rank(A):

TS99 (A) —inf{a'aeR XE]R"ZX"Z,

cp
vee(
(Vec(A) ) =0,

X)) < Aij for 1<4,j<n,
Xty = Xy for 1<i<k<n 1<j<i<n,
X=2A® A}.




The completely positive rank (cp-rank)
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The completely positive rank (cp-rank)

Fawzi and Parrilo (2014) give this SDP to lower bound cp-rank(A):

TS (A) = inf{a T €R, X € ]R"ZX"Z,

cp
(i ")

Xij iy S Ay for 1<ij<n,
X toh) = X, for 1<i<k<n 1<j<I<n,
X<A® A}.

They derive 755°(A) as an SDP relaxation of

1
Tep(A) = min {a ca >0, aA € conV{R €S":0<R<A R=<A rank(R) < 1}}

Tep(A) is at least the rank of A and the fractional edge-clique
cover number of the support graph of A
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Adapting our hierarchy for the cp-rank

Suppose A = v,.ij for vi,..., vy € ]RS’r
Then, Aj; = Tr(X;X;) for diagonal PSD matrices X; = Diag(v;)
Use ideas for cpsd-rank to derive a hierarchy for cp-rank
Mo¢(S) = cone{gp® : g € SU{1}, p € R[x], deg(gp?) < 2t}
S={VAixi—x?}U{A; —xixj: 1 <i<j<n}

£P(A) = min{L(l) CLER[x, .. Xalies
(L(XIXJ)) = A7
L>0 on MZt(S)}

P(A) < ... < E&B(A) = &P(A) < cp-rank(A)
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Extra constraints for the cp-rank

As in the cpsd-rank case we can add extra constraints for a set
. cp
V' C S"" giving the stronger bound &\, (A)

We have § sn- 1(A) = 1ep(A)

Let Vi C Vb, C ... C S§" 1 be finite subsets such that Uk Vi is
dense in S"1

If Ais invertible, then 5 (A) = &F Yon- 1(A) as k — o0

This gives a (doubly indexed) sequence of finite semidefinite
programs converging asymptotically to 7., (A)
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More efficient tensor constraints

Let £:", (A) be the following strengthening of £;"(A):
» Add entrywise nonnegativity constraints

> Add the tensor constraint X < A® A from 73°(A):

(LWW))wowremy, 2 A®T for 2< 1<t

> Implement this constraint more efficiently by exploiting
symmetry:

(L(mm" ) e, = QAYQT for 2< 1<t

Then &P, (A) is a more efficient strengthening of 7525(A)
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The nonnegative rank
The nonnegative rank rank, (A) is the smallest d for which there
are vectors vy, ..., Up, Vi,...,Vy € Ri such that A = u,-TvJ-

The nonnegative rank of the slack matrix of a polytope gives the
extension complexity of the polytope [Yannakakis 1991]

Fawzi and Parrilo (2014) define relaxations
75%(A) < 74 (A) < ranky (A)

For A € RT*" there are positive semidefinite diagonal matrices
X1y -+ oy Xmgn With Ajj = Tr(XiXmj) and Amax(Xi)? < max;j Ajj

We can use this to adapt the above techniques to give a hiearchy

E(A) < ... SEL(A) = €5 (A) = 7(A) < ranky (A).

Going back to tracial optimization we can adapt this to the
psd-rank — still work in progress
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-1 —a 0 a 1
Such a triangle exists if and only if

l1-a 14a 14+a 1—a

l1+a 1—-a 1—a 1+a
rank*( 1-b 1—-b 14+b 1+b )

1+b 1+b 1—b 1—-b

In fact, such a triangle exists if and only if (1 4+ a)(1+ b) <2



Nested rectangle problem [Fawzi—Parrilo, 2016]:
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Thank you!



