Energy minimization via moment hierarchies

David de Laat (TU Delft)

ESI Workshop on Optimal Point Configurations and Applications
16 October 2014


http://www.daviddelaat.nl

Energy minimization

» What is the minimal potential energy E when we put N
particles with pair potential & in a container V7



Energy minimization

» What is the minimal potential energy E when we put N
particles with pair potential & in a container V7

» Example: For the Thomson problem we take

1
V=52 and h({z,y}) =
o) = 2=y



Energy minimization

» What is the minimal potential energy E when we put N
particles with pair potential & in a container V7

» Example: For the Thomson problem we take

1
V=52 and h({z,y}) =
o) = 2=y

» As an optimization problem:

E = min h(P
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» Configurations provide upper bounds on the optimal energy E
» To prove a configuration is good (or optimal) we need good
lower bounds for E
Some systematic approaches for obtaining bounds:

» Linear programming bounds using the pair correlation function
[Delsarte 1973, Delsarte-Goethals-Seidel 1977, Yudin 1992]

» 3-point bounds using 3-point correlation functions and
constraints arising from the stabilizer subgroup of 1 point
[Schrijver 2005, Bachoc-Vallentin 2008, Cohn-Woo 2012]

» k-point bounds using stabilizer subgroup of £ — 2 points
[Musin 2007]

» Hierarchy for packing problems [L.-Vallentin 2014]
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This talk

» Hierarchy obtained by generalizing Lasserre's hierarchy from
combinatorial optimization to the continuous setting

» Finite convergence to the optimal energy
> A duality theory
» Reduction to a converging sequence of semidefinite programs

» Towards computations using several types of symmetry
reduction
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Relaxation to a conic program:
Infinite dimensional minimization problem

Semi-infinite semidefinite program
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I_; (I;) is the set of subsets of V' which
» have cardinality ¢t (< t)
» contain no points which are too close

v

Assuming h({z,y}) — oo when z and y converge, we have

E = min h(P)
Sel_n <
Pe(3)

v

We will also assume that V' is compact and A continuous

v

I_; gets its topology as a subset of a quotient of V!
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Moment hierarchy of relaxations
> In the relaxation E; we minimize over measures A on the
space I, where s = min{2t, N}
Lemma
When ¢t = N, the feasible measures )\ are (generalized) convex
combinations of measures
Xs = Z 0r where Sel_y
RCS
Objective function: A(h) = [, h(S)dA(S)
Moment constraints: AfA € M(I; X I})»o
Here A} is an operator M(Is) — M(I; x I})
M(I; x It)=¢ is the cone dual to the cone C(I; x I;)»¢ of
positive kernels: p(K) >0 for all K =0
» We have ys(h) = EPG(S) h(P)
2

Theorem (Finite convergence)
We have 1 <.--- < Exy=F
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Dual hierarchy

» FE; is a minimization problem, so we need an optimal solution
to find a lower bound

» The conic dual E} is a maximization problem where any
feasible solution provides an upper bound

> In E} optimization is over scalars a; € R and positive definite
kernels K € C(It X It>i0

> The dual program:

S
E;:sup{Z(fj)ai:ao,...,aseR,KeC(Itht)io,
=0

' a; + ALK <h on I_; fori:O,...,s}

» Here A, is the linear operator C(I; x I;) — C(I;) given by
ALK (S) =32 yreraur—s K1)
Theorem
Strong duality holds: E; = E; for each t
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Finite dimensional approximations to £}

> Define E} ; by replacing the cone C(I; X It)~o in E} by a
finite dimensional inner approximating cone Cy
> Let e1,e9,... be a dense sequence in C(1I;) and define
d
Cy= { Z F,jei®ej: F e R4 positive semidefinite}
ij=1
Lemma

Suppose X is a compact metric space. Then the extreme rays of
the cone C(X x X)) are precisely the kernels f® f with f € C(X)

» This implies U3 ,Cy is uniformly dense in C(I; x I;)=g

Theorem
If V' is a compact metric space, then £, — Ef as d — oo for all ¢
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Block diagonalization

>

For computations use the symmetry of V and h, expressed by
the action of a group I', and Bochner's theorem to block
diagonalize the matrix F

For this we need a symmetry adapted basis of C(1})

Ift=1and V = S2, then

C(I;) ~R @& C(S?) R@@Hk

This will block diagonalize to a diagonal matrix and we get
(something close to) Yudin's LP bound

In general C(I;) injects into C(V)®*
C(V)®* can be written in terms of tensor products of the
irreducible subspaces of C(V')

If we know how to decompose C(V) into irreducibles, and how
to decompose tensor products of those irreducibles into
irreducibles, then we have a symmerty adapted basis of 1}
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» We know how to these decompositions from the quantum
mechanics literature (angular momentum coupling): use
Clebsch-Gordan coefficients

» The affine constraints in EJ ; are nonnegativity constraints of
a polynomial p € R[z1,...,x4], where each z; is a vector of 3
variables (the coefficients of these polynomials depend on the
entries in the block diagonalization of I')

» We have p(yx1,...,v24) = p(x1,...,24) for all v € O(3)

» Invariant theory: there is a polynomial ¢ such that
(1, 24) = q(x1 - 22, ..., T3 T4)

» Model nonnegativity constraints as sum of squares constraints
using Putinar’s theorem from real algebraic geometry

» A sum of squares polynomial s can be written as
s(z) = v(x)TQu(x), where Q is a positive semidefinite matrix
and v(x) a vector containing all monomials up to some degree
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More symmetry: p(x1,...,%4) = p(To(1), - - - > To(a)) for all
permutations o € Sy
This means that ¢ is symmetric under a subgroup of Sg

Use this to block diagonalize the positive semidefinite
matrices showing up in the sums of squares characterizations

We give a symmetrized version of Putinar’'s theorem using the
method of Gatermann and Parillo for symmetry reduction in
sums of squares characterizations

Significant simplifications in the semidefinite programs

Not clear yet whether we can compute E;"d for large enough d
(with current SDP solvers) to get improved bounds for S?
Toy example: Ej is not sharp for 3 points on S with the
Lennard-Jones potential

Using a reduction to 3 variables using trigonometric
polynomials we compute that Ey = E (up to solver precision)



Thank you!



