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Summary

In this thesis, we consider extremal problems in discrete geometry, and in
particular, the Lasserre hierarchies for such problems. We give a unifying framework
that encompasses the known hierarchies, and lay the foundation to use the second
level of such hierarchies for problems on the sphere in practice. We perform
explicit harmonic analysis and use polynomial optimization techniques to reduce the
problems to a finite-dimensional semidefinite program. We introduce a specialized
semidefinite programming solver that uses the structure of the problems, allowing
us to use polynomials of significantly higher degree than previously possible, and a
much faster rounding procedure to obtain exact optimal solutions to the semidefinite
programs. We use this to prove that the D4 root system is the unique optimal
solution to the kissing number problem in dimension 4, and is an optimal spherical
code. We also prove there are exactly two optimal spherical codes with 12 points
in dimension 4. Furthermore, we show that the spectral embeddings of all known
triangle-free strongly regular graphs are optimal spherical codes, as well as certain
Kerdock spherical codes. We give numerical evidence that the second level of
the Lasserre hierarchy for minimizing harmonic energy is sharp for several infinite
families of configurations. We also investigate the strength of the hierarchy for the
polarization problem. Finally, we consider triple and quadruple correlation bounds
in analytic number theory, which gives new bounds on the fraction of double and
triple zeros of the Riemann ζ-function and related functions.
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Samenvatting

In dit proefschrift bekijken we extreme problemen in discrete meetkunde, en
in het bijzonder de Lasserre-hiërarchieën voor dergelijke problemen. We geven een
verenigend raamwerk dat de bekende hiërarchieën omvat, en leggen de basis om
het tweede niveau van dergelijke hiërarchieën te berekenen voor problemen op de
bol. We voeren de harmonische analyse expliciet uit, en gebruiken polynomiale
optimalisatietechnieken om de problemen te reduceren tot een eindig-dimensionaal
semidefiniet programma. We introduceren een gespecialiseerd algoritme om deze
semidefiniete programma’s op te lossen, waarmee we polynomen met significant
hogere graad kunnen gebruiken dan voorheen, en geven een snellere afrondingsproce-
dure om exacte optimale oplossingen te vinden voor de semidefinitieve programma’s.
We gebruiken dit om te bewijzen dat het D4-wortelsysteem de unieke optimale
configuratie is voor het kusgetal in dimensie 4, en een optimale sferische code is.
We bewijzen ook dat er precies twee optimale sferische codes zijn met 12 punten
in dimensie 4. Verder laten we zien dat de spectrale inbeddingen van alle bekende
driehoeksvrije sterk reguliere grafen optimale sferische codes zijn, evenals bepaalde
Kerdock-sferische codes. We leveren numeriek bewijs dat het tweede niveau van de
Lasserre-hiërarchie voor het minimaliseren van harmonische energie scherp is voor
verschillende oneindige families van configuraties. We onderzoeken ook de sterkte
van de hiërarchie voor het polarisatieprobleem. Tot slot bekijken we drievoudige en
viervoudige correlatiegrenzen in de analytische getallentheorie, wat nieuwe grenzen
geeft aan de fractie van dubbele en driedubbele nulpunten van de Riemann ζ-functie
en gerelateerde functies.
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CHAPTER 1

Introduction

In discrete geometry, we consider configurations of points under certain con-
straints. In this thesis we are interested in extremal configurations: configurations
that additionally maximize or minimize a certain property of the configuration.
A famous example is the sphere packing problem: What is the densest packing
of non-overlapping spheres in n-dimensional Euclidean space? In 2017, Maryna
Viazovska [140] solved this problem in dimension 8 , which quickly led to the
solution of the problem in dimension 24 [35].

A key ingredient of the proof of Viazovska was the linear programming bound of
Cohn and Elkies [33]. A feasible configuration to the problem gives a lower bound
on the density, and the linear programming bound gives an upper bound. The gap
between the bounds gives some information about how good the constructions and
upper bounds are. In most other dimensions, there is a gap between the best known
lower and upper bounds, but due to the exceptional structure of the optimal sphere
packings in dimension 8 and 24, the linear programming bound gives exactly the
correct density in those cases. To prove optimality, Viazovska gave an exact optimal
solution to the linear programming bound.

Linear programming bounds have also been developed for the spherical cap
packing problem (see Example 1.1) by Delsarte, Goethals and Seidels in 1977 and
for the energy minimization problem (see Example 1.2) in 1993 by Yudin. The linear
programming bounds are 2-point bounds: they only consider conditions arising from
the distribution of distances between pairs of points. For two-point bounds, we can
generally compute a very precise approximation of the bound.

Example 1.1 (Spherical cap packing). Given an integer n and angle θ, what
is the largest set C ⊆ Sn−1 such that ⟨x, y⟩ ≤ cos θ for all distinct x, y ∈ C? Here
⟨x, y⟩ denotes the Euclidean inner product between two vectors in Rn.

Example 1.2 (Energy minimization). Given integers n and N , and a function
f : [−1, 1) → R, what configuration C ⊆ Sn−1 minimizes

Ef (C) =
1

2

∑
x,y∈C
x̸=y

f(⟨x, y⟩)

over all N -point configurations on Sn−1?

For several problems in discrete geometry, k-point bounds for k > 2 have also
been developed. This was initiated in 2008 when Bachoc and Vallentin gave a
three-point bound for the kissing number and spherical cap packing problem [2],
and Cohn and Woo used similar techniques to give a three-point bound for the
energy minimization problem on the sphere in 2012 [42]. For sphere packing, a
three-point bound was only given in 2022, by Cohn, de Laat, and Salmon [39]; the

13



14 1. INTRODUCTION

main difference here is problems considered earlier are restricted to the sphere, a
compact set, whereas the sphere packing problem optimizes over configurations
in Euclidean space. Three-point bounds are more difficult to compute than the
two-point bounds, but can generally be approximated moderately well.

In this thesis, we lay the foundation to compute four-point bounds in practice.
The first computations of a four-point bound for such problems have only been done
in 2019, for an energy minimization problem in dimension 3 [85]. However, the
method does not extend easily to higher dimensions, and the approximation is not
good enough for the problems considered in this thesis.

This thesis consists of 11 chapters, including this introduction and a final chapter
discussing future work. It is divided into two parts. In Part I, we consider techniques
to set up the Lasserre hierarchy for problems in discrete geometry, a sequence of
semidefinite programming bounds; to reduce such an infinite-dimensional problem
to a finite dimensional semidefinite program; and to give an exact solution to it. In
Part II, we apply these methods to several problems in discrete geometry, and we
apply semidefinite programming bounds to a problem in analytic number theory.
Chapters 3 and 5–10 are largely based on papers.

Part I: Techniques

In Chapter 2, we consider one of the known techniques to define such k-point
bounds for problems in discrete geometry on a compact set: the (generalized)
Lasserre hierarchy. The original hierarchies, also called moment/SOS hierarchies,
were defined for polynomial optimization problems [94, 119, 95]. De Laat and
Vallentin generalized the moment side of the hierarchy to packing problems on
compact sets [92], after which similar ideas have been used to define hierarchies
for the energy minimization problem [85] and covering problems [124], in compact
settings. In this chapter, we state these hierarchies in a unifying framework.

For a maximization problem with optimal value α, such a hierarchy gives a
sequence of optimization problems

las1 ≥ las2 ≥ · · · ≥ α,

and for the problems in this thesis, we have finite convergence:

lasN = α

for some finite N . Higher levels in the hierarchy give better bounds, but are also
significantly more difficult to compute. The k-th level is a 2k-point bound. The
first level is generally equivalent to the linear programming bound for the problem,
and the three-point bounds can often be seen as relaxations of the second level of
the hierarchy.

In Chapter 3, we develop the harmonic analysis required to compute the
second level of the Lasserre hierarchy for problems on the sphere, in any dimension.
Importantly, the computational complexity does not depend on the dimension. This
is in contrast with the method used in [85] to compute the second level of the
hierarchy for the energy minimization problem on the sphere in dimension 3.

In Chapter 4, we give a short exposition on polynomial optimization in the
context of this thesis. This can result in a semidefinite program with additional
structure.

In Chapter 5 we introduce a semidefinite programming solver which exploits this
structure to speed up the computations, and uses high-precision arithmetic. This
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solver is fundamental for our results. Previously, the largest semidefinite programs
in discrete geometry were solved by Machado and Oliveira using the solver SDPA-GMP
[103], and our solver is a factor 28 faster for those problems [98].

Summarizing, Chapters 3–5 give a sequence of optimization problems

(1.1) las2 ≤ las2,d ≤ las2,d,δ,

where the inequalities correspond to a maximization problem in discrete geometry,
and are reversed for a minimization problem. The first inequality we obtain through
a truncation of the Fourier series of the functions we optimize over in las2, and the
second inequality by reformulating a polynomial optimization problem with positive
semidefinite variables to a semidefinite program of finite size using sum-of-squares
polynomials.

In Chapter 6, we give a method to obtain an exact optimal solution to such a
semidefinite program, from a numerically optimal solution. This method is much
faster than the previous methods considered in [51, 109]. Such an exact solution is
fundamental for proving optimality of configurations. The solution to the sphere
packing problem in dimensions 8 and 24 was possible because the linear programming
bound was sharp: it gives exactly the density of the optimal sphere packing. This
can happen more generally: even though the proof of finite convergence shows that
lasN = α for a given N , it may happen that lask = α for k ≪ N . Additionally, for
compact spaces such as the sphere, equality may hold throughout (1.1) for a certain
d and δ, so that an (exact) optimal solution of a semidefinite program of finite size
can give an optimal solution to the k-th level of the hierarchy.

Part II: Applications

In Chapter 7, we consider the spherical code problem. This problem asks for a
subset C ⊆ Sn−1 of size N , a spherical code, which minimizes

max
x,y∈C
x̸=y

⟨x, y⟩

among all spherical codes of size N in dimension n. We use the three-point bound
and the second level of the Lasserre hierarchy to prove optimality of certain spherical
codes, and give improved kissing number bounds. The following are our main results.
First, we prove that, up to isometry, the D4 root system is the unique optimal
spherical code in dimension 4 of size 24, and the unique optimal solution to the
kissing number problem in dimension 4. This is closely related to the sphere packing
problem in dimension 4, where the D4 root lattice is conjectured to be optimal, and
gives some indication that the second level of a Lasserre hierarchy for the sphere
packing problem may be able to prove optimality of the D4 root lattice. Second, we
prove that there are exactly two optimal solutions to the spherical code problem
in dimension 4 for spherical codes of size 12, up to isometry. In contrast, many
problems have either zero, one or infinitely many solutions.

In Chapter 8, we consider the energy minimization problem on the sphere. The
problem asks for a spherical code C ⊂ Sn−1 of size N which minimizes

Ef (C) =
1

2

∑
x,y∈C
x̸=y

f(⟨x, y⟩)
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for a given potential function f . We prove optimality of one spherical code for
the wide class of absolutely monotonic potential functions using the three-point
bound, and give numerical evidence that the second level of the Lasserre hierarchy
is optimal for three families of spherical codes, with N = n+ 2, N = 2n− 1, and
2n+ 2 points in dimension n, for the harmonic energy potential function

f(u) = (2− 2u)−(n−2)/2.

This potential function generalizes the Coulomb potential in dimension 3.
In Chapter 9, we consider the problem of polarization with a threshold: Given

a potential function f : [−1, 1) → R, and a threshold E, find a spherical code C of
minimum size such that

Pf (C, y) =
∑
x∈C

f(⟨x, y⟩) ≥ E

for every y ∈ Sn−1. In other words, what is a configuration with the minimum
number of light sources, such that the darkest point on the sphere has at least a
certain brightness? A particular instance of this is the problem of covering the sphere
with spherical caps of a given radius. In this chapter we generalize the hierarchy for
covering problems of Riener, Rolfes and Vallentin [124] to this problem, and show
for example that the allowed minimum distance has an important influence on the
bounds. In particular, taking the limit of the minimum distance to 0 gives a trivial
bound, in contrast to the energy minimization problem, where the second level of
the hierarchy still gives many sharp bounds after taking this limit.

The linear programming bound introduced by Cohn and Elkies [33] has some
interesting connections to fields outside discrete geometry. For example, there is
a precise connection between the Cohn-Elkies bound and the modular bootstrap
in physics [67]. In analytic number theory, there is a relation between the feasible
region of the bound and the feasible region of bounds on the number of simple zeros
of so-called L-functions of certain representations of GLm/Q, which generalize the
well-known Riemann ζ-function.

This connection is established through the pair-correlation approach of Mont-
gomery [111], assuming the Riemann Hypothesis that every zero of the Riemann
ζ-function is a negative even integer or of the form ρj = 1/2 + iγj with γj ∈ R. A
slight generalization of the pair-correlation approach of Montgomery minimizes a
linear functional over the feasible region of the Cohn-Elkies bound.

In Chapter 10, we consider bounds using the higher-order correlation functions
of Hejhal [69] and Rudnick and Sarnak [126, 127]. Although the pair-correlation
function gives bounds on the number of simple zeros, it turns out that using the
k-level correlation functions leads to bounds on the number of zeros with multiplicity
at most k − 1.

In Chapter 11, we give possible directions for future research. This includes for
example possible improvements in the solver and rounding procedure, interesting
questions related to our work, and some suggestions how these questions can possibly
be handled.
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CHAPTER 2

Lasserre hierarchies for problems in discrete
geometry

Many problems in discrete geometry have an analogous problem on a finite
graph. For example, packing problems are analogous to independent set problems,
and covering problems to the set cover problem. One method to solve such problems
on a finite graph is to reformulate them as binary polynomial optimization problems,
and to apply the moment/SOS hierarchy for polynomial optimization to it [95].
In [92], this was generalized to infinite packing problems in compact spaces, and later
the approach was adapted to energy minimization [85] and covering [124]. These
hierarchies generalize the moment side of the moment/SOS hierarchies, and are often
called Lasserre hierarchies. The earlier known bounds, such as the Delsarte-Goethals-
Seidels linear programming bound [47] and the Bachoc-Vallentin three-point bound
[2] for spherical codes or Yudin’s bound for energy minimization [144], can in
general be understood as (relaxations of) a level of the Lasserre hierarchy for the
corresponding problem.

In this chapter, we give an exposition of the generalized Lasserre hierarchies
as used in [92, 85, 124], by stating these hierarchies in a more general, unifying
framework.

2.1. Preliminaries

In this chapter we assume a basic knowledge of graphs and semidefinite pro-
gramming. This section provides some of the basic definitions required.

Let G = (V,E) be a graph with vertex set V and edges E ⊆ Sub(V, 2), where
Sub(V, k) denotes the subsets of V of size k. A subset C ⊆ V is independent if
{x, y} ̸∈ E for every x, y ∈ C.

A semidefinite program is an optimization problem of the form

(2.1.1)

maximize ⟨C,X⟩,
subject to ⟨Ai, X⟩ = bi, i = 1, . . . ,m,

X ⪰ 0.

Here ⟨A,B⟩ = Tr(ATB) is the trace inner product for two matrices A,B ∈ Rn×m,
and X ⪰ 0 denotes that the matrix X ∈ Rn×n is positive semidefinite: It is
symmetric, and

aTXa ≥ 0 ∀a ∈ Rn,

or equivalently, all eigenvalues of X are nonnegative. In particular, the trace inner
product between two positive semidefinite matrices is nonnegative.

19



20 2. LASSERRE HIERARCHIES FOR PROBLEMS IN DISCRETE GEOMETRY

Problem (2.1.1) is a semidefinite program in standard form. The dual problem
of this reads

minimize ⟨y, b⟩,

subject to
∑
i

yiAi − C ⪰ 0.

Such a problem is said to be in geometric form.
Weak duality holds: for every primal feasible solution X and dual feasible

solution y, we have ⟨C,X⟩ ≤ ⟨y, b⟩. This can easily be proven with

0 ≤ ⟨
∑
i

yiAi − C,X⟩ =
∑
i

yi⟨Ai, X⟩ − ⟨C,X⟩ = ⟨y, b⟩ − ⟨C,X⟩.

Duality can be considered much more generally, see for example [5] for a general
treatment; we give a short summary in Section 2.4, and use it for our problems.

A continuous kernel K ∈ C(V ×V ) is positive definite (K ⪰ 0) if for every finite
set {x1, . . . , xN} ⊆ V the N ×N matrix with entries Aij = K(xi, xj) is a positive
semidefinite matrix.

2.2. Binary polynomial optimization with finitely many variables

A polynomial optimization problem is a problem of the form

maximize g0(x)

subject to gi(x) ≥ 0, i = 1, . . . ,m.

Here gi is a polynomial in n variables. For most problems in extremal geometry, we
restrict the variables xj to be binary. This can be done by adding the constraints
x2j −xj = 0 (for an equality constraint g(x) = 0 we add the two constraints g(x) ≥ 0
and −g(x) ≥ 0).

The following examples give formulations for the problems on finite graphs
analogue to those considered in this thesis.

Example 2.1 (Packing). The independent set problem asks for the maximum
size of a set I such that for every x, y ∈ I, {x, y} ̸∈ E. This can be modeled as a
binary polynomial optimization problem by setting g{i,j}(x) = 1− (xi + xj) for every
{i, j} ∈ E, and g0 =

∑
i∈V xi. This will be the running example throughout the first

part of this thesis.

Example 2.2 (Energy minimization). Let G be a complete graph (that is,
E = Sub(V, 2) contains all possible edges) and let f : E → R be a weight function on
the edges. Given N ≤ |V |, the energy minimization problem asks for the minimum
energy

1

2

∑
x,y∈S
x ̸=y

f({x, y})

over all S ⊆ V of size N . Here we can take g1 =
∑

i xi −N , g2 = N −
∑

i xi and
g0 = −

∑
i ̸=j f({i, j})xixj.

Example 2.3 (Covering). The dominating set problem asks for the minimum
size of a set S ⊆ V such that every vertex in V is either in S or adjacent to a vertex
in S. For this problem we can take g0 = −

∑
i∈V xi, and gj = xj +

∑
i:{i,j}∈E xi − 1

for j ∈ V .
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Example 2.4 (Polarization with threshold). Given a complete graph G = (V,E),
a weight function f : V × V → R and a set S, the polarization of a point i ∈ V is
given by

Pf (S, i) =
∑
j∈S

f(i, j).

The polarization problem with threshold E asks for the minimum size of a set S such
that Pf (S, i) ≥ E for every i ∈ V , or equivalently, that the minimum polarization is
at least E. The objective is g0 = −

∑
i xi, and the constraints are given by

gi(x) =
∑
j

f(i, j)xj − E

for all i ∈ V .

A polynomial g(x) can be written as

g(x) =
∑
α∈Nn

gαx
α

where α is the exponent vector of the monomial xα =
∏

i x
αi
i and gα is the coefficient

corresponding to this monomial.
Let Pn

k ⊆ Nn denote the exponent vectors α of degree |α| =
∑

i αi ≤ k. For

y ∈ RPn
2k , the moment matrix of y is defined by the entries

Mk(y)α,β = yα+β

with α, β ∈ Pn
k . The localizing matrix Mg

k (y) corresponding to a constraint g(x) ≥ 0
is given by

Mg
k (y)α,β =

∑
γ

gγyα+β+γ

whenever |α|, |β| ≤ k − ⌈deg(g)/2⌉.
Lasserre introduces in [94] the following hierarchy of relaxations for polynomial

optimization problems:

maximize
∑

α∈Pn
deg(g0)

(g0)αyα,

subject to y0 = 1,

Mk(y) ⪰ 0,

Mgi
k (y) ⪰ 0 i = 1, . . . ,m,

y ∈ RPn
2k

≥0 .

This is a semidefinite program in geometric form.
Let x be a feasible solution to the original binary optimization problem, and let

y be the moment vector corresponding to a Dirac measure δx on x. Then we have

yα =

∫
zαdδx(z) = xα,

so that

g(x) =
∑
α

gαyα
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and

y0 =

∫
dδx(z) = 1,

Mk(y) =

∫
b(z)b(z)Tdδx(z) ⪰ 0,

Mgi
k (y) =

∫
gi(z)b(z)b(z)

Tdδx(z) ⪰ 0,

where b is a vector of monomials. Hence y is feasible, so the optimal value of each
level of the hierarchy gives an upper bound on the optimal value of the binary
polynomial optimization problem.

The hierarchy converges as k → ∞ [94] under some mild conditions (see also
Chapter 4 where the dual problem of optimizing over sum-of-squares polynomials is
considered), and in certain cases (such as binary polynomial optimization [95]), the
hierarchy convergences in a finite number of steps.

When gi = −gj for some i, j (that is, we enforce the equality constraint gi = 0),

the constraints Mgi
k (y) ⪰ 0 and M−gi

k (y) = −Mgi
k (y) ⪰ 0 imply that Mgi

k (y) = 0.
This enables us to find a more suitable form of the program to generalize to infinite
graphs.

In the following example, we show that the binary constraints imply that we
can index the moment vector y by sets Q ⊆ [n] instead of exponent vectors α ∈ Pn

2k,
where

Q = Supp(α) = {i : αi > 0}.
This was first observed in [96].

Example 2.5 (Binary variables). For the constraints x2j − xj = 0, Mgi
k = 0

reduces to
yα+2ej = yα+ej

for every exponent vector α with |α| ≤ 2t − 2. Iterating this gives that yα = yβ
whenever

Supp(α) = Supp(β).

In other words, we may index the moment vector y and the coefficients and monomials
of g by sets instead of exponent vectors, so that

Mg
k (y)J1,J2 =

∑
Q⊆[n]

gQyJ1∪J2∪Q.

Note that if some variables are not binary, we still need to include all possible powers
for those variables.

Example 2.6 (Cardinality constraints). Consider the constraint
∑

j∈V xj−N =
0. As in the previous example, this implies that the corresponding localizing matrix
should be 0, which gives the constraints∑

i∈V

yJ∪{i} = NyJ

for all J ⊆ V with |J | ≤ 2t − 1. Lemma 3.1 in [85] shows that this the equality
constraints ∑

S⊆Sub(V,=k)

yS =

(
N

k

)
y∅

for all 0 ≤ k ≤ 2t.
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2.3. Generalization to infinite graphs

In [92], de Laat and Vallentin generalize the Lasserre hierarchy as described
above to infinite but compact spaces: compact topological packing graphs. Such a
graph has a compact Hausdorff topological space as vertex set V , and the property
that every finite clique is contained in an open clique [92, Definition 1]. An open
clique is an open subset of the vertex set that is also a clique: every two vertices in
the set are adjacent.

Instead of the set of subsets Sub(V, k) they consider the set Ik of independent
subsets of V of size at most k. Since V is compact and every vertex is contained in
an open clique, the maximum size of an independent set is finite. In general, this is
needed for finite convergence, but if the problem contains a cardinality constraint
(e.g., in energy minimization problems; see Example 2.2), we can often take a limit
and avoid the property that every finite clique is contained in an open clique without
losing finite convergence, because the cardinality constraint will limit the size of a
feasible configuration.

We follow the approach in [92, Section 2] to define the topology through the
product topology on V k, the quotient topology for the image of V k under the map

q : (v1, . . . , vk) 7→ {v1, . . . , vk},

and the disjoint union topology to add the empty set. This gives the topology on
Sub(V, k) of subsets of V of size at most k, and Ik inherits this topology. Then Ik
is Hausdorff and compact [92, Lemma 1].

When V is a metric space, this topology is the topology induced by the Hausdorff
distance

dH(J, J ′) = inf{ε : J ⊆ J ′
ε and J ′ ⊆ Jε}

where Jε =
⋃

x∈J B(x, ε) is the ε-thickening of J . See the discussion in [124,
Section 3] and [92, Section 2].

With this topology, the connected components of Ik are the sets I=0, . . . , I=k,
where I=i contains all independent sets of size i, because of the condition that (V,E)
is a topological packing graph. De Laat and Vallentin prove this in Lemma 2 of [92],
which shows that I=i is both open and closed in Ik. In particular, the indicator
function χI=i

is continuous, so the constraint y0 = 1 can be directly translated to
λ(I0) = 1.

The generalizations of the Lasserre hierarchy for topological packing graphs
replace the moment vector y ∈ RI2k by a measure in M(I2k), the signed Radon
measures on I2k. Since measures are not defined on single points but on Borel sets,
it is convenient to generalize the adjoint of the moment and localizing matrices
instead of the matrices themselves. Equality constraints can be generalized directly
when they can be expressed as λ(g) = b, with g ∈ C(I2k). This is the case for the
cardinality constraints derived in [85, Lemma 3.1] (see also Example 2.6), which
are currently the only type of equality constraints used in discrete geometry.

Let g ≥ 0 be some constraint in the binary polynomial optimization problem.
Then the corresponding localizing matrix has entries

Mg
k (y)J1,J2 =

∑
Q⊆V

|Q|≤deg(g)

gQyJ1∪J2∪Q.
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with |J1∪J2| ≤ 2k−deg(g). Set kg = k−⌈deg(g)/2⌉, and denote by Qn
k the subsets

of [n] of size at most k. Then Mg
k (y) ∈ RQn

kg
×Qn

kg . Let K ∈ RQn
kg

×Qn
kg be positive

semidefinite. Then the inner product between the localizing matrix and this kernel
is given by

⟨Mg
k (y),K⟩ =

∑
J1,J2∈Qn

kg

K(J1, J2)
∑

Q⊆[n]
|Q|≤deg(g)

gQyJ1∪J2∪Q

=
∑

S∈Qn
2k

yS
∑

Q∈Qn
deg(g),J1,J2∈Qn

kg

J1∪J2∪Q=S

gQK(J1, J2)

= ⟨y,Ag
kK⟩,

where we use kernel notation for indexing the matrix K and define the operator
Ag

k : RQn
k×Qn

k → RQn
2k by

Ag
kK(S) =

∑
Q∈Qn

deg(g),J1,J2∈Qn
kg

J1∪J2∪Q=S

gQK(J1, J2).

Since ⟨Mg
k (y),K⟩ = ⟨y,Ag

kK⟩, this is the adjoint of Mg
k . Instead of generalizing

Mg
k , we generalize Ag

k: We replace Qn
k by Ik, and take a proper generalization of

g to a function g ∈ C(I2k); here evaluating the new function g on a set Q ∈ I2k
is the analogue to taking the coefficient of the polynomial g corresponding to a
set Q ∈ Qn

k . Similarly to polynomials, we say that the degree of g (denoted by
deg(g)) is the maximum ℓ such that g is nonzero on I=ℓ. This gives an operator
Ag

k : C(Ikg × Ikg ) → C(I2k) defined by

Ag
kK(S) =

∑
Q∈Ideg(g),J1,J2∈Ikg

J1∪J2∪Q=S

g(Q)K(J1, J2),

where kg = k − ⌈deg(g)/2⌉. Since ∥Ag
kK∥ ≤ 22k∥g∥∞∥K∥∞, Ag

k is bounded and
thus continuous. That implies that there exists an adjoint (Ag

k)
∗ : M(I2k) →

M(Ikg
× Ikg

). The generalization of the localizing constraint Mg
k ⪰ 0 then reads

(Ag
k)

∗(λ) ∈ M(Ikg × Ikg )⪰0,

where the set M(V × V )⪰0 is defined to be all symmetric, signed Radon measures
ν ∈ M(V × V ) such that

⟨ν,K⟩ ≥ 0

for every positive definite kernel K ∈ C(V × V )⪰0. A signed Radon measure
µ ∈ M(V × V ) is symmetric if

µ(A×B) = µ(B ×A)

for all Borel sets A and B of V . Generally, we will write Ak = A1
k for the operator

used to generalize the moment matrix condition. By M(V )≥0 we denote the
nonnegative Radon measures on V .
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Summarizing, the general form of the Lasserre hierarchy for problems on compact
topological packing graphs is given by

(2.3.1)

maximize λ(h),

subject to (Ag
k)

∗(λ) ∈ M(Ikg
× Ikg

)⪰0, g ∈ G ∪ {1},
λ(f) = bf , f ∈ F ∪ {χI0

},
λ ∈ M(I2k)≥0,

where G ⊆ C(I2k) is a set generalizing the inequality constraints, and F ⊆ C(I2k)
is a set generalizing the equality constraints. Note that the right hand side corre-
sponding to χI0 equals 1.

Example 2.1 (Packing, continued). The moment matrix corresponds to g = 1.
This gives the operator Ak : C(Ik × Ik) → C(I2k) defined by

AkK(S) =
∑

J1,J2∈Ik
J1∪J2=S

K(J1, J2).

Since the indicator function of I=i is continuous for all i we may use λ(I=1) as
objective function. The k-th level of the Lasserre hierarchy for the independent set
problem for topological packing graphs then becomes (cf. [92, Definition 2])

(2.3.2)

maximize λ(I=1)

subject to A∗
k(λ) ∈ M(Ik × Ik)⪰0,

λ(I=0) = 1,

λ ∈ M(I2k)≥0.

2.4. Dualization

To obtain valid bounds, there are two difficulties with problem (2.3.1). In the
first place, it is simply difficult to optimize over measures. More importantly, it
is a maximization problem where the optimal value gives upper bounds on the
quantity we consider. This means that we need an optimal solution, with optimality
certificate, to give a valid bound. To solve both issues, we dualize the problem.
This gives a minimization problem over continuous functions, where each feasible
solution gives a valid bound. Optimization over continuous functions is easier, and
we only need to prove feasibility instead of optimality for a valid bound.

We use the framework of Barvinok [5, Chapter IV] for duality theory. Let
E,F be topological vector spaces, and consider a non-degenerate bilinear form
⟨·, ·⟩ : E × F → R. If every linear functional on E can be written as ⟨·, f⟩ for some
f ∈ F and every linear functional on F can be written as ⟨e, ·⟩ for some e ∈ E, ⟨·, ·⟩
is called a duality. Let K ⊆ E be a (convex) cone. Then the dual cone is given by

K∗ = {f ∈ F : ⟨e, f⟩ ≥ 0 ∀e ∈ K}.

Now consider vector spaces E1, E2, F1, F2 with dualities ⟨·, ·⟩1 : E1 × F1 → R
and ⟨·, ·⟩2 : E2 × F2 → R. Let A : E1 → E2 be a linear transformation, and let
A∗ : F2 → F1 be its adjoint. That is,

⟨Ae, f⟩2 = ⟨e,A∗f⟩1
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for all e ∈ E1, f ∈ F2. Let K1 ⊆ E1 and K2 ⊆ E2 be convex cones, take b ∈ E and
c ∈ F . Then the problems

minimize ⟨x, c⟩,
subject to Ax ≥K2

b,

x ≥K1
0,

and
maximize ⟨b, l⟩,
subject to A∗l ≤K∗

1
c,

l ≥K∗
2
0.

are a primal-dual pair: for every feasible x ∈ E and l ∈ F we have ⟨b, l⟩ ≤ ⟨x, c⟩
(weak duality, see [5, Theorem IV.6.2]).

Recall that in the general formulation of the Lasserre hierarchy there is a
localizing constraint for every g ∈ G and an equality constraint for every f ∈ F .
When G and F are finite, this amounts to taking F2 = M(I2t) and

F1 =

 ⊕
g∈G∪{1}

M(Ikg
× Ikg

)

⊕ RF∪{χI0
}

with dual spaces E2 = C(I2t) and

E1 =

 ⊕
g∈G∪{1}

C(Ikg
× Ikg

)

⊕ RF∪{χI0
},

with the standard dualities ⟨λ, f⟩ = λ(f) on measure spaces and continuous functions
and the Euclidean inner product on RF∪{χI0

}.
However, when (for example) G is infinite, the duality becomes more complicated.

Suppose G ∼= U for some set U with deg(g) constant for g ∈ G; we denote this
degree by deg(G). Let ωG be a uniform, finite, positive measure on G (for example,
G ∼= Sn−1 with the standard O(n)-invariant probability measure ωn). Define

(AG
k )

∗(λ) = (Ag
k)

∗(λ)dωG(g),

so that (AG
k )

∗(λ) ∈ M(IkG
× IkG

×G), where kG = k − ⌈deg(G)/2⌉. Alternatively,
we can view G as the set of functions

{Q 7→ g(Q, u) : u ∈ U},

where g ∈ C(Iℓ × U), and we assume G has this form in the remainder of this
chapter. Then

AG
kK(S) =

∫ ∑
J1,J2∈IkG

,Q∈Ideg(G)

J1∪J2∪Q=S

g(Q, u)K(J1, J2, u)dωU (u).

A similar approach works when G is isomorphic to a finite, disjoint union of infinite
sets.

Example 2.3 (Covering, continued). Take V = Sn−1, and suppose we want to
cover V with spherical caps

B(y, r) = {x ∈ Sn−1 : ⟨x, y⟩ ≥ r}.
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The covering constraints for a finite graph are of the form

gj =
∑

i:{i,j}∈E

xi − 1 =
∑
i∈V

χB(j)(i)xi − 1 ≥ 0,

where B(j) contains all i such that {i, j} ∈ E. For the sphere, this gives a constraint
for every y ∈ Sn−1, with

(2.4.1) g(S, y) =


−1 for S = ∅,
1 for S = {x} and x ∈ B(y, r),

0 otherwise.

Here we took G ∼= Sn−1 with the standard O(n)-invariant probability measure ωn on
Sn−1. The operator AG

k : C(Ik−1 × Ik−1 × Sn−1) → C(I2k) is then defined by

AG
kK(S) =

∫ ∑
x∈Sn−1,J1,J2∈Ik−1

J1∪J2∪{x}=S

χB(y,r)(x)K(J1, J2, y)

−
∑

J1,J2∈Ik−1

J1∪J2=S

K(J1, J2, y)dωn(y).

Then the dual problem to problem (2.3.1) becomes

(2.4.2)

minimize a0 +

∫
F

a(f)b(f)dωF (f),

subject to −AkK −
∫
G

Ag
kK

′
gdωG(g)

+ a0χI0
+

∫
F

a(f)fdωF (f) ≥ h on I2k,

K ′ ∈ C(IkG
× IkG

×G) is slice-positive,

K ∈ C(Ik × Ik)⪰0.

Here, a function K ∈ C(A× A× B) is slice-positive if for every b ∈ B the kernel
Kb defined by

Kb(x, y) = K(x, y, b)

is a positive definite kernel; we denote the cone of slice-positive functions by
C(A×A×B)⪰0. Note that, if F or G is finite, the uniform measure is the counting
measure.

Example 2.1 (Packing, continued). Dualizing (2.3.2) gives

minimize a0,

subject to −AkK + a0χI0 ≥ χI=1 on I2k,
K ∈ C(Ik × Ik)⪰0.

The only constraint on a0 is given by K(∅, ∅) ≤ a0, and hence we can reformulate
the problem as

(2.4.3)

minimize K(∅, ∅),
subject to AkK ≤ −χI=1 on I2k \ I0,

K ∈ C(Ik × Ik)⪰0.
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2.5. Strong duality

Recall that weak duality says that the optimal objective value of the maxi-
mization problem of a primal-dual pair is always at most the optimal objective
value of the minimization problem. However, it is possible that the inequality is
strict. Strong duality means that the inequality is guaranteed to be an equality.
Additionally, if the optimal objective function value is finite, it is attained by a
primal optimal solution. Theorem 2.7 shows this is true for any reasonable Lasserre
hierarchy. This is essentially the same proof as for the original Lasserre hierarchy
for packing problems [92].

Theorem 2.7 (Strong duality). If the k-the level of the Lasserre hierarchy
(2.3.1) has a feasible solution, strong duality holds.

Proof. From Theorem IV.7.2 of [5], it follows strong duality holds if the cone

{(A∗
k(λ)− µ, (Ag

k)
∗(λ)dωG(g)− ξ, λ(f)dωF (f), λ(I0), λ(h)) :

λ ∈ M(I2k)≥0, µ ∈ M(Ik × Ik)⪰0,

ξ ∈ M(IkG
× IkG

×G)⪰0}

is closed. The cone is the Minkowski difference of

K1 = {(A∗
k(λ), (A

g
k)

∗(λ)dωG(g), λ(f)dωF (f), λ(I0), λ(h)) : λ ∈ M(I2k)≥0}

and

K2 = {(µ, ξ, 0, 0, 0) : µ ∈ M(Ik × Ik)⪰0, ξ ∈ M(IkG
× IkG

×G)⪰0}.

By [78] and [49], P is closed if

• K1 ∩K2 = {0},
• K1 and K2 are closed, and
• K1 is locally compact.

The first condition holds by Lemma 5 of [92]: if λ({∅}) = 0, A∗
k(λ) ⪰ 0 and λ ≥ 0,

then λ = 0 by the lemma, and therefore the element in K1 corresponding to the
only λ in the intersection equals 0.

The cone K2 is clearly closed. Following the proof of Lemma 6 of [92], the cone
K1 is closed and locally convex. Again, the result for K1 follows because it extends
(A∗

k(λ), λ(I0)). □

2.6. Convergence in a finite number of steps

In this section we consider conditions such that the Lasserre hierarchy converges
in a finite number of steps.

Let α be the maximum size of an independent set; if F consists of the cardinality
constraints defined in Example 2.6 for number N , we assume that there is an optimal
N -point configuration which is an independent set in the topological packing graph.
In particular this implies N ≤ α in that case.

We say that a configuration R ∈ Ik is invalid if there is a point u ∈ U such that∑
Q⊆R′

g(Q, u) < 0.

An invalid configuration is not a solution to the original problem. A configuration
is strictly invalid if additionally there is a neighborhood U ′ of such a point u and
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neighborhoods T1, . . . , T|R| of the elements of R such that∑
Q⊆R′

g(Q, u′) < 0

for every R′ ∈ {{x1, . . . , x|R|} : xi ∈ Ti|} and u′ ∈ U ′. For continuous functions g,
and for geometric problems such as covering the sphere with spherical caps, every
invalid configuration is strictly invalid. Intuitively, v is a point that is not ‘covered’
by R, and small enough perturbations of both R and v retain this property.

Theorem 2.8. Suppose C ∈ IN is an optimal configuration for some N ∈ N,
and

• either F = ∅ or F consists of cardinality constraints as in Example 2.6,
• G = {Q 7→ g(Q, u) : u ∈ U} for some piecewise continuous g, and
• every invalid configuration is strictly invalid.

Let i = maxg∈G⌈deg(g)/2⌉. Then lasα+i = χC(h). Moreover, if F consists of
cardinality constraints, then lasN+i = χC(h).

Note that the condition on G also includes G finite, with U = {1, . . . ,m} for
some m ∈ N.

The proof of this theorem is similar to the proof of Lemma 5.5.3 in [125] for
the symmetrized covering hierarchy, and uses the following result of [92].

Lemma 2.9 ([92, Proposition 1]). Let λ ∈ M(Iα) be such that λ({∅}) = 1 and
A∗

αλ ∈ M(Iα×Iα)⪰0. Then there exists a unique probability measure σ ∈ M(Iα)≥0

such that

λ =

∫
χRdσ(R)

where

χR =
∑
Q⊆R

δQ.

Proof of Theorem 2.8. Since α is the maximum size of an independent
set, Iα+1 = Iα and hence lasα+k = lasα+i for all k ≥ i. Moreover, if F contains
cardinality constraints, we have

λ(I=(N+l)) = 0

for all l ≥ 0 and hence lasN+k = lasN+i for all k ≥ i, as long as α(ε) ≥ N .
Since C is an optimal configuration, the measure χC is a feasible solution of

the problem by construction. Hence by Theorem 2.7, there is an optimal measure λ,
and by Lemma 2.9, this measure is of the form

λ =

∫
χRdσ(R)

for some probability measure σ ∈ M(Iα)≥0.
Suppose F consists of cardinality constraints. Then

1 = λ(I=N ) =

∫
χR(I=N )dσ(R) = σ(I=N )

so σ is supported on I=N . In particular, we have σ(X) = 0 where X is given by
the set

{R ∈ It : R does not satisfy F}.
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Consider a configuration R = {x1, . . . , x|R|} that is invalid (and therefore strictly
invalid by assumption). That is, there is a neighborhood U ′ of some u ∈ U ′ and
neighborhoods T1, . . . T|R| of the elements of R such that

(2.6.1)
∑
S⊆R′

g(S, u′) < 0

for all u′ ∈ U ′ and R′ ∈ TR = {{x1, . . . , x|R|} : xi ∈ Ti}. Define T =
⋃

i Ti.
Define the function ψT : Iα → R by

ψR(J) =

{
(−1)|J\T | if |T ∩ J | = |R|,
0 otherwise,

so that ∑
S⊆R′

ψR(S) =

{
1 if |R′| = |R| = |T ∩R|
0 otherwise,

by the inclusion-exclusion principle. Note that this equals the indicator function
of TR.

Let lk1 be a sequence of continuous functions weakly converging to ψR as k → ∞.
For constructing such a sequence, notice that ψR can be written as

ψR(J) =

α−|R|∑
i=0

(−1)i1I=|R|+i
(J)

 ∏
x∈R

∑
y∈J

1Ti
(y)

 ,

since the sign purely depends on the cardinality of J , and every neighborhood Ti
around a point x ∈ R can contain at most one element of J and should contain at
least one element of J for a nonzero value.

It remains to show that we can approximate 1Ti
(y) by continuous functions.

Recall that V is a compact Hausdorff space, so V is normal. That means we can
apply Urysohn’s lemma (see, e.g., [142]), which gives that any two closed subsets of
V can be separated by a continuous function. Let {Bk}k be a sequence of closed
sets such that

B1 ⊆ B2 ⊆ · · · ⊆ Ti

with
∞⋃
k=0

Bk = Ti,

and let fk be a continuous function with fk(Bk) = {1} and f(V \ Ti) = {0}, which
exists by Urysohn’s lemma. Then since Bk converges to Ti as k → ∞, we have
fk → 1Ti

ν-almost surely for every Radon measure ν.
We will show that σ(T ) = 0. Let l2 : V → R be a nonnegative continuous with

support U . Then for every k, we have by feasibility of λ that

0 ≤ ⟨(AG
α+i)

∗(λ), lk1 ⊗ lk1 ⊗ l2⟩.
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Taking the limit of k → ∞ then gives

0 ≤
∫
⟨(AG

α+i)
∗(χR), ψR ⊗ ψR ⊗ l2⟩dσ(R′)

=

∫∫ ∑
S⊆R′

∑
Q∈Ideg(g),J1,J2∈Iα

J1∪J2∪Q=S

g(Q, u)(ψR ⊗ ψR ⊗ l2)(J1, J2, u)dσ(R
′)dωU (u)

=

∫∫ ∑
S⊆R′

g(S, u)l2(u)
∑

J1,J2⊆R′

(ψR ⊗ ψR)(J1, J2)dσ(R
′)dωU (u)

=

∫∫ ∑
S⊆R′

g(S, u)l2(u)1T (R
′)dσ(R′)dωU (u).

by the inclusion-exclusion principle and the definition of ψR. Using (2.6.1) and the
fact that l2 is positive on U ′ and zero elsewhere, this is negative unless σ(TR) = 0.

The set X of all configurations R that are invalid equals⋃
R∈X

TR.

By [82, Section 3], the uncountable union of open sets of measure 0 gives a set of
measure 0, and since TR is open, this gives that σ(X ) = 0.

For every valid configuration R, we have χR(h) ≤ χC(h) because C is optimal,
and together with σ(X ) = 0 this gives that

λ(h) =

∫
χR(h)dσ(R) ≤ χC(h)σ(Iα) = χC(h).

Furthermore, χC is a feasible measure, and therefore λ(h) ≥ χC(h). Hence lasα =
χC(h). □

2.7. Complementary slackness

Complementary slackness gives conditions that any pair of optimal primal and
dual solutions with the same objective value satisfies. That is, given an optimal
solution (K,K ′, a), we can derive conditions any optimal configuration C satisfies,
and given an optimal configuration C, we can derive conditions any optimal solution
(K,K ′, a) satisfies. In Part II of this thesis, this allows us to extract proofs that
certain configurations are the unique optima, up to isometry; see for instance
Section 7.6.2.

Complementary slackness is widely known in the context of conic programming
(see, e.g., [5, Theorem IV.6.2] and [19, Section 5.5.2]).

Theorem 2.10 (Complementary slackness). Suppose (K,K ′, a) is an optimal
solution to (2.4.2), and C is an optimal configuration with a0+

∫
F
a(f)b(f)dωF (f) =

χC(h). Then

• For every S ⊆ C of size at most 2k, we have

−AkK(S)−
∫
G

Ag
kK

′(S)dωG(g) + a0χI0
(S) +

∫
F

a(f)f(S)dωF (f) = h(S).

• We have ∑
S⊆C,|S|≤2k

AkK(S) = 0,
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and for every measurable set U ⊆ G,∫
U

∑
S⊆C,|S|≤2k−deg(g)

Ag
kKg(S)dωG(g) = 0,

where Kg(J1, J2) = K ′(J1, J2, g). Moreover, if K respectively Kg is a sum
of positive definite kernels Kλ, then the equations hold for Kλ as well.

Proof. We first prove weak duality. We have

0 ≤ ⟨χC , (−AkK −
∫
G

Ag
kK

′dωG(g) + a0χI0 +

∫
F

a(f)fdωF (f)− h⟩

= −
∑

S⊆C,|S|≤2k

AkK(S)−
∫
G

∑
S⊆C,|S|≤2k−dg

Ag
kK

′(S)dωG(g)

+ a0 +

∫
F

a(f)χC(f)dωF (f)− χC(h)

≤ a0 +

∫
F

a(f)b(f)dωF (f)− χC(h)

where we used the constraints of both the primal and dual problem. Suppose
χC(h) = a0 +

∫
F
a(f)b(f)dωF (f). Then we have equality throughout the equation,

so in particular for every S ∈ I2k if S ⊆ C,

−AkK(S)−
∫
G

Ag
kK

′(S)dωG(g) + a0χI0
(S) +

∫
F

a(f)f(S)dωF (f) = h(S).

Since K is positive definite, we have∑
S⊆C
|S|≤2k

AkK(S) =
∑

J1,J2⊆C
|Ji|≤k

K(J1, J2) ≥ 0,

and similarly, since K ′ is continuous and slice-positive, and C is a feasible configu-
ration, we have∑

S⊆C
|S|≤2k

∫
g

Ag
kK

′(S)dωG(g)

=

∫ ∑
Q⊆C

|Q|≤deg(g)

g(Q)
∑

J1,J2⊆C
|J1|,|J2|≤kG

K ′(J1, J2, g)dωG(g) ≥ 0.

In particular, because all inequalities in the weak duality proof are equalities this
implies that ∑

S⊆C
|S|≤2k

AkK(S) =
∑
S⊆C
|S|≤2k

∫
g

Ag
kK

′(S)dωG(g) = 0

Now, if K is the sum of positive definite kernels Kλ, we have

0 =
∑
S⊆C
|S|≤2k

AkK(S) ≥
∑
S⊆C
|S|≤2k

AkKλ(S) ≥ 0,

and therefore the equality also holds for Kλ.
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Similarly, we also have∫
G

∑
S⊆C
|S|≤2k

Ag
kK

′
λ(S)dωG(g) = 0

if K ′ is a sum of slice-positive kernels K ′
λ. Since ωG is a nonnegative measure, and∑

S⊆C
|S|≤2k

Ag
kK

′
λ ≥ 0

for every g, the integral vanishes if and only if it vanishes on every measurable
subset of G. □





CHAPTER 3

Symmetry reduction and harmonic analysis

In Chapter 2, we derived a general hierarchy of optimization problems for
problems on a topological packing graph (V,E). The main objects over which the
optimization takes place are positive definite kernels K ∈ C(Ik × Ik) and slice-
positive functions in K ′ ∈ C(Ik ×Ik ×G), where Ik is the set of independent sets of
size at most k in the graph, and G ⊆ C(I2k). In our applications, G = ∅ or G ∼= V .

To perform explicit computations on such a hierarchy, we use the symmetry
of the problem. Suppose the problem is invariant under a group Γ: if X ⊆ V is
a feasible configuration, then γX is also a feasible configuration with the same
objective value, for all γ ∈ Γ. In general, the hierarchy then admits the same or
closely related symmetries: if (K,K ′, a) is a feasible solution, then (γK, γK ′, a) will
also be a feasible solution, where γ acts on K as

γK(J1, J2) = K(γ−1J1, γ
−1J2)

and, for example, on K ′ with G ≃ V as

γK ′(J1, J2, g) = K ′(γ−1J1, γ
−1J2, γ

−1g).

This implies that averaging also gives a feasible kernel with the same objective, and
hence K and K ′ can be taken to be invariant under the action of Γ. In this chapter
we consider such an invariant kernel K ∈ C(V × V )Γ⪰0.

Example 2.1 (Packing, continued). Consider the independent set problem on
the sphere Sn−1, where distinct points x, y are adjacent if ⟨x, y⟩ > cos θ. Then Ik is
invariant under O(n), where O(n) acts as

γ{x1, . . . , xk} = {γx1, . . . , γxk}.

Furthermore, if K is feasible, then γK defined by

(γK)(x, y) = K(γ−1x, γ−1y).

Indeed, suppose K satisfies the constraint

AkK(S) ≤ −χI=1(S).

Then

Ak(γK)(S) = AkK(γ−1S) ≤ −χI=1
(γ−1S) = −χI=1

(S),

since I=i is an invariant subset of I2k for every i = 0, . . . , 2k. Furthermore, the
kernel γK has the same objective function value. Since O(n) is a compact group,
we can define K by

K =

∫
O(n)

γKdγ

35
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as a feasible solution with objective function value K(∅, ∅) = K(∅, ∅), where the
integration uses the Haar measure. This implies that we can restrict to O(n)-

invariant kernels K ∈ C(Ik × Ik)O(n)
⪰0 .

In Section 3.4, we show that such a kernel can be written in the form

K(J1, J2) =
∑
λ

⟨Kλ, Zλ(J1, J2)⟩,

where the entries of Zλ are polynomials in the inner products between vectors in
J1 ∪ J2.

Essentially, there are two methods that can be considered for symmetry reduction.
The first is based on so-called symmetry adapted bases (see Section 3.2), which is
more suited for finite groups acting on finite dimensional vector spaces, while the
second uses Γ-equivariant maps (Section 3.3) and is more natural for infinite groups
and infinite dimensional vector spaces.

3.1. Preliminaries

In this section we give a quick overview of some important definitions and
results in representation theory. A more extensive introduction may be found in,
e.g., [57, 130, 131].

A representation of a group Γ on a vector space V is a group homomorphism
π : Γ → GL(V ). A subspace W of V is invariant if π(γ)W ⊆W for all γ ∈ Γ, and
a representation (π, V ) is irreducible if its only invariant subspaces are {0} and V .

Given representations (πi, Vπi
) for i = 1, 2, a linear map A : V1 → V2 is an

intertwining map if

Aπ1(γ) = π2(γ)A

for all γ ∈ Γ. The representations are called equivalent if A is invertible.
The direct sum of two representations (π1, V1), (π2, V2) is the representation

(π1 ⊕ π2, V1 ⊕ V2) given by

(π1 ⊕ π2)(γ)(v1, v2) = (π1(γ)v1, π2(γ)v2).

A representation is completely reducible if it is equivalent to a direct sum of irreducible
representations. Given an inner product on V , a representation (π, V ) is unitary if
π(γ) is a unitary operator on V for all γ ∈ Γ.

Lemma 3.1 (Schur’s Lemma (see, e.g., [131, Section 2.2]). Let (π1, V1), (π2, V2)
be irreducible representations on finite-dimensional vector spaces V1, V2, and let A
be an intertwining map. Then

• A is an isomorphism or A = 0.
• if V1 = V2, then A = λI for some λ ∈ C.

3.2. Symmetry adapted bases∗

Let Γ be a finite group, acting on a finite dimensional vector space V by
L : Γ → GL(V ). When V is infinite, we can restrict ourselves to a finite-dimensional

∗This section is based on Section 4 of the publication “N. Leijenhorst and D. de Laat, Solving
clustered low-rank semidefinite programs arising from polynomial optimization, Math. Program.

Comput. 16 (2024), no. 3, 503-534, doi:10.1007/s12532-024-00264-w”.

https://doi.org/10.1007/s12532-024-00264-w
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Γ-invariant subspace of V . By Maschke’s theorem (see, e.g., [57, Corollary 1.6]), V
admits the decomposition

V =
⊕
π∈Γ̂

⊕
i

Hπ,i

into irreducible representations, where Γ̂ denotes a complete set of irreducible
representations π : Γ → GL(Vπ), and Hπ,i is equivalent to Vπ.

Since Γ is finite, there is a finite basis eπ,1, . . . , eπ,dπ of Vπ for each irreducible
representation (π, Vπ), in which π(γ) are unitary matrices. A symmetry adapted
basis is a basis {eπ,i,j}π,i,j of V such that {eπ,i,j}j is a basis of the invariant subspace
Hπ,i, and the matrix L(γ) in this basis equals π(γ). Typically, we call {eπ,i,j} a
symmetry adapted system if V is a finite-dimensional invariant subspace of an
infinite space.

Such a basis exists since Hπ,i is equivalent to Vπ, so there are Γ-equivariant
isomorphisms Tπ,i : Vπ → Hπ,i and we can define eπ,i,j = Tπ,ieπ,j . Then it follows
that L(γ)eπ,i,j =

∑
k π(γ)k,jeπ,i,k. As described in [131, Section 2.7] a symmetry-

adapted basis can be constructed by defining the operators

(3.2.1) pπj,j′ =
dπ
|Γ|
∑
γ∈Γ

π(γ−1)j′,jL(γ),

and then choosing bases {eπ,i,1}i of Im(pπ1,1) and setting eπ,i,j = pπj,1eπ,i,1. Then,

L(γ̃)eπ,i,j =
dπ
|Γ|
∑
γ∈Γ

π(γ−1)1,jL(γ̃γ)eπ,i,1 =
dπ
|Γ|
∑
γ∈Γ

π(γ−1γ̃)1,jL(γ)eπ,i,1

=
dπ
|Γ|
∑
γ∈Γ

dπ∑
k=1

π(γ−1)1,kπ(γ̃)k,jL(γ)eπ,i,1 =

dπ∑
k=1

π(γ̃)k,jeπ,i,k.

That is, one can explicitly build a symmetry adapted basis for a given finite
dimensional space, when given a description of the irreducible representations.

Let K be a positive definite kernel on V . Since V is finite dimensional, we
can express K in a basis b to get a matrix of size dim(V ) × dim(V ). An element
x ∈ V can be expressed in the basis as c(x)∗b, where c(x) ∈ Cdim(V ) is a vector of
coefficients and ∗ denotes the conjugate transpose. We have

L(γ)x = c(x)∗L(γ)b,

so that an invariant kernel then has the property that

c(x)∗Kc(y) = c(x)∗L(γ)KL(γ)∗c(y)

for all x, y ∈ V .

Proposition 3.2. Suppose K ∈ C(V × V )⪰0 is invariant. Expressing K in a
symmetry adapted basis b = (eπ,i,j)π,i,j block-diagonalizes K as

K =
⊕
π∈Γ̂

1

dπ
Kπ ⊗ Idπ

for some Hermitian positive semidefinite matrices Kπ ∈ Cmπ×mπ . Here mπ is the
multiplicity of π in V .
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Proof. Note that expressing L(γ) in the symmetry adapted basis b gives

L(γ) =
⊕
π∈Γ̂

Imπ
⊗ π(γ).

Then for x = c(x)∗b ∈ V, γ ∈ Γ, we have

L(γ)x = c(x)∗L(γ)b

and hence

c(x)∗Kc(y) = c(L(γ)x)∗Kc(L(γ)y) = c(x)∗L(γ)KL(γ)∗c(y)

for every x, y ∈ V and γ ∈ Γ. In particular, this gives for all γ ∈ Γ that

K = L(γ)KL(γ)∗.

Writing K in block form K = (K(π,i),(π′,i′)) then gives, using the expression of L(γ)
in this basis, that

K(π,i),(π′,i′)π
′(γ) = π(γ)K(π,i),(π′,i′),

for all γ ∈ Γ: the blocks of K are intertwining operators. By Schur’s lemma
(Lemma 3.1), the block K(π,i),(π′,i′) is a multiple of the identity if π = π′, and 0
otherwise, as we wanted to prove. □

Example 3.3 (Schoenberg’s theorem [128]). Let V = Pol(Sn−1)≤d be the space
of polynomials on Sn−1 of degree at most d, and consider the action of O(n) on V
defined by

γp(x) = p(γ−1x).

where O(n) acts on Sn−1 naturally. The representations of O(n) are given by the
spaces

Harmn
k = {p ∈ R[x1, . . . , xn] : p is homogeneous,deg p = k,

n∑
i=1

∂2

∂x2i
p = 0}

of homogeneous, harmonic polynomials of degree k. The representations have
dimension

hnk =

(
n+ k − 1

n− 1

)
−
(
n+ k − 3

n− 1

)
.

A symmetry adapted basis for V is given by the spherical harmonics, which im-
mediately shows that mπ = 1 for every representation. Using Proposition 3.2, we
get

K(x, y) =
∑
k

ak
1

hnk

hn
k∑

j=1

ek,j(x)ek,j(y).

It is known that here the addition formula holds (see, e.g., [1, Chapter 9.6]:

1

hnk

hn
k∑

j=1

ek,j(x)ek,j(y) = Pn
k (x · y),

where Pn
k are the Gegenbauer polynomials with parameter n/2− 1. So every kernel

of the form

K(x, y) =
∑
k

akP
n
k (x · y).
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with ak ≥ 0 is O(n)-invariant and positive definite, and in fact every continuous,
O(n)-invariant, positive definite kernel on Sn−1 is the uniform limit of such kernels;
this result is known as Schoenberg’s Theorem [128].

Example 3.4 (Sum of squares polynomials). Consider V = C[x1, . . . , xn]≤d,
and suppose Γ acts on Cn by γx. The natural action of Γ on V is then given by

γp(x) = p(γ−1x).

Suppose p is a sum-of-squares polynomial; that is, we can write

p(x) =
∑
i

(c∗i b)
∗(c∗i b) = b∗Ab

for some Hermitian positive semidefinite matrix A, where b is a basis of V . If b is a
symmetry adapted basis, we have L(γ)b(x) = b(γ−1x) for all x, γ. If p is Γ-invariant,
we can take the average of p over the group to obtain

p(x) =
1

|Γ|
∑
γ∈Γ

b(γ−1x)∗Ab(γ−1x) = b(x)∗Bb(x),

where

B =
1

|Γ|
∑
γ∈Γ

L(γ)∗AL(γ)

is a positive semidefinite, Γ-invariant kernel on V . By Proposition 3.2, we can write

B =
⊕
π∈Γ̂

Bπ ⊗ Idπ ,

and hence

p(x) = ⟨B, b(x)b(x)∗⟩

=

〈⊕
π

1

dπ
Cπ ⊗ Idπ

, b(x)b(x)∗

〉

=
∑
π

dπ∑
j=1

mπ∑
i,i′=1

1

dπ
(Cπ)i,i′eπ,i,j(x)eπ,i′,j(x)

∗

=
∑
π

〈
Cπ, Eπ(x)

〉
,

where we defined

Eπ(x)i,i′ =
1

dπ

dπ∑
j=1

eπ,i,j(x)eπ,i′,j(x)
∗.

3.3. Invariant kernels on infinite sets

In this section we consider infinite spaces. We give a brief overview of the topic;
for a more thorough treatment, see [84, Chapter 3] and [113].

Suppose Γ is a compact group acting continuously on a compact set V . Let
K ∈ C(V ×V ) be a positive definite, Γ-invariant kernel. Let (π,W ) be an irreducible
representation of Γ, and denote the space of continuous, Γ-equivariant maps from V
to W by HomΓ(V,W ). That is, for ψ ∈ HomΓ(V,W ) we have

ψ(γv) = π(γ)ψ(v).



40 3. SYMMETRY REDUCTION AND HARMONIC ANALYSIS

Given a family {ψπ,l} of elements in this space, define Zπ(x, y) by

Zπ(x, y)l1,l2 = ⟨ψπ,l1(x), ψπ,l2(y)⟩
for x, y ∈ V , where the inner product on W is used.

Comparing with Section 3.2, the inner product

⟨ψπ,l1(x), ψπ,l2(y)⟩
essentially corresponds with the sum

dπ∑
j=1

eπ,l1,j(x)eπ,l2,j(y)
∗.

The matrix Zπ has the following properties:

• Zπ is Γ invariant: we have

γZπ(x, y)l1,l2 = ⟨ψπ,l1(γ
−1x), ψπ,l2(γ

−1y)⟩
= ⟨π(γ)ψπ,l1(x), π(γ)ψπ,l2(y)⟩
= Zπ(x, y)l1,l2

since π(γ) is unitary.
• The kernel (x, y) 7→ ⟨Kπ, Zπ(x, y)⟩ is positive definite if Kπ is a positive
semidefinite matrix. Indeed, given points {xi}Ni=1 ⊆ V , the submatrix of
K corresponding to these points has entries

⟨Kπ, Zπ(xi, xj)⟩ =
∑
l1,l2

(Kπ)l1,l2⟨ψπ,l1(xi), ψπ,l2(xj)⟩,

The matrix with entries (Kπ)l1,l2⟨ψπ,l1(xi), ψπ,l2(xj)⟩ is a entrywise prod-
uct of a positive semidefinite matrix with a Gram matrix, and as such, is
positive semidefinite. In particular this implies that the submatrix of K is
positive semidefinite.

Hence any kernel of the form

(x, y) 7→
∑
π

⟨Kπ, Zπ(x, y)⟩

where the positive semidefinite matrices Kπ have a finite number of nonzero entries,
is a continuous, Γ-invariant, positive definite kernel. Under certain assumptions on
V , the action of Γ, and {ψπ,l}, it can be proven that every continuous, Γ-invariant
positive definite kernel can be uniformly approximated by kernels of this form. Since
this thesis focuses on explicit computations of semidefinite programming bounds, we
do not consider the topic of uniform density of such kernels in the cone of Γ-invariant
positive definite kernels. For conditions under which this is true, see, e.g., [85, 113].

To construct a family {ψπ,l}, we take the following approach. Intuitively, the
space V is close to isomorphic to V/Γ × Γ/StabΓ(V ): every element v ∈ V can
be written as γR where R is a representative of the orbit of v, for some γ ∈ Γ,
which is unique up to elements in the stabilizer subgroup of R. The idea then is
to identify C(V ) with C(V/Γ)⊗ C(Γ/StabΓ(V )): the first factor is Γ-invariant by
definition, so the harmonic analysis only concerns the second factor. For the second
factor, consider a representation (π,W ) of Γ. Since C(Γ/StabΓ(V )) is in particular
StabΓ(V )-invariant, we only need to consider the subspace W StabΓ(V ) of W . In
general, V is not exactly isomorphic to V/Γ× Γ/StabΓ(V ): some orbits can have a
larger stabilizer subgroup. These discrepancies need to be corrected, which happens
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in Section 3.4 by ensuring that the certain functions ψπ,l evaluate to 0 on such
orbits.

3.4. An explicit construction on the sphere†

In this section, we consider an explicit construction for a family of equivariant
functions in the context of the Lasserre hierarchy on the sphere. We will use this
in Part II to compute the second level of the Lasserre hierarchy on the sphere for
several problems.

Let ε > 0, and consider the graph with vertex set Sn−1, where distinct vertices
x, y ∈ Sn−1 are adjacent if d(x, y) < ε. Here d(x, y) =

√
2− 2⟨x, y⟩ is the chordal

distance. Take V = I2, the independent sets in this graph of size at most 2. Then
V is invariant under Γ = O(n), as is the Lasserre hierarchy for the problems we
consider. This means that we need O(n)-invariant positive definite kernels on I2 to
perform computations.

To describe these kernels, we use the method outlined at the end of Section 3.3.
This requires in particular the construction of O(n − k)-invariant subspaces of
representations of O(n). For this we use the construction by Gross and Kunze [63],
who describe the spaces WO(n−k) induced by representations of GL(k). The space
I=2 has an additional S2 symmetry, and for the orbit containing sets of the form
{x,−x} for some x ∈ Sn−1, the stabilizer group is O(n− 1) instead of O(n− 2). In
Section 3.4.3, we give a subspace of WO(n−k) and an additional factor such that the
resulting zonal matrices are given by polynomials in the inner products of vectors
on the sphere, which we prove in Section 3.4.4.

3.4.1. Representations of the general linear group. We start by briefly
recalling some facts about the representations of the general linear group, which
may be found, e.g., in [57, Chapter 15]. The irreducible representations of GL(t) are
indexed by their signature λ = (λ1, . . . , λt), which is a tuple of integers satisfying
λ1 ≥ λ2 ≥ . . . ≥ λt. The polynomial, irreducible representations are those with λt ≥
0.

For kernels on I2, we require an explicit description of the irreducible, polynomial
representations of GL(t) for t = 2. They are given by

W = Symλ2(∧2U)⊗ Symm(U),

where U = C2 is the tautological representation that sends a matrix to itself with
basis e1, e2, the signature λ = (λ1, λ2) satisfies λ1 ≥ λ2 ≥ 0, and we define m =
λ1−λ2. We denote the corresponding group homomorphism by ρ : GL(2) → GL(W ).
A basis of this representation is given by

wk = (e1 ∧ e2)λ2em−k
1 ek2 ,

where k = 0, 1, . . . ,m. We give W the inner product such that ⟨wk1 , wk2⟩ = δk1,k2 .
With this choice, we have

⟨wk1
, ρ(A)wk2

⟩(3.4.1)

= det(A)λ2

m−k1∑
l=0

(
m−k2

l

)(
k2

m−k1−l

)
Al

11A
m−k2−l
21 Am−k1−l

12 A
k2−(m−k1−l)
22 .

†This section is taken from the publication “D. de Laat, N. M. Leijenhorst and W. H. H. de

Muinck Keizer, Optimality and uniqueness of the D4 root system, 2024, arXiv:2404.18794”
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For brevity, we shall use the notation ρ(A)k1,k2
= ⟨wk1

, ρ(A)wk2
⟩. Let cj(k) denote

the number of times ej occurs in the tensor wk. Concretely, we have c1(k) =
λ2 +m− k and c2(k) = λ2 + k. For a diagonal matrix D, we have

ρ(D)wk = D
c1(k)
11 D

c2(k)
22 wk.

We will occasionally refer to the representation as ρλ when it is convenient to make
the dependence on λ explicit.

For later use, we also record here a formula for the differential dρ at the identity
I evaluated at

X =

[
0 1
−1 0

]
.

Using the product rule (see, e.g., [57, Chapter 8]), we obtain

dρ(X)wk2 = −(m− k2)wk2+1 + k2wk2−1

and hence dρ(X)k1,k2
= −(m− k2)δk1,k2+1 + k2δk1,k2−1.

3.4.2. Invariants of the orthogonal group. Let n ≥ 2t. Denote by O(n,K)
the group of n× n matrices g with entries in the field K satisfying gTg = I. We see
the group O(n− t,K) as the subgroup of O(n,K) which fixes the first t standard
basis vectors. We will denote O(n,R) by O(n).

Following Gross and Kunze [63], we now define certain representations of O(n)
induced by representations of GL(t). Let (ρ,W ) be the polynomial, irreducible
representation of GL(t) with signature λ. Define the complex t× n matrix

ω =
[
It iIt 0

]
and the n× t matrix

ϵ =

[
It
0

]
.

For each w ∈W , define a function fw : O(n,C) →W by

(3.4.2) fw(γ) = ρ(ωγϵ)w.

Define the vector space of right translates of such functions by

V = span {Rgfw | g ∈ O(n,C), w ∈W} ,
where Rgfw(γ) = fw(γg). This space is a representation of O(n,C) by right
translation. A representation of O(n) is obtained by restricting O(n,C) to O(n).
We shall refer to this representation of O(n) by (π, V ).

Let Ψ: W → V be the map sending w to fw, and consider the space of invariants

V O(n−t) = {v ∈ V |π(h)v = v for all h ∈ O(n− t)}.
Since hϵ = ϵ for h ∈ O(n− t), we have Ψ(W ) ⊆ V O(n−t).

On V , we define the inner product

⟨f1, f2⟩ =
∫
O(n)

⟨f1(γ), f2(γ)⟩ dγ.

By standard properties of the Haar measure, this makes V a unitary representation
of O(n). It may be shown that with the inner product chosen in Section 3.4.1, the
numbers

⟨Ψ(wi), π(g)Ψ(wj)⟩ =
∫
O(n)

⟨Ψ(wi)(γ),Ψ(wj)(γg)⟩ dγ

are real; see [90, Section 3].
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In this thesis, it is only required that V is a representation of the orthogonal
group and Ψ(W ) ⊆ V O(n−t). However, it follows from the results in [63] that the
above description is complete in the following sense. For n > 2t, the representations
of O(n) defined above are irreducible and we have equality Ψ(W ) = V O(n−t).
Moreover, all irreducible representations of O(n) with nontrivial invariants under
O(n− t) are of this form for a unique λ. For n = 2t, a complete characterization of
the irreducible representations and invariants is given in [63, Section 8], and using
this it may be shown that the description of kernels in our approach is also complete
in the case n = 2t. The exact statement and proof can be found in the PhD thesis
[113].

3.4.3. Equivariant functions. In this section, we define a family of O(n)-
equivariant functions from I2 to the representation V as constructed in Section 3.4.2.
The definition of these functions depends on the choice of representatives of the
orbits of I2 under the action of O(n). Let

pj({x, y}) = ⟨x, y⟩j ,

q1({x, y}) =
√
2 + 2⟨x, y⟩,

q2({x, y}) =
√
2− 2⟨x, y⟩.

For the orbit I=0 the representative is ∅ and for the orbit O(n)J with |J | ≥ 1 we
choose the representative

(3.4.3)

{(
q1(J)

2
,
q2(J)

2
, 0, . . . , 0

)
,

(
q1(J)

2
,−q2(J)

2
, 0, . . . , 0

)}
.

In particular, this means that the standard basis vector e1 is the representative for
the orbit I=1.

The equivariant functions will be indexed by so-called admissible tuples. If
i = 0, we call the tuple (λ, i, j, k) admissible if λ = (0, 0), j = 0, and k = 0. If i = 1,
we call the tuple admissible if λ2 = 0, j = 0, and k = 0. Finally, if i = 2, we call the
tuple admissible for any λ1 ≥ λ2 ≥ 0, j ≥ 0, and 0 ≤ k ≤ λ1 − λ2 with λ2 + k even.

For each admissible tuple (λ, i, j, k), we now define the function

ψλ,(i,j,k)(J) = ξλ,i,j,k(J)π(s(J))Ψ(wk),

where

ξλ,i,j,k(J) =


1 if i = |J | < 2,

pj(J)q1(J)
c1(k)q2(J)

c2(k) if i = |J | = 2,

0 otherwise.

Here s : I2 → O(n) is a function such that s(J)R = J , where R is the orbit
representative of the orbit O(n)J . To such a function s we shall refer as a section.
Once the orbit representatives are fixed, the construction of the functions does not
depend on the choice of the section s.

Let us give a brief motivation for these formulae. Firstly, the subscript i indicates
the connected component I=i on which the equivariant function is not identically
zero. The space I=i is homeomorphic to a quotient of I=i/O(n)×O(n)/O(n− i).
For i = 2, the first factor is homeomorphic to an interval and the second factor
to a Stiefel manifold. The function pj may be viewed as a function on the factor
I=2/O(n) and π(s(J))Ψ(wk) as a function on the factor O(n)/O(n − 2). These
functions are then multiplied to obtain functions on the whole space. The functions
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q1 and q2 serve two purposes. Namely, they will ensure that we have compatibility
with the additional quotient concerning the endpoints of I=2/O(n), and that we
obtain polynomial expressions.

Lemma 3.5. For admissible (λ, i, j, k), the function ψλ,(i,j,k) is equivariant.

Proof. Since ψλ,(i,j,k) is supported on I=i, and since the action of O(n) on
I2 preserves the cardinality of the sets, we only need to show equivariance for the
restriction of ψλ,(i,j,k) to I=i. Let J be an element in I=i and let R be the orbit
representative of O(n)J . For g ∈ O(n), we have s(gJ)R = gJ and gs(J)R = gJ , so
s(gJ) = gs(J)h for some h in the stabilizer subgroup StabO(n)(R). Hence,

ψλ,(i,j,k)(gJ) = ξλ,i,j,k(gJ)π(s(gJ))Ψ(wk)

= ξλ,i,j,k(J)π(gs(J)h)Ψ(wk)

= ξλ,i,j,k(J)π(g)π(s(J))π(h)Ψ(wk).

We will complete the proof by showing that unless ψλ,(i,j,k)(J) and ψλ,(i,j,k)(gJ)
are both zero, π(h)Ψ(wk) = Ψ(wk), which shows

ψλ,(i,j,k)(gJ) = π(g)ψλ,(i,j,k)(J).

For this, we consider the cases i = 0, 1, 2 separately. The i = 0 case is immediate
since I=0 consists of a single element, and since λ = 0, V is one dimensional. If i = 1,
then k = 0, and the stabilizer subgroup of O(n) with respect to R is O(n− 1). By
formula (3.4.1), the dependence of ρ(ωγhϵ)w0 on ωγhϵ is only in the first column,
which is equal to the first column of ωγϵ, so

π(h)Ψ(w0)(γ) = ρ(ωγhϵ)w0 = ρ(ωγϵ)w0 = Ψ(w0)(γ).

If i = 2 and the points in J are not antipodal, then the stabilizer subgroup of
O(n) with respect to R is S2×O(n−2), where S2 is the two-element group generated
by the matrix r which maps e2 to −e2 and fixes the orthogonal complement of e2. By
construction (see Section 3.4.2), we have π(h)Ψ(wk) = Ψ(wk) for h ∈ O(n− 2). The
matrix ωγrϵ is the same as ωγϵ, except that the second column gets multiplied by −1.
Since λ2+k is even, it follows again from formula (3.4.1) that ρ(ωγrϵ)wk = ρ(ωγϵ)wk,
and thus that π(r)Ψ(wk)(γ) = Ψ(wk)(γ) holds.

If i = 2 and the points in J are antipodal, then the stabilizer subgroup is
O(n− 1) and q1(J) = 0. If c1(k) > 0, then q1(J)

c1(k) = 0, so both ψλ,(i,j,k)(J) and
ψλ,(i,j,k)(gJ) are zero. If c1(k) = 0, then λ2 = 0 and k = λ1, and according to
(3.4.1), ρ(ωγhϵ)wk only depends on the second column of ωγhϵ, which is equal to
the second column of ωγϵ, so

π(h)Ψ(wk)(γ) = ρ(ωγhϵ)wk = ρ(ωγϵ)wk = Ψ(wk)(γ). □

3.4.4. Zonal matrices. We now define the zonal matrix Zλ by

Zλ(J1, J2)(i1,j1,k1),(i2,j2,k2) = ⟨ψλ,(i1,j1,k1)(J1), ψλ,(i2,j2,k2)(J2)⟩,
where the rows and columns range over all admissible tuples. It follows from
equivariance of the function ψλ,(i,j,k) and unitarity of the inner product that the
zonal matrices are O(n) invariant.

In the remainder of this section, we use invariant theory to give a short argument
showing that the entries of the zonal matrices are polynomials in the inner products
between the vectors in J1 ∪ J2. Note that this fact also follows from the direct
construction in terms of inner products as given in Section 3.4.5.
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Lemma 3.6. Let (λ, i, j, k) be admissible. For fixed w ∈W , the expression

⟨w,ψλ,(i,j,k)({x1, . . . , xi})(γ)⟩

is a polynomial in the entries of the orthogonal matrix γ and the vectors x1, . . . , xi.

Proof. Given the choice of representatives, we have that for J = {x1}, the
first column of s(J) is equal to x1, for J = {x1, x2} with ⟨x1, x2⟩ ≠ ±1, the first
column of s(J) is (x1 + x2)/q1(J) and the second column is either (x1 − x2)/q2(J)
or (x2 − x1)/q2(J), and for J = {x1,−x1} the second column of s(J) is either
x1 or −x1. By the choice of admissible tuples, it will turn out that the resulting
expressions do not depend on the sign of the second column.

We prove the lemma for each i separately. For i = 0, the expression is a constant.
If i = 1, then λ2 = j = k = 0, and we have

⟨w,ψλ,(1,0,0)({x1})⟩ = ξλ,1,0,0({x1})⟨w, π(s({x1}))Ψ(wk)(γ)⟩.

Here ξλ,1,0,0({x1}) = 1 and

⟨w, π(s({x1}))Ψ(w0)(γ)⟩ = ⟨w, ρ(ωγs({x1})ϵ)w0⟩.

From the expression (3.4.1) for the matrix coefficients of ρ, it follows that the
right-hand side is a polynomial in the entries in the first column of ωγs({x1})ϵ,
which is a polynomial in the entries of γ and x1.

Now let i = 2 and set J = {x1, x2}. We will show that

(3.4.4) ψλ,(i,j,k)(J) = ⟨x1, x2⟩jρ(ωγ
[
x1 + x2 x1 − x2

]
)wk.

For ⟨x1, x2⟩ ≠ ±1, we then have

ψλ,(i,j,k)(J) = ξλ,i,j,k(J)π(s(J))Ψ(wk)

= pj(J)q1(J)
c1(k)q2(J)

c2(k)ρ
(
ωγ
[
x1+x2

q1(J)
x1−x2

q2(J)

])
wk.

Here we used that the expression does not depend on the sign of the second column
since λ2 + k is even, i.e., we have

ρ
(
ωγ
[
u v

])
wk = ρ

(
ωγ
[
u −v

])
wk

for all orthonormal u and v. Since

ρ
(
ωγ
[
x1+x2

q1(J)
x1−x2

q2(J)

])
= ρ(ωγ

[
x1 + x2 x1 − x2

]
)ρ

([
1/q1(J) 0

0 1/q2(J)

])
,

it follows that identity (3.4.4) holds whenever ⟨x1, x2⟩ ≠ ±1.
We will show (3.4.4) also holds for the case x1 = −x2. We have

ψλ,(i,j,k)(J) = ξλ,i,j,k(J)π(s(J))Ψ(wk)

= pj(J)q1(J)
c1(k)q2(J)

c2(k)ρ(ωγs(J)ϵ)wk.

We may now substitute s(J)ϵ with
[
c x1

]
for any unit vector c orthogonal to x1,

to obtain

ψλ,(i,j,k)(J) = ⟨x1, x2⟩j0c1(k)2c2(k)ρ
(
ωg
[
c x1

])
wk

= ⟨x1, x2⟩jρ
(
ωγ
[
c x1

])
ρ

([
0 0
0 2

])
wk

= ⟨x1, x2⟩jρ(ωγ
[
x1 + x2 x1 − x2

]
)wk.
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A similar argument can be used to show (3.4.4) holds for the case x1 = x2. Together
this shows

⟨w,ψλ,(i,j,k)({x1, x2})(γ)⟩
is a polynomial in the entries of γ, x1, and x2. □

Proposition 3.7. Fix i1 and i2 and let J1 = {x1, . . . , xi1} and J2 = {y1, . . . , yi2}.
For admissible tuples (λ, i1, j1, k1) and (λ, i2, j2, k2),

Zλ(J1, J2)(i1,j1,k1),(i2,j2,k2)

is a polynomial in the inner products between the vectors x1, . . . , xi1 , y1, . . . , yi2 .

Proof. By the definition of the inner product on V we have

Zλ(J1, J2)(i1,j1,k1),(i2,j2,k2) =

∫
O(n)

⟨ψλ,(i1,j1,k1)(J1)(γ), ψλ,(i2,j2,k2)(J2)(γ)⟩ dγ.

Since the vectors w0, . . . , wλ1−λ2 form an orthonormal basis of W , this is equal to∫
O(n)

λ1−λ2∑
l=0

⟨ψλ,(i1,j1,k1)(J1)(γ), wl⟩⟨wl, ψλ,(i2,j2,k2)(J2)(γ)⟩ dγ.

By Lemma 3.6, this is a polynomial in the entries of the vectors x1, . . . , xi1 , y1, . . . , yi2 .
By Lemma 3.5, the functions ψλ,(i1,j1,k1) and ψλ,(i2,j2,k2) are equivariant, so by

unitarity of the inner product on V it follows that

Zλ(gJ1, gJ2)(i1,j1,k1),(i2,j2,k2) = Zλ(J1, J2)(i1,j1,k1),(i2,j2,k2)

for all g ∈ O(n). In other words, this is an O(n)-invariant polynomial in the
vectors x1, . . . , xi1 , y1, . . . , yi2 . By invariant theory (see, e.g., [57, §F.1]), it follows
that Zλ(J1, J2)(i1,j1,k1),(i2,j2,k2) is a polynomial in the inner products between these
vectors. □

3.4.5. Efficient computation of the zonal matrices. In this section, we
explain how we compute the zonal matrices from Section 3.4.4. Throughout we
assume t = 2, but we will sometimes write t instead of 2 to make explicit the
dependence on t. Compared to the construction of the zonal matrices in [90],
we give a much more efficient approach, which is crucial to be able to perform
computations with the truncation degree required to get a sharp bound for the D4

root system.
We have

Zλ(J1, J2)(i1,j1,k1),(i2,j2,k2)

=

∫
O(n)

⟨ψλ,(i1,j1,k1)(J1)(γ), ψλ,(i2,j2,k2)(J2)(γ)⟩ dγ

= ξλ,i1,j1,k1
(J1)ξλ,i2,j2,k2

(J2)

∫
O(n)

⟨ρ(ωγs(J1)ϵ)wk1
, ρ(ωγs(J2)ϵ)wk2

⟩ dγ

= ξλ,i1,j1,k1
(J1)ξλ,i2,j2,k2

(J2)Pk1,k2
(s(J1)

Ts(J2)),

where we define

(3.4.5) Pk1,k2(S) =

∫
O(n)

⟨ρ(ωγϵ)wk1 , ρ(ωγSϵ)wk2⟩ dγ.
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Here Pk1,k2
(S) is a polynomial in the entries of the n×n matrix S. In this section we

show how to compute Pk1,k2(S) efficiently and how to use this to obtain Zλ(J1, J2)
as a polynomial in the inner products.

3.4.5.1. Additional symmetries. To compute Pk1,k2
(S) using the matrix entries

of ρ, one could directly use the expression

Pk1,k2
(S) =

m∑
l=0

∫
O(n)

⟨ρ(ωγϵ)wk1
, wl⟩⟨wl, ρ(ωγSϵ)wk2

⟩ dγ,

where m = λ1 − λ2. In this section, we describe additional symmetries under the
action of the circle group O(2), which allows us to compute this more efficiently.

Denote by ρλ the representation of GL(2) with signature λ. For any matrix M ,
we have ρλ(M) = det(M)λ2ρ(m,0)(M), and hence

Pk1,k2(S) =

∫
O(n)

⟨ρλ(ωγϵ)wk1 , ρλ(ωγSϵ)wk2⟩ dγ

=

∫
O(n)

det(ωγϵ)λ2⟨ρ(m,0)(ωγϵ)wk1 , ρ(m,0)(ωγSϵ)wk2⟩det(ωγSϵ)λ2 dγ,

where A denotes the entrywise complex conjugate of A. We introduce some notation
to conveniently describe and manipulate expressions such as the one above. We will
refer to the representation ρ(m,0) as ρ in this section. Let α = (α1, . . . , αλ2) be a
vector with

αi = (αi1, αi2) ∈ {(1, 1), (1, 2), (2, 1), (2, 2)},
and let e be the vector with ei = (1, 2) for all i. We also define the matrices A = ωγϵ
and B = ωγSϵ. Denote by [α] the orbit of α under the action of the symmetric
group Sλ2

on the λ2 components. For such α and 0 ≤ l1, l2 ≤ m we consider the
following polynomial in the entries of S:

(3.4.6) Jl1,l2,[α] =

∫
O(n)

det(Ā)λ2ρ(A)∗k1,l1ρ(B)l2,k2

λ2∏
i=1

Bαi1,1Bαi2,2 dγ,

where ρ∗ is the adjoint of ρ.
For each signature λ that we need and each 0 ≤ k1, k2 ≤ m, we will show there

are coefficients cl1,k2,[σ], independent of S and k1, such that

(3.4.7) Jl1,l1,[σ] = cl1,k2,[σ]J0,0,[e]

for all 0 ≤ l1 ≤ m and σ ∈ {(1, 2), (2, 1)}λ2 . We will compute these coefficients by
solving a linear system for each λ and k2. By expanding both the inner product and
the determinant involving B, the polynomial Pk1,k2

(S) may then be computed as

Pk1,k2
(S) =

∑
l1,σ

(−1)s(σ)Jl1,l1,[σ],

where the sum is over 0 ≤ l1 ≤ m and all tuples σ ∈ {(1, 2), (2, 1)}λ2 , and s(σ) is
the number of times the pair (2, 1) occurs in σ. By grouping terms and using (3.4.7)
we can write this as

Pk1,k2(S) = J0,0,[e]
∑
l1,[σ]

(−1)s(σ)
(
λ2
s(σ)

)
cl1,k2,[σ].

In summary, for fixed λ, k1 and k2, we need to compute only one integral of the
form (3.4.6) using this approach.
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We now show how to compute these coefficients. For g ∈ O(t), we may substitute
γ with (g ⊕ g ⊕ In−2t) γ, and this leaves the expression Jl1,l2,[α] invariant by the
invariance property of the Haar measure of O(n). We have ω(g⊕ g⊕ In−2t)γ = gωγ
and hence we may substitute gA for A and gB for B. This gives

(3.4.8) Jl1,l2,[α] =
∑

l3,l4,[β]

det(ḡ)λ2ρ(ḡ)l1,l3Jl3,l4,[β]ρ(g)l2,l4
∑
ζ∈[β]

λ2∏
i=1

gαi1,ζi1gαi2,ζi2 .

We now phrase this in terms of a representation.
Recall that the representation Symλ2(∧2U) ∼= C is given by multiplication by

det(g)λ2 . Also recall the representation on End(W ) given by

g ·M = ρ(g)Mρ(g)∗.

For this representation, a basis is given by wl1 ⊗ w∗
l2
. Finally, let U = C2 be the

representation with the standard action of O(2) and consider the representation

(ϕ, Symλ2(U⊗2)). The vectors

e[β] =

λ2∏
i=1

eβi1 ⊗ eβi2

form a basis. We consider the inner product such that this basis is orthonormal.
We then consider the dual representation ϕ(g∗)∗. We have

ϕ(g∗)e[α] =

λ2∏
i=1

g∗eαi1 ⊗ g∗eαi2 =
∑
[β]

∑
ζ∈[β]

λ2∏
i=1

gαi1,ζi1gαi2,ζi2eβ

and hence

⟨eα, ϕ(g∗)∗eβ⟩ = ⟨ϕ(g∗)eα, eβ⟩ =
∑
ζ∈[β]

λ2∏
i=1

gαi1,ζi1gαi2,ζi2 .

Tensoring the above representations gives the representation

(Φ,Symλ2(∧2U)⊗ End(W )⊗ Symλ2(U⊗2))

and a basis is given by el1,l2,[α] = wl1 ⊗ w∗
l2
⊗ e[α]. We get

(3.4.9) ⟨el1,l2,[α],Φ(g)el3,l4,[β]⟩ = det(g)λ2ρ(g)l1,l3ρ(g)l2,l4
∑
ζ∈[β]

λ2∏
i=1

gαi1,ζi1gαi2,ζi2 .

Using (3.4.8) and (3.4.9) we have

Φ(g)
∑

l3,l4,[β]

Jl3,l4,[β]el3,l3,[β]

=
∑

l1,l2,[α]

∑
l3,l4,[β]

Jl3,l4,[β]⟨el1,l2,[α],Φ(g)el3,l4,[β]⟩el1,l2,[α]

=
∑

l1,l2,[α]

∑
l3,l4,[β]

det(ḡ)λ2ρ(ḡ)l1,l3Jl3,l4,[β]ρ(g)l2,l4
∑
ζ∈[β]

λ2∏
i=1

gαi1,ζi1gαi2,ζi2el1,l2,[α]

=
∑

l1,l2,[α]

Jl1,l2,[α]el1,l2,[α].
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Defining

J =
∑

l1,l2,[α]

Jl1,l2,αel1,l2,[α],

this equation is expressed as Φ(g)J = J for all g ∈ O(2). Using the exponential
map, this is equivalent to the condition dΦ(X)J = 0, where

X =

[
0 1
−1 0

]
,

and Φ(g0)J = J , where g0 is an orthogonal matrix with det(g0) = −1. This follows
from the fact that X spans the Lie algebra so(2). The additional condition with g0
comes from the fact that the equation has to hold for all orthogonal matrices and
not merely for the special orthogonal matrices.

We now write out the system dΦ(X)J = 0 in components. Let g(t) be a curve
of special orthogonal matrices such that g(0) = I and g′(0) = X. To obtain the
components of dΦ(X), we plug g(t) into (3.4.9) and take the derivative. Using the
product rule, one obtains

⟨el1,l2,[α], dΦ(X)el3,l4,[β]⟩
= dρ(X)l1,l3δl2,l4δ[α],[β] + δl1,l3dρ(X)l2,l4δ[α],[β] + δl1,l3δl2,l4G

′(0),

where we have defined

G(t) =
∑
ζ∈[β]

λ2∏
i=1

g(t)αi1,ζi1g(t)αi2,ζi2 .

A formula for dρ(X) can be found in Section 3.4.1. One may further verify that each
term of G′(0) is zero unless αij and ζij differ for exactly one ij, in which case the
term equals Xαij ,ζij . Together this gives explicit formulas for the linear constraints
on the coefficients Jl1,l2,[α] arising from dΦ(X)J = 0.

We now work out the condition Φ(g0)J = J . For this, we let dj(α) be the total
number of occurrences of j in α. Recall the signature of ρ is (m, 0), so that we have
c1(l) = m− l and c2(l) = l.

Lemma 3.8. If λ2 + c2(l1) + c2(l2) + d2(α) is odd, then Jl1,l2,[α] = 0.

Proof. Let g0 =

[
1 0
0 −1

]
. We then have

⟨el1,l2,[α],Φ(g0)el3,l4,[β]⟩ = δl1,l3δl2,l4δ[α],[β](−1)λ2+c2(l1)+c2(l2)+d2(α)

and hence from J = Φ(g0)J we obtain

Jl1,l2,[α] = (−1)λ2+c2(l1)+c2(l2)+d2(α)Jl1,l2,[α]. □

We give additional conditions under which Jl1,l2,[α] vanishes.

Lemma 3.9. Let j ∈ {1, 2}. If cj(l1)+λ2−(cj(l2)+dj(α)) ̸= 0, then Jl1,l2,[α] = 0.

Proof. Let R(θ) be the matrix rotating the j and j + t rows of γ by[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

We then have ωR(θ) = A(θ)ω, where A(θ) is the diagonal matrix with eiθ at the
jth diagonal entry and 1 at the other diagonal entry. The matrix R(θ) is orthogonal
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and by a similar argument as before we may substitute ω with A(θ)ω. We then
obtain that Jl1,l2,[α] is equal to∑

l3,l4,[β]

det(A(θ))λ2ρ(A(θ))l1,l3Jl3,l4,[β]ρ(A(θ))l2,l4

λ2∏
i=1

A(θ)αi1βi1A(θ)αi2βi2 .

Working this out gives

Jl1,l2,[α] = e−iθ(cj(l1)+λ2−(cj(l2)+dj(α)))Jl1,l2,[α].

Since this equation holds for all θ, we have Jl1,l2,[α] = 0. □

We thus have the system dΦ(X)J = 0 and certain components of J vanish due
to Lemmas 3.8 and 3.9. As a final step, which is necessary to ensure the solution
space is one-dimensional, we add the following relations. By expanding into the
monomials B11, B12, B21, and B22, there are coefficients al2,k2,[α],µ such that

ρ(B)l2,k2

λ2∏
i=1

Bαi1,1Bαi2,2 =
∑
µ

al2,k2,[α],µB
µ.

With

Kl1,µ =

∫
O(n)

det(Ā)λ2ρ(A)∗k1,l1B
µ dγ

we have

Jl1,l2,[α] =
∑
µ

al2,k2,[α],µKl1,µ.

We now enlarge the linear system by introducing new variables for the Kl1,µ, and for
each l1, l2, and α we add the above constraint on the variables Jl1,l2,[α] and Kl1,µ.

Finally, we project the linear space satisfying all of the above relations to the
space

span{el1,l1,[σ] | 0 ≤ l1 ≤ m, σ ∈ {(1, 2), (2, 1)}λ2}.
For this, we consider the homogeneous linear system given by the constraints
discussed above. We order the columns so that the variables corresponding to
Jl1,l1,[σ] are at the end, and J0,0,[e] corresponds to the final column. Then we
perform row reduction using rational arithmetic and find that the final column is
the only free variable among the columns corresponding to the variables Jl1,l1,[σ].
From this, we find the coefficients cl1,k2,[σ] for which (3.4.7) holds.

3.4.5.2. Real parts. As shown in Section 3.4.5.1, to compute the zonal matrices
we need to compute the quantity

J0,0,[e] =

∫
O(n)

det(ωγϵ)λ2ρ(ωγϵ)∗k1,0ρ(ωγSϵ)0,k2
((ωγSϵ)1,1(ωγSϵ)2,2)

λ2 dγ.

In this section we will show that for λ1 > 0, this is equal to
(3.4.10)

2

∫
O(n)

R
(
det(ωγϵ)λ2ρ(ωγϵ)∗k1,0

)
R
(
ρ(ωγSϵ)0,k2

((ωγSϵ)1,1(ωγSϵ)2,2)
λ2
)
dγ,

where R(z) denotes the real part of z ∈ C. This yields a factor two speedup in the
most expensive part of the generation of the zonal matrices.



3.4. AN EXPLICIT CONSTRUCTION ON THE SPHERE 51

For a matrix M and a vector a of natural numbers of the same size, let us adopt
the notation

Ma =
∏
i,j

M
ai,j

i,j .

By multilinearity and the formula for the matrix coefficients of the representations
of GL(2), it suffices to show

(3.4.11)

∫
O(n)

(ωγϵ)a(ωγSϵ)b dγ = 2

∫
O(n)

R ((ωγϵ)a)R
(
(ωγSϵ)b

)
dγ

for all a, b ∈ N2×2 with |a| = |b| = |λ|.
To show this, we introduce the variables R11, R12, R21, and R22, the matrices

R+
k =

[
Rk1I2 Rk2I2 0

]
,

and the vectors Rk =
[
Rk1 Rk2

]
for k = 1, 2. We then consider the polynomial∫

O(n)

(R+
1 γϵ)

a(R+
2 γSϵ)

b dγ =
∑

|u|=|v|=|λ|

Iu,vR
u
1R

v
2(3.4.12)

=
∑

|s|=2|λ|

∑
u+v=s

|u|=|v|=|λ|

Iu,vR
u1
11R

u2
12R

v1
21R

v2
22,

where the real numbers Iu,v are obtained by working out brackets and gathering
terms.

Substituting R11 = 1, R12 = −i, R21 = 1 and R22 = i gives the left-hand side
of (3.4.11), which is a real number by [90, Section 3]. So the sum over all terms
with u2 + v2 odd vanishes. Since |s| is even, u1 + v1 is restricted to be even too. We
reparametrize the sum and obtain that the left-hand side of (3.4.11) is given by

(3.4.13)
∑

|s|=|λ|

(−1)s2
∑

u+v=2s
|u|=|v|=|λ|

(−1)u2Iu,v.

A similar reasoning shows that the right-hand side of (3.4.11) is equal to

2
∑

|s|=|λ|

(−1)s2
∑

u+v=2s
u2 even

|u|=|v|=|λ|

Iu,v.

We now substitute R1 = R2 in (3.4.12) to obtain the polynomial∫
O(n)

(R+
1 γϵ)

a(R+
1 γSϵ)

b dγ =
∑

|u|=|v|=|λ|

Iu,vR
u
1R

v
1

=
∑

|s|=2|λ|

∑
u+v=s

|u|=|v|=|λ|

Iu,vR
s
1.

(3.4.14)

Similarly as before, we may substitute γ with (g ⊕ g ⊕ In−2t) γ, and this leaves
the polynomial (3.4.14) invariant by the invariance property of the Haar measure
of O(n). We have R+

1 (g ⊕ g ⊕ In−2t) γ = gR+
1 γ. Hence polynomial (3.4.14) is

a polynomial in R2
11 + R2

12 by invariant theory. Since it is also a homogeneous
polynomial of total degree 2|λ|, it must be linearly proportional to the polynomial

(3.4.15)
(
R2

11 +R2
12

)|λ|
.
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Hence the s which occur in the sum in (3.4.14) must have even entries, and the
polynomial (3.4.14) may be written as∑

|s|=|λ|

∑
u+v=2s

|u|=|v|=|λ|

Iu,vR
2s
1 =

∑
|s|=|λ|

csR
2s
1 .

Furthermore, since it must be linearly proportional to (3.4.15), we have

cs =

(
|λ|
s2

)
c0

by the binomial theorem. We now rearrange terms to obtain∑
u+v=2s

(−1)u2Iu,v =
∑

u+v=2s
u2 even

(−1)u2Iu,v +
∑

u+v=2s
u2 odd

(−1)u2Iu,v

= 2
∑

u+v=2s
u2 even

(−1)u2Iu,v −
∑

u+v=2s

Iu,v

= 2
∑

u+v=2s
u2 even

(−1)u2Iu,v − cs,

where in each sum we implicitly assume |u| = |v| = |λ|. Using (3.4.13), we now see
that we may write the left-hand side of (3.4.11) as∑

|s|=|λ|

(−1)s2
∑

u+v=2s

(−1)u2Iu,v = 2
∑

|s|=|λ|

(−1)s2
∑

u+v=2s
u2 even

Iu,v −
∑

|s|=|λ|

(−1)s2cs

= 2
∑

|s|=|λ|

(−1)s2
∑

u+v=2s
u2 even

Iu,v,

since ∑
|s|=|λ|

(−1)s2cs = c0

|λ|∑
s2=0

(
|λ|
s2

)
(−1)s2 = c0(1− 1)|λ| = 0

whenever |λ| > 0. Recall that the sum over even u2 equals the integral of the
product of the real parts. Hence we have shown equation (3.4.11), which is what
we wanted to show.

3.4.5.3. Inner products. In this section, we describe how to compute

Zλ(J1, J2)(i1,j1,k1),(i2,j2,k2)

efficiently as a polynomial in the inner products between the vectors in J1 ∪ J2.
We have

ρ(ωγhϵ)wk1
= ρ(ωγϵ)wk1

for all h ∈ O(n− 2), where as before we view h as a matrix in O(n) fixing the first
2 coordinates. Let Pk1,k2

be the polynomial defined in (3.4.5). By the invariance
property of the Haar measure, we have

Pk1,k2(hS) = Pk1,k2(S)

for all h ∈ O(n− 2). Let S1 be the top-left 2× 2 block of S and S2 the bottom-left
(n − 2) × 2 block of S. Using invariant theory (see, e.g., [57, §F.1]), we see that
Pk1,k2(S) must be a polynomial in the entries of S1 and the inner products between
the columns of S2.
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Consider the ideal J in R[S] generated by the entries of STS − I and the
monomials Si,j for i > 2 + j. Consider the polynomials in J given by

Si,j with i > 2 + j and j ≤ 2, 1−
4∑

i=1

S2
i,2,

3∑
i=1

Si,1Si,2, 1−
3∑

i=1

S2
i,1.

We now use the above polynomials to perform Euclidean division on Pk1,k2 and show
the remainder pk1,k2 is a polynomial in the entries of S1. Here we use a lexicographical
term order where the variables are ordered such that S4,2 > S3,2 > S3,1 and
Si,j < S3,1 if i ≤ 2 and Si,j > S4,2 if i > 2+ j. This results in the following concrete
procedure. We first remove the terms in Pk1,k2

that contain a variable Si,j with
i > 2 + j, after which we obtain a polynomial of the form∑

α,a,b,c

Cα,a,b,cS
α
1 S

2a
3,1(S3,1S3,2)

b(S2
3,2 + S2

4,2)
c

for some C, α, a, b, and c. In this polynomial, we first replace every occurrence of S2
4,2

with 1−S2
1,2−S2

2,2−S2
3,2, then every occurrence of S3,1S3,2 with −S1,1S1,2−S2,1S2,2,

and finally every occurrence of S2
3,1 with 1− S2

1,1 − S2
2,1. This gives a polynomial

pk1,k2
in the entries of S1. At each step we have subtracted elements of J , so

Pk1,k2
− pk1,k2

∈ J .
From formula (3.4.1) for the matrix coefficients of the representation ρ of

GL(2), it follows that every monomial in the expansion of Pk1,k2(S) contains c1(k2)
variables from the first column of S and c2(k2) variables from the second column
of S. Furthermore, in each step of the procedure to obtain pk1,k2

from Pk1,k2
, the

number of variables in each monomial from a given column stays the same or drops
by an even number. This shows that in each monomial in pk1,k2

(S), the number of
variables from column l ∈ {1, 2} is at most cl(k2), and differs from this by an even
number.

We would like to say something similar about the number of variables from each
row. For all g ∈ O(n) we have

Pk1,k2(g) = ⟨Ψ(wk1), π(g)Ψ(wk2)⟩

= ⟨π(gT)Ψ(wk1
),Ψ(wk2

)⟩

= Pk2,k1
(gT),

(3.4.16)

where we used the fact that the inner product is unitary and Pk2,k1
(gT) is real. For

each g ∈ O(n), there is an element h ∈ O(n− 2) such that (hg)i,j = 0 for i > 2 + j.
Hence,

Pk1,k2(g) = Pk1,k2(hg) = pk1,k2(hg) = pk1,k2(g),

where the second equality holds because hg lies in the vanishing locus of J . Using
(3.4.16), it follows that pk1,k2(g) = pk2,k1(g

T) for all g ∈ O(n). The only variables
which occur in pk1,k2(S) and pk2,k1(S

T) are from the top-left 2× 2 block of S and
so we may view them as functions on R4. Consider the subset of R4 given by
projecting O(n) to the top-left 2 × 2 block. Since pk1,k2

(g) = pk2,k1
(gT) for all

g ∈ O(n), the functions agree on this subset. This subset has a nonempty interior,
and hence the polynomials agree on R4. Hence we have equality of polynomials:
pk1,k2(S) = pk2,k1(S

T). This shows that in each monomial in pk1,k2(S), the number
of variables from row l ∈ {1, 2} is at most cl(k1), and differs from this by an even
number.
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Since cl(k1) = 0 for l > i1 and cl(k2) = 0 for l > i2, it follows that pk1,k2
(S) is

a polynomial in the top-left i1 × i2 block. As discussed in the proof of Lemma 3.6,
the (l1, l2) entry, with 1 ≤ l1 ≤ i1 and 1 ≤ l2 ≤ i2, of s(J1)

Ts(J2) has denominator
ql1(J1)ql2(J2). To obtain the zonal matrix entry, we may replace each monomial Sa

in pk1,k2
(S) with

ξλ,i1,j1,k1(J1)ξλ,i2,j2,k2(J2)(s(J1)
Ts(J2))

a

= q1(J1)
c1(k1)q2(J1)

c2(k1)q1(J2)
c1(k2)q2(J2)

c2(k2)(s(J1)
Ts(J2))

a,

and by the properties of pk1,k2
as discussed above, this is a polynomial in the entries

of the vectors in J1 ∪ J2. From this we can easily read of the polynomial in terms of
the inner products between these vectors.

We now describe additional techniques to speed up the implementation. By
Section 3.4.5.1 and 3.4.5.2, the integrand of Pk1,k2(S) may be replaced by the
product of

(3.4.17) R(det(ωγϵ)ρ(ωγϵ)∗k1,0)

and

(3.4.18) R(ρ(ωγSϵ)0,k2
((ωγSϵ)1,1(ωγSϵ)2,2)

λ2).

The integration over O(n) and the substitution procedure described above may
be swapped. We first compute (3.4.18) explicitly as a polynomial in the variables
Si,j with i ≤ 2 + j and j ≤ 2 and the top-left 4× 4 block of γ. We then perform
the above substitution procedure. Since we know that after integration over O(n)
all terms with variables from S2 will vanish, we remove those terms. This gives a
polynomial in the top-left i1 × i2 block of S and the top-left 4× 4 block of γ.

Whenever
∑

i aij or
∑

i aji is odd for any j, we have∫
O(n)

γa dγ = 0.

This means that we do not have to work out the product of the whole polynomial
(3.4.18) with (3.4.17). Instead, we only multiply terms that produce monomials in
γ which do not immediately vanish. We then integrate each monomial in γ using
the recursion formulas of [61]. This enables us to explicitly compute p(S), from
which we obtain the zonal matrix entry as explained above.



CHAPTER 4

Polynomial optimization

In this chapter we consider problems of the form

maximize ⟨C,X⟩
subject to ⟨Ai(x), X⟩ ≤ bi(x), x ∈ ∆i, i = 1, . . . ,m,

X ⪰ 0.

where the optimization variable X is a positive semidefinite matrix, Ai(x) is a
matrix with polynomials as entries, bi(x) is a polynomial, and ∆i ⊆ Rni is a basic
closed semialgebraic set on which constraint i should hold. Here ⟨A,B⟩ = Tr(ATB)
denotes the trace inner product.

Using explicit constructions of Γ-invariant polynomial kernels, the hierarchies
considered in Chapter 2 can be written in this form after truncating the Fourier
series of the kernels. Recall that a feasible solution to the problem is enough for a
valid bound: we may, if needed, restrict the problem to a subset of feasible solutions
to obtain a computable problem.

Example 2.1 (Packing, continued). Recall that we can write our constraints as

AkK(S) ≤ −χI=1
(S)

for S in I2k \ I0, with K of the form

K(J1, J2) =
∑
λ

⟨Kλ, Zλ(J1, J2)⟩,

where the entries of Zλ are polynomials in the inner products between vectors in
S = J1 ∪ J2. Since I2k \ I0 is the disjoint union of I=i for i = 1, . . . , 2k, we can
split the constraint into 2k constraints where constraint i concerns I=i. Restricting
the Fourier series of the kernel to partitions λ with |λ| =

∑
i λi ≤ d1 and the

(infinite) matrix Zλ to polynomials of degree at most d2 ≥ d1, we obtain a problem
as introduced at the start of this chapter. Here the semialgebraic sets are

∆i = {u ∈ R(
i
2) : p(u1) ≥ 0, . . . , p(u(i2)

) ≥ 0, G(u) ⪰ 0},

where p(u) = (u+ 1)(cos θ − u) and the matrix G(u) denotes a square i× i matrix
with 1 on the diagonal and u on the off-diagonal, in a chosen order. The matrix
G(u) represents the Gram matrix of i points on the sphere. By Sylvester’s criterion,
G(u) ⪰ 0 is equivalent to requiring that all principal minors of G(u) are nonnegative,
and we replace G(u) ⪰ 0 by these constraints. Note that the 1 × 1 principal
minors equal 1, and the 2× 2 principal minors are nonnegative since p(uj) ≥ 0 for

j = 1, . . . ,
(
i
2

)
, so these can be ignored in the description.

55
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4.1. Putinar’s Positivstellensatz

In this section, we focus on a single polynomial constraint of the form

⟨A(x), X⟩ ≤ b(x), x ∈ ∆,

where ∆ = {x ∈ Rn : gi(x) ≥ 0, i = 1, . . . ,m}.
Consider the quadratic module

Q(g1, . . . , gm) = {p20 +
m∑
i=1

gip
2
i : p0, . . . , pm ∈ R[x1, . . . , xn]}.

Typically, we will set g0 = 1, so that we can write the elements as a single sum over
i = 0, . . . ,m. Let Qd denote elements of Q(g1, . . . , gm) such that each term gip

2
i is a

polynomial of degree at most d. Clearly, if p ∈ Q(g1, . . . , gm) we have p(x) ≥ 0 for all
x ∈ ∆, since gi(x) ≥ 0 and pi(x)

2 ≥ 0 for all i = 0, . . . ,m. Under some conditions,
a partial converse statement also holds. A quadratic module Q(g1, . . . , gm) is called
Archimedean if there is an N ≥ 0 such that N −

∑
i x

2
i ∈ Q(g1, . . . , gm).

Theorem 4.1 (Putinar’s Positivstellensatz [123]). Suppose Q(g1, . . . , gm) is
Archimedean and p > 0 on ∆. Then p ∈ Q(g1, . . . , gm).

Note that here the quadratic module is not restricted to a finite degree.
To use this for our problems, we set p(x) = b(x)− ⟨A(x), X⟩. Every solution X

such that p ∈ Qd(g1, . . . , gm) is feasible, and if the program has a strictly feasible
solution (that is, an X such that every constraint is strictly satisfied on the whole
semialgebraic set corresponding to the constraint), the theorem ensures that the
optimal value of the problem can be approximated arbitrarily well by increasing the
degree d. Since a sum-of-squares polynomial is of the form

(4.1.1)
∑
i

pi(x)
2 = ⟨q(x)q(x)T, Y ⟩

where Y ⪰ 0 and {qi}i is a basis of the space of polynomials up to the degree of the
sum-of-squares polynomial, this reduces the problem to the form

maximize ⟨C,X⟩
subject to ⟨Ai(x), X⟩ = bi(x), i = 1, . . . ,m,

X ⪰ 0.

where X and A are block-diagonal, and some blocks of Ai(x) are now of the form
gj(x)q(x)q(x)

T.

4.2. Semidefinite programming constraints

Consider a constraint
⟨A(x), X⟩ = b(x),

whereX ⪰ 0 is the variable of the problem, and b and the entries of A are polynomials
b, Ai,j ∈ R[x1, . . . , xn]. Let W denote Span{Ai,j(x), bi(x)}i,j , and let {wi}i be a
basis of W . The standard technique to reformulate the polynomial constraint as
semidefinite programming constraints is to equate the coefficients of ⟨A(x), X⟩ and
b(x) in the basis {wi}dimW

i=1 . Let {Ai} be the matrices of coefficients of the entries
of A(x) in the basis {wi}. Decomposing the constraint in this basis then gives∑

i

⟨Ai, X⟩wi =
∑
i

biwi
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which is equivalent to the constraints

⟨Ai, X⟩ = bi, i = 1, . . . ,dimW.

Different bases of W have different advantages. Here we highlight one particular
type of basis, considered in [102]. We call a set of points Z ⊆ Rn unisolvent for a
subspace W if for all p ∈W we have p(x) = 0 for all x ∈ Z if and only if p = 0 as
a polynomial. A unisolvent set Z is minimal if |Z| = dimW . Consider the basis
of W indexed by Z such that wx(y) = δxy for y ∈ Z, where δxy is the Kronecker
delta function. When n = 1, this is called the Lagrange basis, and is often used for
interpolation problems. It has the property that the coefficients cx of a polynomial p
are given by cx = p(x). This implies that the semidefinite constraints corresponding
to a sum-of-squares constraint

⟨qqT, X⟩ = b

are given by
⟨q(x)q(x)T, X⟩ = b(x), x ∈ Z.

Note in particular that the constraint matrices are of rank 1. Example 3.4 shows
that, after applying symmetry reduction to the sum-of-squares polynomials, the
resulting constraint matrices will have at most rank dπ, where π is an irreducible
representation of the symmetry group. In Chapter 5, we will see that the low-rank
structure can be used to solve the semidefinite programs faster.

4.3. Invariant polynomials∗

Recall from Example 3.4 that, given an action of a group Γ on Rn, the natural
action of Γ on R[x1, . . . , xn] is given by

γp(x) = p(γ−1x).

In this section we assume Γ to be a finite group. Consider the weighted sum-of-
squares constraint

(4.3.1) ⟨A(x), X⟩+
m∑
i=0

gi(x)σi(x) = b(x)

where again g0 = 1. Suppose the polynomials b, gi and all entries of A are Γ-invariant.
Then acting with Γ on the constraint gives

b(x) = b(γ−1x)

= ⟨A(γ−1x), X⟩+
∑
i

gi(γ
−1x)σi(γ

−1x)

= ⟨A(x), X⟩+
∑
i

gi(x)σi(γ
−1x)

Hence taking σ̃i =
1
|Γ|
∑

γ∈Γ γσi also gives a feasible solution. This implies that we

may take σi to be Γ-invariant sum-of-squares polynomials, which can be parametrized
using Examples 3.4. Such Γ-invariant sum-of-squares polynomials were considered
by Gatermann and Parillo in [58].

Often, the description of ∆ = {x ∈ Rn : gi(x) ≥ 0, i = 1, . . . ,m} is not in terms
of Γ-invariant polynomials, even when ∆ itself is Γ-invariant. One example is when

∗Part of this section is adapted from the publication “N. Leijenhorst and D. de Laat, Solving
clustered low-rank semidefinite programs arising from polynomial optimization, Math. Program.

Comput. 16 (2024), no. 3, 503-534, doi:10.1007/s12532-024-00264-w”.

https://doi.org/10.1007/s12532-024-00264-w
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∆ corresponds to the possible off-diagonal entries of a Gram matrix of points on
Sn−1: with 3 points this equals

∆ = {(u, v, t) :

1 u v
u 1 t
v t 1

 ⪰ 0}.

The description in terms of polynomials is usually given by the minors of the Gram
matrix, since by Sylvester’s criterion all principle minors are nonnegative if and only
if the matrix is positive semidefinite. This description is not S3 invariant (the 2× 2
minors are not invariant under permuting the variables), but the semialgebraic set
itself is S3-invariant, and there does exist an S3-invariant description of ∆ (see, e.g.,
[103, Lemma 3.1]).

Suppose {g1, . . . , gm} = Γg is an orbit under Γ. Note that, if g is invariant
under a subgroup of Γ, m can be strictly smaller than |Γ|. We will construct a set
of Γ-invariant polynomials such that ∆(g1, . . . , gm) = ∆(g̃1, . . . , g̃m).

Define the polynomials

g̃k =
∑

J⊆[m]
|J|=k

∏
i∈J

gi.

Then

γg̃k =
∑

J⊆[m]
|J|=k

∏
i∈J

γgi =
∑

J⊆[m]
|J|=k

∏
i∈J

gσ(i) =
∑

J⊆[m]
|J|=k

∏
i∈σ(J)

gi = g̃k

for some σ ∈ Sm, since {g1, . . . , gm} is an orbit of Γ. Hence g̃k is Γ-invariant.
Furthermore, let x ∈ ∆(g1, . . . , gm), then g̃k(x) ≥ 0 for all k because it is a sum of
products of gi(x) ≥ 0, so ∆(g1, . . . , gm) ⊆ ∆(g̃1, . . . , g̃m).

For the reverse inclusion, we suppose there is a point x with g1(x) < 0 and
g̃k(x) ≥ 0 for k ≥ 2. We will argue that g̃1(x) < 0.

Define

Tk =
∑

J⊆[m]\{1}
|J|=k

∏
i∈J

gi.

Then Tm(x) ≤ 0, since J cannot have size m. If Tk(x) ≤ 0, then g̃k(x) =
g1(x)Tk−1(x) + Tk(x) ≥ 0 implies g1(x)Tk−1(x) ≥ 0 and therefore Tk−1(x) ≤ 0. By
induction, we have T1(x) ≤ 0. Hence

g̃1(x) = g1(x) + T1(x) < 0,

so ∆(g1, . . . , gm) = ∆(g̃1, . . . , g̃m).

Example 2.1 (Packing, continued). The set ∆i is Si-invariant, where Si acts

on u ∈ R(
i
2) by permuting the rows and columns of the Gram matrix G(u). The

polynomials used for the description, however, are not. For example, the set ∆3 is
given by

{u ∈ R3 : p(u1) ≥ 0, p(u2) ≥ 0, p(u3) ≥ 0, 1 + 2u1u2u3 − u21 − u22 − u23 ≥ 0}
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The non-invariant polynomials gi(u) = p(ui) = (ui + 1)(cos θ − ui) form an orbit
under S3, and the corresponding polynomials g̃i are given by

g̃1(u) = p(u1) + p(u2) + p(u3),

g̃2(u) = p(u1)p(u2) + p(u1)p(u3) + p(u2)p(u3),

g̃3(u) = p(u1)p(u2)p(u3),

cf. [103, Lemma 3.1].





CHAPTER 5

Solving semidefinite programs∗

Many solvers are available to solve semidefinite programs (see, for example,
[7, 138, 143, 132]). For applications in discrete geometry, the corresponding semi-
definite programs have seemingly unavoidable bad numerical conditioning. Because
we additionally need a solution of high precision, we require a second-order interior
point method using high-precision arithmetic. In practice, computations are there-
fore performed using the general purpose semidefinite programming solvers SDPA-QD
and SDPA-GMP [143], which both use high-precision numerics, and computations
regularly take weeks to complete (see, e.g., [103]).

In this chapter, we introduce a high-precision primal-dual interior point method
that uses additional low-rank structure to speed up the computations. As mentioned
in Section 4.2, such low-rank constraint matrices can be present in semidefinite
programs arising in polynomial optimization. We follow the structure of the solver
SDPB [132], which in turn builds on SDPA [143]. We generalize the specialization to
a very general low-rank structure (see (5.1.2) and (5.1.3)), and we show how this
can be exploited in the computation of the Schur complement matrix in a way that
fast matrix-matrix multiplication can be employed (which is especially beneficial
because we use high-precision arithmetic). Similar low-rank structures are also used
in other solvers, such as [7, 138], which do not use high-precision arithmetic.

Because our applications consist of problems in discrete geometry, which typ-
ically have few clusters and a large number of constraints within a cluster, our
parallelization strategy is different from SDPB. The interior point method uses the
XZ search direction [70, 80, 110], the predictor-corrector step due to Mehrotra
[105], and the Lanczos algorithm for computing step lengths [137]. The algorithm
is implemented as a Julia package, and can be found at github.com/nanleij/

ClusteredLowRankSolver.jl.

5.1. Clustered low-rank semidefinite programs

When translating polynomial constraints into semidefinite constraints (see Sec-
tion 4.2), one obtains for each polynomial constraint a number of semidefinite
constraints which use the same positive semidefinite matrix variables. Using sam-
pling, it is possible to keep the rank of the constraint matrices low [102]. Together,
this leads to a clustered low-rank semidefinite program, with clusters of constraints
using the same positive semidefinite variables, and low-rank constraint matrices.
We assume these clusters are connected only through free scalar variables.

∗This chapter is based on Section 2 of the publication “N. Leijenhorst and D. de Laat, Solving
clustered low-rank semidefinite programs arising from polynomial optimization, Math. Program.

Comput. 16 (2024), no. 3, 503-534, doi:10.1007/s12532-024-00264-w”.
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We therefore consider semidefinite programs with J clusters of the form

(5.1.1)

maximize

J∑
j=1

⟨Cj , Y j⟩+ ⟨c, y⟩

subject to
〈
Aj

∗, Y
j
〉
+Bjy = bj , j = 1, . . . , J

Y j ⪰ 0, j = 1, . . . , J,

where we optimize over the vector of free variables y and the positive semidefinite
block matrices Y j = diag(Y j,1, . . . , Y j,Lj ). Here ⟨c, y⟩ is the Euclidean inner product,
and we use the notation

⟨Aj
∗, Y

j⟩ =
(
⟨Aj

t , Y
j⟩
)
t∈Tj

,

where ⟨Aj
t , Y

j⟩ is the trace inner product.

The semidefinite program is defined by the symmetric matrices Cj and Aj
t , the

matrices Bj , and the vectors c ∈ RN and bj ∈ RTj . We assume the matrix Aj
t is of

the form

(5.1.2) Aj
t =

Lj⊕
l=1

Rj(l)∑
r,s=1

Aj,l
t (r, s)⊗ ERj(l)

r,s ,

where Aj,l
t (r, s) can be a matrix of low rank and Aj,l

t (r, s)T = Aj,l
t (s, r). Here En

r,s is
the n×nmatrix with a one at position (r, s) and zeros otherwise. The implementation
also allows for dense blocks, although the type (low-rank or dense) of the blocks

should be consistent per (j, l) over the subblocks and the constraints: Aj,l
t (r, s) is

of the same type as Aj,l
t′ (r

′, s′) but can be of different type than Aj′,l′

t′ (r′, s′) when
(j, l) ̸= (j′, l′).

Example 5.1. In the problems we solve in this thesis, we typically have two
types of blocks Aj,l: the zonal matrices Zλ from Chapter 3, which are typically ‘dense’
blocks, and the ones corresponding to the (symmetric) sum-of-squares polynomials
with Rj(l) = 1 and rank dπ. In these problems, since the zonal matrices are present
in all constraints, we have J = 1.

Internally, we represent the blocks Aj,l
t (r, s) in the form

(5.1.3)
∑
i

λiviw
T
i ,

where we do not require the rank 1 terms to be symmetric (even if the block

Aj,l
t (r, s) itself is symmetric). Allowing for nonsymmetric matrices in the rank 1

decomposition is more general than what is done in [132, 138, 7]. Although in
practice one can use a spectral decomposition and thus set vi = wi, this is not
necessarily possible when additionally rounding the numerical solution to an exact
solution, for which an exact problem description is necessary, see Chapter 6.
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We interpret (5.1.1) as the dual of the semidefinite program

(5.1.4)

minimize

J∑
j=1

⟨bj , xj⟩

subject to

J∑
j=1

(Bj)Txj = c

Xj =
∑
t∈Tj

xjtA
j
t − Cj ⪰ 0, j = 1, . . . , J,

where we optimize over the vectors of free variables xj and the positive semidefinite
block matrices Xj = diag(Xj,1, . . . , Xj,Lj ).

Using the notation X for the block matrix diag(X1, . . . , XJ) and Y for the
block matrix diag(Y 1, . . . , Y J), the duality gap for primal feasible (x,X) and dual
feasible (y, Y ) is given by

bTx− ⟨C, Y ⟩ − cTy = ⟨X,Y ⟩.

We assume strong duality holds, so that if (x,X) and (y, Y ) are optimal, then
⟨X,Y ⟩ = 0, and hence XY = 0.

5.2. A general primal-dual algorithm

We follow [132] for the main steps of the algorithm.
The primal-dual algorithm starts with infeasible primal solutions (x,X) and

dual solutions (y, Y ), where X and Y are positive definite. At each iteration, a
Newton direction (dx, dX, dy, dY ) is computed for the system of primal and dual
linear constraints and the centering condition XY = βpµI. Here µ is the surrogate
duality gap ⟨X,Y ⟩ divided by the size of the matrices, and

βp =

{
0 primal and dual feasible,

βinfeasible otherwise.

That is, we attempt a step to the end of the central path if we start from a primal-
dual feasible solution, and try to get a factor βinfeasible closer to the end otherwise.
This is the predictor step.

For the corrector step, the system is solved with (x+dx,X+dX, y+dy, Y +dY )
and βc instead of βp. The parameter βc is among others determined by the change
of the surrogate duality gap, modeled after the choice in SDPA and SDPB, see also
[132, Section 2.4.4]. This results in a new search direction (dx, dX, dy, dY ). We
then take a step in the direction of the corrector step: (x,X, y, Y ) is replaced by
(x+ γspdx,X + γspdX, y + γsddy, Y + γsddY ) for some step sizes sp, sd such that
X + spdX and Y + sddY are positive definite, with γ ∈ (0, 1). When the primal
and dual solutions are feasible, we take sd = sp. In the following sections we discuss
the process of finding the search direction, since exploiting the special form (5.1.2)
happens in this part of the algorithm.

5.2.1. Computing the search direction. To compute the Newton search
direction we replace the variables (x,X, y, Y ) by (x+ dx,X + dX, y + dy, Y + dY )
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in the primal and dual constraints, which gives

Xj + dXj =
∑
t∈Tj

(xjt + dxjt )A
j
t − Cj ,(5.2.1)

J∑
j=1

(Bj)T(xj + dxj) = c,(5.2.2)

〈
Aj

∗, Y
j + dY j

〉
+Bj(y + dy) = bj .(5.2.3)

Then we apply the same substitution in the centering condition and linearize to get

(5.2.4) XjY j +XjdY j + dXjY j = µI.

Substituting the expression for dXj from (5.2.1) into (5.2.4) and then the expression
for dY j from (5.2.4) into (5.2.3) gives〈

Aj
∗, Y

j + (Xj)−1
(
µI −XjY j −

(∑
t∈Tj

(xjt + dxjt )A
j
t − Cj −Xj

)
Y j
)〉

+Bj(y + dy) = bj .

Together with constraint (5.2.2) (which is responsible for the last row in the system)
this can be written as the following linear system in dx and dy:

S1 0 · · · 0 −B1

0 S2 · · · 0 −B2

...
...

. . .
...

...
0 0 . . . SJ −BJ

(B1)T (B2)T . . . (BJ)T 0




dx1

dx2

...
dxJ

dy

 =


−b1 − ⟨A1

∗, Z
1 − Y 1⟩+B1y

−b2 − ⟨A2
∗, Z

2 − Y 2⟩+B2y
...

−bJ − ⟨AJ
∗ , Z

J − Y J⟩+BJy

c−
∑J

j=1(B
j)Txj

 ,

Here Zj = (Xj)−1((
∑

t x
j
tA

j
t −Cj)Y j − µI) and the blocks Sj that form the Schur

complement matrix S = diag(S1, . . . , SJ) have entries

Sj
ab =

〈
Aj

a, (X
j)−1Aj

bY
j
〉
.

The above system can be solved to obtain dx and dy. From this dX and dY
can be computed, where instead of computing dY as X−1(µI −XY − dXY ) we set

dY =
X−1(µI −XY − dXY ) + (X−1(µI −XY − dXY ))T

2

so that Y stays symmetric.
In general, the computation of the Schur complement matrix S and solving the

above linear system are the main computational steps.
Due to the clusters, the matrix S is block-diagonal, so that the Cholesky

factorization S = LLT can be computed blockwise. By using the decomposition[
S −B
BT 0

]
=

[
L 0

BTL−T I

] [
I 0
0 BTL−TL−1B

] [
LT −L−1B
0 I

]
,

we can solve the system by solving several triangular systems. The inner matrix
BTL−TL−1B is positive definite, so we can again use a Cholesky decomposition.
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5.2.2. Speedups for low-rank matrices. Due to the low-rank constraint
matrices, we can compute the blocks Sj more efficiently. Suppose for simplicity the
constraint matrices are of the form

Aj,l
t =

ηj,l
t∑

r=1

λj,lt,rv
j,l
t,r(w

j,l
t,r)

T,

where ηj,lt is the rank of the matrix Aj,l
t . Then we can write

Sj
ab =

Lj∑
l=1

⟨Aj,l
a , (X

j,l)−1Aj,l
b Y

j,l⟩

=

Lj∑
l=1

ηj,l
a∑

r1=1

ηj,l
b∑

r2=1

λj,la,r1λ
j,l
b,r2

〈
vj,la,r1(w

j,l
a,r1)

T, (Xj,l)−1vj,lb,r2
(wj,l

b,r2
)TY j,l

〉

=

Lj∑
l=1

ηj,l
a∑

r1=1

ηj,l
b∑

r2=1

λj,la,r1λ
j,l
b,r2

(
(wj,l

a,r1)
T(Xj,l)−1vj,lb,r2

)(
(wj,l

b,r2
)TY j,lvj,la,r1

)
,

which shows we can compute Sj
ab efficiently by precomputing the bilinear pairings

(wj,l
a,r1)

T(Xj,l)−1vj,lb,r2
and (wj,l

b,r2
)TY j,lvj,la,r1 .

In the implementation, we use similar techniques for the more general constraint
matrices of the form (5.1.2). Since we use high-precision arithmetic, it is beneficial
to use matrix-matrix multiplication with subcubic complexity, and therefore we
compute the above pairings efficiently by first creating the matrices V j,l and W j,l

with the columns vj,la,r and wj,l
a,r, respectively, and then performing fast matrix

multiplication to compute

(W j,l)T(Xj,l)−1V j,l and (W j,l)TY j,lV j,l.

Due to the block structures, the algorithm is relatively easy to parallelize. The
best way to parallelize, however, depends on both the problem characteristics and
the type of computing system used. The SDPB solver specializes in problems with
large amounts of clusters with similar-sized blocks, which can be distributed over
different nodes in a multi-node system in which there is communication latency
between the nodes [132, 93].

Problems in discrete geometry typically consist of few clusters, and have a large
variation in both the number of blocks per cluster and in the size of the blocks;
the blocks corresponding to the sum-of-squares polynomials of Chapter 4 are much
larger than the blocks corresponding to the positive definite kernels of Section 3.4.
The majority of the workload can be due to a single cluster, hence distributing
clusters over nodes in a multi-node system is not a good parallelization strategy in
this case. Instead, we focus on distributing the workload over multiple cores in a
single-node shared-memory system.

Most of the matrix operations can be done block-wise. We distribute the blocks
over the cores such that the workload for each core is about equal. Since the matrices
in the products (W j,l)T(Xj,l)−1V j,l and (W j,l)TY j,lV j,l can be very large, we split
these multiplications into several parts which we distribute over the cores.





CHAPTER 6

Rounding to exact solutions∗

6.1. Introduction

The optimality and uniqueness proofs in this thesis employ the complementary
slackness conditions of Theorem 2.10. However, for this we require an exact solution
to (2.4.2), or its semidefinite programming relaxation. The primary technical
obstacle is how to convert the approximate, floating-point output of a semidefinite
programming solver to an exact optimal solution. Monniaux and Corbineau [109]
and Dostert, de Laat, and Moustrou [51] propose rounding methods for this using
the LLL algorithm in different ways, but both of these methods are too slow for the
sizes of semidefinite programs we consider in this thesis.

The reason the previous approaches become too slow for large semidefinite
programs stems mainly from the following two bottlenecks. Firstly, both approaches
operate with the full matrix defining the affine constraints of the semidefinite
program (the first to write the semidefinite program in LMI form and the second to
project into the affine space). Secondly, both approaches apply the LLL algorithm
to a lattice of dimension linear in the size of the matrix variable in the semidefinite
program. In this chapter we propose a method which avoids both bottlenecks.

In this chapter we consider a semidefinite program in primal form

(6.1.1)

minimize ⟨C,X⟩
subject to ⟨Ai, X⟩ = bi for i = 1, . . . ,m and

X ∈ Sn+.

Here Sn+ is the cone of positive semidefinite n× n matrices over R (for comparison,
Sn will denote the set of symmetric n× n matrices, and Sn++ the cone of positive

definite n × n matrices), and ⟨A,B⟩ = tr(ATB) is the trace inner product. The
problem is specified by the symmetric n×n matrices C,A1, . . . , Am and real scalars
b1, . . . , bm, and we generally assume the affine constraints are linearly independent.

All matrices and scalars in the problem definition are assumed to be defined
over an algebraic field of low degree. This is the case for most problems in this
thesis, but for example in Chapter 9, some entries of the matrices Ai are linear
combinations of powers of π, due to integration of polynomials in inner products
over a sphere.

∗This chapter is based on Section 2 of the publication “H. Cohn, D. de Laat and N. Lei-
jenhorst, Optimality of spherical codes via exact semidefinite programming bounds, 2024,

arXiv:2403.16874”.
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The corresponding dual semidefinite program reads

maximize ⟨b, y⟩

subject to C −
m∑
i=1

yiAi ∈ Sn+.

We assume the existence of strictly feasible points for both the primal and dual
semidefinite programs, which are solutions where the matrix is positive definite.
By Slater’s criterion, this condition guarantees the existence of optimal primal and
dual solutions, and these solutions have the same objective value (see, for example,
Section 5.3.2 in [19]). We also assume the existence of a strictly complementary
solution, which is a pair (X, y) of primal and dual solutions such that

rank(X) + rank

(
C −

m∑
i=1

yiAi

)
= n.

Under this assumption, the central path (which is followed by interior-point methods
used in practice) converges to the analytic center of the optimal face [64]. This
means we can use a solver to find a numerical approximation of a point in the
relative interior of the optimal face.

Although there exist rational semidefinite programs for which the following is
not the case [116], for many problems that we encounter in practice the affine hull
of the optimal face is given by affine equations whose coefficients lie in a common
algebraic number field of low degree. The rounding method from [51] finds and uses
such a description to round a numerical solution to an exact optimal solution over
the field of algebraic numbers. In this section, we explain this heuristic, and we
explain our changes that make it much faster.

In practice, the semidefinite programs we consider are in block form (where the
cone Sn+ is replaced by a product of positive semidefinite matrix cones), but here we
only consider the case of one block, as the extension to multiple blocks is immediate.
We also only consider the case of rounding to rationals and postpone the case of
rounding to a number field to Section 6.5.

One simple approach is to compute the solution to high precision (using an
arbitrary precision solver) and then use the LLL lattice basis reduction algorithm
[99] to round each entry of the numerical solution X∗ to a nearby algebraic number.
This method does work for some examples, but in our experiments, it often does
not work when the optimal solution is not unique. For example, we have not been
able to find the number field for the analytic center of the semidefinite program we
used in the optimality proof of the 56-point spherical code in 20 dimensions (see
Chapter 7), even after solving the semidefinite program to extremely high precision.
It seems the analytic center, in this case, requires an algebraic number field of high
degree or with large coefficients.

Simply projecting the solution into the affine space given by the constraints
⟨Ai, X⟩ = bi for i = 1, . . . ,m also often does not work. The issue here is that the
dimension of the optimal face of a semidefinite program is usually smaller than the
dimension of this affine space. This dimension mismatch implies that if we project
a numerical solution into the affine space, the projected solution will generally no
longer be positive semidefinite.

The rounding procedure we use consists of three steps. First we find a suitable
description of the affine hull of the optimal face (Section 6.2), then we transform the
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problem (Section 6.3), and finally we round the numerical solution to a solution of
the transformed problem (Section 6.4). For each of the three steps, we first describe
the approach from [51] and then give our new approach.

6.2. Describing the optimal face

Let S be the set of feasible solutions of the primal semidefinite program (6.1.1),
and F the face of S consisting of the optimal solutions. As shown in [72], the
minimal face of Sn+ containing a matrix X ∈ Sn+ is given by

{Y ∈ Sn+ : kerX ⊆ kerY }.
This implies that if X lies in the relative interior of F , then

F = {Y ∈ Sn+ : ⟨Ai, Y ⟩ = bi for i = 1, . . . ,m and kerX ⊆ kerY }
Note that kerX is independent of the choice of X, as long as X lies in the relative
interior of F . We assume this kernel has a nice description over Q, by which we mean
it is the solution set of some affine functions whose coefficients are rational numbers
of reasonably low bit size (i.e., not excessively large numerators or denominators).

The rounding procedure starts by using an interior-point method to find a
solution X∗ close to the analytic center of the optimal face. Since the analytic
center lies in the relative interior of F , there exists a basis of its kernel of small bit
size. We want to use X∗ to find such a basis.

In [109] and [51] the LLL algorithm is used to find such basis vectors. In the
former the LLL algorithm is applied directly to the columns of the matrix(

I
αX∗

)
,

for some large scalar α, so that the first few reduced vectors will be some of the
basis vectors we want to find. They give an iterative procedure to find all basis
vectors. In [51], the following procedure is used instead. First, a basis for the
kernel of the numerical solution matrix X∗ is computed numerically (for this the
dual solution of the semidefinite program could also be used), and the basis vectors
are listed as the rows of a matrix. Then the LLL algorithm is used similarly as
above to compute integer relations between the columns of this matrix. Once
sufficiently many relations have been found, the coefficient vectors of these relations
are listed as the rows of an integral matrix and a basis for the kernel of this matrix is
computed in exact arithmetic. The problem with these approaches is that the LLL
algorithm is too time-consuming for large matrices: in both cases the complexity of
one application of the LLL algorithm scales as n6, where X∗ is of size n× n.

We therefore find the kernel vectors as follows. We list the k numerically
computed kernel vectors as the rows of a matrix M ∈ Rk×n, and let M ′ be its
reduced row-echelon form. Since the reduced row-echelon form is unique, and since
X∗ approximates the analytic center of the optimal face, whose kernel vectors are
assumed to be definable over Q, the entries of M ′ are close approximations of
rational numbers. We then replace each entry in M ′ by the corresponding rational
number.

Although this approach works in principle (given that we use high enough
floating point precision) and is much faster than the corresponding procedure in
[51], we notice that the obtained kernel vectors can have significantly larger bit size,
which becomes an issue in Section 6.3 and 6.4.
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We would like to use the LLL algorithm to reduce the bit size of the vectors
(note that this scales as k5n instead of the n6 discussed above). When applied to
the rows of M ′, the algorithm finds integer linear combinations of the rows which
are closer to being orthogonal to each other and have smaller norms. To make these
outcomes correspond to a smaller bit size, M ′ first needs to be converted to an
integral matrix. If we do so by clearing the denominators per row, then the pivot
columns of M ′ become columns with exactly one large nonzero entry, so that these
entries cannot be reduced by the LLL algorithm. We therefore convert M ′ to an
integral matrix using a different method.

Let N ∈ Qn×(n−k) be a matrix of full column rank such that M ′N = 0, which
is easily obtained since M ′ is of full row rank and in reduced row-echelon form, and
let N ′ be the matrix obtained from N by clearing denominators in each column.
We then compute the row Hermite normal form

(6.2.1)

(
H

0k×n

)
=

(
TH
T0

)
N ′,

where

T =

(
TH
T0

)
is a unimodular transformation matrix with T0 ∈ Zk×n. It follows that the rows of
T0 form a basis of the row space of M , and thus an integral basis of the kernel. We
use this matrix as the integral version of M ′, and we can now further improve the
bit size of the rows using the LLL algorithm.

In the implementation, we also use this reduction approach to check heuristically
whether we are using enough precision to compute X∗ and to round the entries
of M ′. In practice, the vectors obtained after reduction will still be approximate
kernel vectors of X∗ if and only if we used high enough precision.

6.3. Transforming the problem

We now describe the affine hull of F using a coordinate transform; see [109]
and [48, Section 31.5]. Let B be a rational, invertible matrix for which the first k
rows form a basis of the kernel. Applying this basis transformation to any matrix
X in the relative interior of the optimal face gives a matrix of the form

BXBT =

(
0 0

0 X̂

)
,

where X̂ lies in the cone Sn−k
++ of positive definite matrices. Let Âi be the block of

B−TAiB
−1 corresponding to X̂, so that

⟨Âi, X̂⟩ = ⟨Ai, X⟩.

With

L̂ = {X̂ ∈ Sn−k : ⟨Âi, X̂⟩ = bi for i = 1, . . . ,m},

each element in the spectrahedron Sn−k
+ ∩ L̂ corresponds to an optimal solution in

the original semidefinite program. We can now obtain from X∗ a positive definite

matrix X̂∗ close to L̂, and projecting into L̂ gives a matrix that corresponds to an
exact optimal solution.
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To find the basis transformation matrix B, we consider two methods. In our
experiments, both methods work well, and it is not clear which of these two methods
is better.

The first option is to extend the basis of the kernel with linearly indepen-
dent standard basis vectors. We can find these vectors by using Gram-Schmidt
orthogonalization in floating-point arithmetic.

The second option is to extend the basis by using the rows of the matrix TH
from (6.2.1). Then B consists of the LLL reduced rows of T0 and the rows of TH , so
that B is unimodular. To obtain a matrix B with small bit size it is desirable that
TH should have small entries. To achieve this we use the method of [74]: instead
of (6.2.1), we consider the Hermite normal form of the matrix N ′ with an identity
matrix appended to it. This decomposition amounts to(

H TH
0 T0

)
=

(
TH
T0

)(
N ′ In

)
,

where now T0 is in row Hermite normal form and TH is reduced with respect to T0.
The basis transformation can be seen as a form of facial reduction (see for

instance the PhD thesis [121]). However, typically facial reduction techniques are
used to obtain a problem with a strictly feasible solution, or to reduce the size of the
semidefinite program before solving, for better numerical results. Instead, we first
solve the problem to high precision, and then use the numerically optimal solution
to completely describe the optimal face.

6.4. Rounding the solution

Given an approximate solution x∗ to a linear system Ax = b, we want to find
an exact solution x̄ close to x∗. In the rounding procedure, the linear system comes

from the constraints ⟨Âi, X̂⟩ = bi for i = 1, . . . ,m. For simplicity of presentation,
we assume first that the rows of A are linearly independent (and will address the
linearly dependent case shortly).

We start by replacing each entry of x∗ by its closest rational number given some
fixed denominator (say, 1040).

In the approach of [51], the system Ax = b is first converted to row echelon
form, after which the exact solution x̄ is found using back substitution, where for
the non-pivot columns, the corresponding entries of x∗ are used. If the conditioning
of A is not too bad, then x̄ will be close to x∗.

The problem with this approach is that computing the row-echelon form of the
system Ax = b has to be done in exact arithmetic and becomes too expensive for
large systems. In fact, depending on how the semidefinite program is formulated
(for example, using low-rank constraint matrices as we do in this thesis), forming
the matrix A can already be relatively expensive.

Another approach is to compute the solution x̄ to Ax = b closest to x∗ as follows.
The minimum norm solution of Aε = b−Ax∗ is given by ε = A+(b−Ax∗), where
A+ = AT(AAT)−1 is the pseudoinverse (which has this expression since A is of full
row rank). Then x̄ = x∗ + ε, where ε = ATy and y is the solution to

AATy = b−Ax∗,

which can be computed efficiently using Dixon’s algorithm [50].
This approach, however, also requires the construction of the matrix A, and in

practice we find that the determinant of AAT can have large bit size, which leads
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to a solution x̄ of large bit size. For example, with this approach the universal
optimality proofs in Section 8.4 each have size around 11GB, which is about a factor
500 larger than with the following method.

We first build an invertible matrix S by randomly selecting r linearly independent
columns of A, where A ∈ Qr×s. To do so efficiently, we first select a submatrix
containing ℓ random columns of A with r ≤ ℓ ≤ s, turn this submatrix into an
integral matrix by clearing the denominators of each row, and then perform row
reduction modulo some large prime number p. If the reduced matrix has r pivots,
these pivots yield r linearly independent columns in A, and otherwise we retry with
a different set of initial columns (for the problems considered in this thesis we used
ℓ = 10r and never needed to retry).

If the assumption that the rows of A are linearly independent does not hold, it
will be impossible to find S with r linearly independent columns. In that case, we
must remove linearly dependent constraints before we can construct S. To find the
constraints that need to be removed, we use column reduction modulo a prime.

This overall approach works best when s is much larger than r, which is the
case in our applications, because it is now no longer necessary to construct the
matrix A: we can compute ε by solving

Sε = b−Ax∗

using Dixon’s method, and Ax∗ can often be computed efficiently without having
to construct A (in our applications we use the low-rank structure to do this).

Although this approach is very fast, the conditioning of S tends to be bad,
which leads to x̄ being too far from x∗, in which case some of the strictly positive
eigenvalues may become negative. We therefore interpolate between the two ap-
proaches described above, where the first approach leads to nearby solutions with
large bit size, and the second to far away solutions of small bit size.

To interpolate we extend S by some randomly chosen columns of A (say, r/10
many columns). We can then compute ε = S+(b−Ax∗) as ε = STy, where y is the
solution to SSTy = b−Ax∗. This approach works well in practice.

6.5. Rounding to algebraic numbers

Although the overall approach does not change when rounding over an algebraic
number field F of degree d > 1, some steps need small modifications. We give only
a brief description of these modifications since the most important change is already
considered in [51], and for the proofs in this thesis we need only d = 1.

Note first that, since the reduced row-echelon form can be computed over any
field, we can still find the kernel vectors by recognizing the entries of the reduced
row-echelon form M ′ of M as elements of F using the LLL algorithm.

However, our reduction approach in Section 6.2 works only over Q due to the
use of the Hermite normal form. We therefore apply the reduction method to the
matrix M ′′ ∈ Qdk×dn obtained from M ′ ∈ F k×n by using a basis of F over Q. The
rows of M ′′ are linearly independent over Q if and only if the rows of M ′ are linearly
independent over F . After applying the reduction, we convert back to a matrix
in F dk×n and find a subset of k linearly independent vectors over F using floating
point arithmetic.

To find a solution to the system Ax = b close to x∗, with A, b, and x defined
over F , we use the same approach as [51]. Let g be a generator of F , and consider
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the expansions A =
∑

iAig
i, b =

∑
i big

i, and x =
∑

i xig
i. Then∑

i,j

Aixjg
i+j =

∑
l

blg
l,

which defines a system of equations A′x′ = b′ with A′ ∈ Qdr×ds, and where x′ and b′

are the concatenations of xi and bi for i = 0, . . . , d− 1. A numerical approximation
of x′ can be found by adding the constraints x∗ =

∑
i xig

i and solving the system
using floating-point arithmetic, after which Section 6.4 can be applied.

6.6. Verification

To verify that the rounded solution indeed is a feasible solution to the semidefinite
program, we check that the affine constraints hold, in exact arithmetic, and that the
block-diagonal matrix is positive semidefinite. To check positive semidefiniteness,
the rounding procedure writes each diagonal block in the form BXBT, where B
is a rectangular exact matrix, and X is positive definite. We check that X is
indeed positive definite by computing the Cholesky decomposition in rigorous ball
arithmetic.

6.7. Finding the algebraic number field

Although for the problems in this thesis it was always easy to guess over which
field the optimal face can be defined, this is in general not the case. Therefore we
propose the following heuristic to find the field.

Let M ′ be the reduced row-echelon form of the matrix which has the numerical
kernel vectors as rows. The entries of M ′ are approximations of elements of the
field F that we want to find. For each entry we can use the LLL algorithm to find
the minimal polynomial of the algebraic number it approximates.

In the heuristic we first find the minimal polynomials for a selection of the
entries of M ′, and let p be the minimal polynomial of highest degree and lowest
bit size. Then we iterate through the same selection of entries and use the LLL
algorithm to check whether each entry lies in the field with minimal polynomial
p. If we find an entry that does not lie in the field, we replace p by the minimal
polynomial of a linear combination (typically just the sum) of an approximate root
of p and that entry. In practice, this method often gives the correct field F , even
when considering only a small selection of entries of M ′.

6.8. General applicability of the rounding procedure

Although our rounding procedure has been developed to obtain rigorous bounds
in discrete geometry, we expect this approach to be useful more generally. To
illustrate its use, we consider two examples from the literature where sums-of-
squares characterizations are used, so that the semidefinite program does not have
a unique optimal solution and the naive rounding approach mentioned in the
introduction of this chapter cannot be used. Moreover, the optimal faces in these
examples cannot be defined over Q, so that we need Section 6.7.

Consider the examples from [119, 58] and [118] of finding the global minimum
of the polynomial

u4 + v4 + t4 − 4uvt+ u+ v + t
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and the minimum of Caprasse’s polynomial

−ut3 + 4vt2w + 4utw2 + 2vw3 + 4ut+ 4t2 − 10vw − 10w2 + 2

over the domain [−1/2, 1/2]4. Using semidefinite programming and the rounding
procedure, the correct number fields (of degree 6 and 2, respectively) as well as
exact minimizers are found in seconds. Interestingly, the minimal polynomials of
the number field generators found by the procedure are much simpler than those of
the minima in these optimization problems (smaller by a factor 1000 in terms of bit
size).

6.9. Implementation

We have implemented the rounding procedure in Julia [8] using the computer
algebra system Nemo [56]. The code is available as part of the open-source semi-
definite programming solver ClusteredLowRankSolver.jl, which is available on
Github† and can be installed as a Julia package; a snapshot of the git repository is
also available at [37]. The three-point bound for spherical codes is included as an
example. The documentation can also be found there, including a tutorial.

†https://github.com/nanleij/ClusteredLowRankSolver.jl

https://github.com/nanleij/ClusteredLowRankSolver.jl
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CHAPTER 7

Spherical codes

7.1. Introduction

In this chapter, we consider spherical code problems. A spherical code is a finite
set C ⊆ Sn−1. The minimum distance of a spherical code is

dmin(C) = min
x,y∈C
x̸=y

d(x, y),

where d(x, y) =
√
2− 2⟨x, y⟩ is the chordal distance.

Given a dimension n and a number of points N , the spherical code problem
asks for a spherical code with the largest dmin(C) among all spherical codes C of
size N . Equivalently, we may consider the maximum inner product between two
distinct points in the code, since they are related by a monotone function. In terms
of the inner products, the problem asks for a spherical code which minimizes

max
x,y∈C
x̸=y

⟨x, y⟩

among spherical codes C of size N .
In general, little is known about the optimal configurations. In dimension 1 and 2,

the optimal solutions are trivial. For N < 2n, the optimal solutions consist of two
families: the optimal spherical code for N ≤ n + 1 is given by a regular simplex
around the origin with maximum inner product −1/(N−1), and for n+2 ≤ N ≤ 2n
an optimal configuration is given by a subset of the vertices of the regular cross
polytope (consisting of n orthogonal pairs of antipodal points). In dimension 3,
geometric proofs are known for the optimal solutions with N ≤ 14 and N = 24.

The other known cases use linear or semidefinite programming bounds in the
optimality proofs. These are bounds on the ‘transposed’ problem: Given a dimension
n and the maximum inner product cos θ, what is the maximum number of points
N such that there is a spherical code C ⊆ Sn−1 of N points with ⟨x, y⟩ ≤ cos θ for
all distinct x, y ∈ C? We will refer to this problem as the spherical cap packing
problem.

Linear and semidefinite programming bounds on this problem are typically
derived by taking into account constraints on the distribution of k-tuples, and are
therefore called k-point bounds. Except for the case (n,N, cos θ) = (4, 10, 1/6),
which requires a 3-point bound, optimality was proven using the Delsarte-Goethals-
Seidel linear programming bound [47], a 2-point bound. This bound is equivalent
to the first level of the Lasserre hierarchy [92]. These optimal spherical codes are
either the vertices of a regular polytope whose faces are simplices, or configurations
derived from the E8 root lattice or the Leech lattice [34], which give the only known
optimal sphere packings in dimension n > 3 [140, 35].

77
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Table 7.1.1. The spherical codes we prove are optimal. Each
consists of N points in Rn, with minimal angle θ. The first three
are spectral embeddings from the Gewirtz, Hoffman-Singleton and
M22 strongly regular graphs (see, e.g., [53]), and the next five are
derived from Kerdock binary codes [27, 77, 81]. The last line lists
two configurations with the same minimal angle, one of which was
found by Mackay [104], while the other can be found in the data

set [32]. See Section 7.5 for constructions of these codes.

n N cos θ Other cosines

20 56 1/15 −2/5
21 50 1/21 −3/7
21 77 1/12 −3/8

4 24 1/2 −1,−1/2, 0
16 288 1/4 −1, −1/4, 0
64 4224 1/8 −1, −1/8, 0
256 66048 1/16 −1, −1/16, 0
1024 1050624 1/32 −1, −1/32, 0

4 12 1/4 −3/4,−1/2, 0 or −5/8,−3/4,−1/3, 1/8

In this chapter, we use three and four-point semidefinite programming bounds
to derive new optimality proofs for spherical codes. In this way, we significantly
increase the number of known optimal spherical codes. In particular, we prove that
the codes in Table 7.1.1 are optimal. Additionally, we prove optimality for several
hypothetical codes coming from possible parameters for triangle-free strongly regular
graphs, see Table 7.1.2. These graphs may very well not exist, but if they do, they
give an optimal spherical code. Besides these codes, we give a new proof that the
code with 9 points on S2 is optimal, using the three-point bound. This code was
already known to be optimal by geometric arguments. We conjecture the same is
possible for the optimal code with 24 points on S2. The bound is numerically sharp,
but we were not able to round the numerically sharp solution to an exact sharp
solution in that case.

Of the codes in Table 7.1.1, the last line is especially interesting. For many
problems, there are 0, 1 or an infinite number of solutions. For the spherical code
problem in dimension 4 with 12 points, it turns out there are exactly two solutions, up
to isometry. This seems to be the only example with multiple optimal configurations
which contain different inner products. In [26], a family of configurations is given of
which some are non-unique optimal spherical codes. However, all these configurations
have the set of inner products between distinct points.

A special case of the spherical cap packing problem is the kissing number
problem: What is the maximum number of non-overlapping unit spheres k(n) that
can simultaneously touch a central unit sphere? For a kissing configuration, the
set of points where the outer spheres touch the central sphere is a spherical code
with maximum inner product at most cos(π/3) = 1

2 . Famously, the kissing number
in dimension 3 was subject to a discussion between Gregory and Newton in 1694.
Eventually it was resolved in 1953 by Schütte and Van der Waerden to be 12
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Table 7.1.2. Hypothetical spherical codes that are optimal if
they exist. Each consists of N points in Rn, with angles θ and ψ
between distinct points, and corresponds to a strongly regular

graph with the given parameters.

n N cos θ cosψ Parameters

55 176 1/25 −7/25 (176, 25, 0, 4)
55 210 1/22 −3/11 (210, 33, 0, 6)
56 162 1/28 −2/7 (162, 21, 0, 3)
56 266 1/20 −4/15 (266, 45, 0, 9)
115 392 3/115 −5/23 (392, 46, 0, 6)
120 352 1/45 −2/9 (352, 36, 0, 4)
143 352 1/65 −3/13 (352, 26, 0, 2)
1520 3250 1/456 −8/57 (3250, 57, 0, 1)

[129]. One possible optimal configuration comes from the densest sphere packing
in dimension 3, the so-called ‘cannonball’ configuration. Interestingly, this is a
rigid configuration, but it is not the optimal solution to the spherical code problem
with N = 12: the minimum distance of the icosahedron is larger, so it gives a
non-rigid optimal configuration for the kissing number problem. In dimension 4,
the conjectured optimum was the D4 root system (equivalently, the vertices of the
24-cell), which is also rigid. Musin [114] proved that indeed k(4) < 25, so the D4

root system is an optimal kissing configuration. In Section 7.6.2, we prove that the
D4 root system is the unique optimal spherical code of size 24, up to isometry. In
particular, this implies that it is the unique optimal kissing configuration.

7.2. The three-point bound∗

Most of the best upper bounds for kissing numbers are obtained using the
three-point bound by Bachoc and Vallentin [2]. The three-point bound depends
on the ambient dimension n, the minimal angle θ of the spherical code, and a
parameter d we call the degree of the bound (higher degrees yield improved bounds,
at increased computational expense). For each k from 0 to d, let Y n

k (u, v, t) be the
(d− k + 1)× (d− k + 1) matrix with entries

Y n
k (u, v, t)ij = uivj(1− u2)k/2(1− v2)k/2Pn−1

k

(
t− uv√

(1− u2)(1− v2)

)
for 0 ≤ i, j ≤ d − k, where Pn

k is the Gegenbauer polynomial of degree k with
parameter n/2−1, normalized so that Pn

k (1) = 1; note that it is convenient to index
these entries starting with zero. Set

Sn
k =

1

6

∑
σ∈S3

σY n
k ,

where the permutation group S3 permutes the three arguments of Y n
k .

∗This section is based on Section 3 of the publication “H. Cohn, D. de Laat and N. Lei-
jenhorst, Optimality of spherical codes via exact semidefinite programming bounds, 2024,

arXiv:2403.16874”.
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The three-point bound involves optimizing over the choice of auxiliary functions
F and f , defined by

F (u, v, t) =

d∑
k=0

⟨Fk, S
n
k (u, v, t)⟩ and f(u) =

2d∑
k=0

fkP
n
k (u),

where F0, . . . , Fd are symmetric matrices with Fk being a (d− k + 1)× (d− k + 1)
matrix, and fk ∈ R.

The Bachoc-Vallentin three-point bound (with some variables removed) then
reads

(7.2.1)

minimize 1 + f(1) + ⟨F0, J⟩
subject to f(u) + 3F (u, u, 1) ≤ −1 for u ∈ [−1, cos θ],

F (u, v, t) ≤ 0 for (u, v, t) ∈ ∆,

F0, . . . , Fd ⪰ 0,

f0, . . . , f2d ≥ 0,

where J is the (d+ 1)× (d+ 1) all-ones matrix,

∆ = {(u, v, t) : −1 ≤ u, v, t ≤ cos θ and 1 + 2uvt− u2 − v2 − t2 ≥ 0},

and M ⪰ 0 means M is a positive-semidefinite matrix.
We can see as follows that the objective function 1 + f(1) + ⟨F0, J⟩ is an upper

bound for spherical code size. Let C be a spherical code in Sn−1 with minimal angle
at least θ, and fix a point e ∈ Sn−1. If Fk ⪰ 0, then it follows from the addition
formula for spherical harmonics that

(x, y) 7→ ⟨Fk, Y
n
k (⟨x, e⟩, ⟨y, e⟩, ⟨x, y⟩)⟩

is a positive semidefinite kernel. This implies that if F is feasible (i.e., it satisfies
the constraints in the optimization problem), then∑

x,y,z∈C

F (⟨x, z⟩, ⟨y, z⟩, ⟨x, y⟩) ≥ 0.

Similarly, (x, y) 7→ Pn
k (⟨x, y⟩) is a positive definite kernel by the addition formula,

so that for ak ≥ 0 we have ∑
x,y∈C

akP
n
k (⟨x, y⟩) ≥ 0.

Summing the two inequalities, separating terms and using the affine constraints
gives

0 ≤
∑

x,y∈C

f(⟨x, y⟩) +
∑

x,y,z∈C

F (⟨x, z⟩, ⟨y, z⟩, ⟨x, y⟩)

= |C|(f(1) + F (1, 1, 1)) +
∑

x,y∈C
x ̸=y

(f(⟨x, y⟩) + 3F (⟨x, y⟩, ⟨x, y⟩, 1))

+
∑

x,y,z∈C
x, y, z distinct

F (⟨x, z⟩, ⟨y, z⟩, ⟨x, y⟩)

≤ |C|(f(1) + F (1, 1, 1))− |C|(|C| − 1),
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from which it follows that

(7.2.2) |C| ≤ 1 + f(1) + F (1, 1, 1) = 1 + f(1) + ⟨F0, J⟩,

because Sn
k (1, 1, 1) = 0 for k > 0 and Sn

0 (1, 1, 1) = J .
This argument shows that (7.2.1) gives an upper bound for the maximal car-

dinality of a spherical code with minimal angle at least θ. If this bound matches
the code size, then the inequalities in the above derivation must hold with equality,
which implies that f(⟨x, y⟩) + 3F (⟨x, y⟩, ⟨x, y⟩, 1) = −1 for all distinct x, y ∈ C. In
other words, the zeros of the polynomial f(u) + 3F (u, u, 1) + 1 are the only inner
products other than 1 that can appear in a maximal code. This condition is a
special case of complementary slackness in semidefinite programming.

So far, we have shown that every code C with minimal angle at least θ must
satisfy |C| ≤ 1 + f(1) + ⟨F0, J⟩, but not yet that every code achieving this bound
must be an optimal spherical code. To see why this must be the case, note first that
the polynomial f(u) + 3F (u, u, 1) + 1 cannot vanish identically, since if it did, then
(7.2.2) would imply that

|C| ≤ 1 + f(1) + F (1, 1, 1) = 1 + (−1− 3F (1, 1, 1)) + F (1, 1, 1) = −2F (1, 1, 1) ≤ 0.

Therefore complementary slackness shows that there are only finitely many possible
inner products between distinct points in C, namely the roots of f(u)+3F (u, u, 1)+1.
If there were a code C with |C| = 1 + f(1) + ⟨F0, J⟩ and minimal angle strictly
greater than θ, then every sufficiently small perturbation of C would be a code with
minimal angle at least θ, which would contradict the finite list of possible inner
products. Thus, codes achieving equality in the three-point bound must be optimal
codes.

To model the optimization problem (7.2.1) as a semidefinite program, we use
sum-of-squares polynomials and symmetry reduction, following Chapter 4. For the
two point constraint, we have the semialgebraic set ∆2 = {u : p(u) ≥ 0}, where
p(u) = (1+u)(cos θ−u). For the three-point constraint, the semialgebraic set reads

∆3 = {(u, v, t) : p(u) ≥ 0, p(v) ≥ 0, p(t) ≥ 0, 1 + 2uvt− u2 − v2 − t2 ≥ 0};

these polynomials certify that the Gram matrix of 3 points with inner products u, v
and t is positive semidefinite. Using the approach in Section 4.3, we can find an
S3-invariant description of ∆3, and since F (u, v, t) is S3-invariant, this allows us to
use (4.3.1) with S3-invariant sums-of-squares polynomials. Following Example 3.4,
we obtain a block-diagonalized description for the sum-of-squares polynomials, and
using sampling (see Section 4.2) gives a semidefinite program with low-rank structure,
which can be solved using the solver of Chapter 5.

7.3. The Lasserre hierarchy

In this section we specify the Lasserre hierarchy for spherical codes with a fixed
minimal distance. This is a recap and continuation of the running example of Part I,
Example 2.1.

Take V = Sn−1, with distinct x, y ∈ V adjacent when ⟨x, y⟩ > cos θ. This is a
topological packing graph, so Chapter 2 applies. We wish to find the maximum size
of an independent set in this graph, so the objective function is given by λ(I=1),
where I=k is the set of all independent sets of size equal to k. There are no additional
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constraints, which gives the primal problem

maximize λ(I=1),

subject to A∗
k(λ) ∈ M(Ik × Ik)⪰0,

λ ∈ M(I2k)≥0,

λ(I0) = 1

where, as explained in Chapter 2, Ik is the disjoint union of I=i for i = 0, . . . , k,
and A∗

k is the adjoint of the operator Ak : C(Ik × Ik) → C(I2k) defined by

AkK(S) =
∑

J1,J2∈Ik
J1∪J2=S

K(J1, J2).

Dualizing, and slightly reformulating the dual as in equation (2.4.3), then gives
the problem

(7.3.1)

minimize K(∅, ∅),
subject to AkK(S) ≤ χI=1(S) S ∈ I2k \ I0,

K ∈ C(Ik × Ik)⪰0.

We denote problem (7.3.1) for dimension n and maximum inner product cos θ by
lask(n, cos θ).

The problem is invariant under O(n), so we may assume thatK is O(n)-invariant.
For k = 2, such kernels are described in Section 3.4. The general form of such
kernels is given by

K(J1, J2) =
∑

|λ|≤d1

⟨Kλ, Zλ(J1, J2)⟩

where the entries of Zλ are polynomials, and we restrict to the rows and columns of
Zλ with entries whose degree is bounded by d2. To compute the zonal matrices Zλ

for k = 2, we can use the method described in Section 3.4 up to d1 = 14; for higher
d1 we require the faster method introduced in [88].

The entries of Zλ(J1, J2) are polynomials in the inner products between vectors
in J1 ∪ J2, so on the sets I=i we obtain polynomial inequality constraints. Using
Chapter 4 and Example 3.4, we relax the constraints to semidefinite programming
constraints; for this we need to choose a maximum degree δ of the sum-of-squares
polynomials. The choices for the computations with the second level of the Lasserre
hierarchy are recorded in Table 7.3.1. Note that d2 and δ are the degrees of the
polynomials occurring in the bound, in contrast to the three-point bound where the
polynomial degree equals 2d.

In this thesis we take d1 ≤ d2 ≤ δ, with δ even. As a frame of reference, solving
a semidefinite program with these parameters and 256 bits precision takes about 4
hours for δ = 12 and 1 day for δ = 14, using a computer with 8 cores and 256Gb of
RAM. The computations with δ = 16 typically take 2 weeks, which we only use for
exceptional cases.

For the uniqueness proofs, we first specify Theorem 2.10 to the case of the
Lasserre hierarchy for spherical codes.

Corollary 7.1 (Complementary slackness). Let K be a feasible solution to
lask(n, cos θ), and let C ⊆ Sn−1 be a code with minimum angle at least θ. If
K(∅, ∅) = |C|, then
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Table 7.3.1. The degrees d1, d2 and δ we use to obtain upper
bounds using the second step of the Lasserre hierarchy.

n lb ub cos θ d1 d2 δ sharp

4 24 24 1/2 14 16 16 sharp
4 12 12 1/4 16 16 16 sharp
6 72 77.85 1/2 14 16 16 not sharp

• For all S ⊆ C with 1 ≤ |S| ≤ 2k,

AkK(S) = −χI=1
(S).

• For all λ,

⟨Kλ,
∑

J1,J2⊆C
|J1|,|J2|≤k

Zλ(J1, J2)⟩ = 0

Note that the second condition can also be written as∑
S⊆C,|S|≤2k

AkK
λ(S) = 0

for Kλ defined by
(J1, J2) 7→ ⟨Kλ, Zλ(J1, J2)⟩.

7.4. Improved kissing number bounds†

Initial computations with the three-point bound for the kissing number problem
were performed by Bachoc and Vallentin using CSDP [12], but since this is a machine
precision solver it was not possible to go beyond d = 10 [2]. Mittelman and
Vallentin [108] then used the high precision solvers SDPA-QD and SDPA-GMP to
perform computations up to d = 14. Later Machado and Oliviera [103] applied
symmetry reduction and used SDPA-GMP to compute bounds up to degree d = 16.

Because of the low-rank structure of the problem and the specialized solver of
Chapter 5, we can perform computations up to d = 20 within a reasonable time
frame. We estimate that the approach from [103] using SDPA-GMP would have been
slower by a factor 40 for d = 20. In Table 7.4.1 we show the kissing number bounds
for d = 16, . . . , 20 for dimensions up to 24. Dimension 2, 8, and 24 are omitted since
the linear programming bound is sharp in these dimensions. After rounding down
to the nearest integer, this improves the best known upper bounds in dimensions 11
through 23.

Rigorous verification of these bounds can be done using standard interval-
arithmetic techniques (see, e.g., [91, 103]). Alternatively, the rounding procedure
of Chapter 6 would work after recomputing the bound for a fixed (slightly larger)
rational objective. We did not perform this verification procedure since our main
goal here is to show that our approach enables us to significantly increase the degree

†Parts of this section are adapted from the publications “N. Leijenhorst and D. de Laat,

Solving clustered low-rank semidefinite programs arising from polynomial optimization, Math.

Program. Comput. 16 (2024), no. 3, 503-534, doi:10.1007/s12532-024-00264-w” and “D. de Laat,
N. M. Leijenhorst and W. H. H. de Muinck Keizer, Optimality and uniqueness of the D4 root

system, 2024, arXiv:2404.18794”.

https://doi.org/10.1007/s12532-024-00264-w
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n lower bound d upper bound n lower bound d upper bound

3 12 16 12.368580 14 1932 16 3177.7812
17 12.364503 17 3176.4354
18 12.360782 18 3175.3519
19 12.357869 19 3174.7746
20 12.353979 20 3174.1890

4 24 16 24.056877 15 2564 16 4858.1937
17 24.053495 17 4856.4186
18 24.051431 18 4855.1064
19 24.048769 19 4854.3872
20 24.047205 20 4853.7561

5 40 16 44.981014 16 4320 16 7332.7695
17 44.976437 17 7329.8545
18 44.973846 18 7325.5713
19 44.971353 19 7322.5461
20 44.970252 20 7320.1068

6 72 16 78.187644 17 5730 16 11014.169
17 78.173268 17 11004.299
18 78.163358 18 10994.873
19 78.151981 19 10984.895
20 78.143569 20 10978.622

7 126 16 134.26988 18 7654 16 16469.091
17 134.21522 17 16445.457
18 134.17305 18 16431.764
19 134.13115 19 16418.296
20 134.10709 20 16406.358

9 306 16 363.67296 19 11692 16 24575.872
17 363.59590 17 24516.534
18 363.50742 18 24463.542
19 363.41738 19 24443.476
20 363.34567 20 24417.472

10 510 16 553.82278 20 19448 16 36402.676
17 553.57125 17 36296.753
18 553.38179 18 36250.908
19 553.21188 19 36218.806
20 553.05527 20 36195.348

11 592 16 869.23401 21 29768 16 53878.723
17 868.82650 17 53724.682
18 868.45366 18 53647.201
19 868.15131 19 53567.621
20 868.01070 20 53524.085

12 840 16 1356.5778 22 49896 16 81376.460
17 1356.1536 17 81085.186
18 1355.8837 18 80962.164
19 1355.4776 19 80860.092
20 1355.2976 20 80810.158

13 1154 16 2066.3465 23 93150 16 123328.40
17 2065.5348 17 122796.10
18 2064.9493 18 122657.49
19 2064.4859 19 122481.07
20 2064.0029 20 122351.67

Table 7.4.1. Three-point bounds for the kissing number problem
in dimensions 3-23. Dimension 8 is omitted since there the linear
programming bound is sharp. New records after rounding down to
the nearest integer are underlined. Lower bounds are taken from

[40].

of the polynomials used, thereby obtaining better bounds. Note that the bounds we
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report for d = 16 are slightly different from the bounds reported in [103] since their
verification procedure increases the bounds by a configurable parameter ε > 0.

We also compute the second step of the Lasserre hierarchy for the kissing number
problem in dimensions 4− 7, 10, 12 and 16. This gives a sharp bound in dimension
4 (see Section 7.6.2), and improves the bound in dimension 6 from k(6) ≤ 78 to
k(6) ≤ 77. Since this is, relative to the bound, a large improvement, we do verify
this bound. For these bounds we use the parameters d1 = 14 and d2 = δ = 16.

In dimension 6, the bound is not sharp, so that the optimal objective value and
optimal solution potentially require high algebraic degree or bit size. This means
the rounding procedure from Chapter 6 may not be able to find an exact optimal
solution here. Therefore, we solve the problem as a feasibility problem, where we
add the constraint that the objective K(∅, ∅) is equal to 77.85. Since this is strictly
larger than the numerically computed optimal objective, the solver will return a
strictly feasible solution (a feasible solution where all matrix variables are positive
definite), from which it is easy to extract an exact feasible solution. This gives a
rigorous proof of k(6) ≤ 77.

We verify the proof using Section 6.6. As part of the verification procedure,
the zonal matrices Zλ need to be constructed; the method described in Section 3.4
takes less than two days on a modern computer. The much faster method of [88]
gives the same zonal matrices up to a positive constant factor depending only on n
and λ. The remainder of the verification procedure takes less than two hours.

The script and data files to perform this verification procedure are available
at [86]. There we also make available the implementation we used for generating
the proofs. Our scripts are written in Julia [8] and use the Nemo computer algebra
system [56].

7.5. Constructions of spherical codes‡

In Section 7.6, we prove optimality and uniqueness of certain spherical codes.
In this section, we give constructions for these codes.

7.5.1. Spectral embeddings of triangle-free strongly regular graphs.
Recall that a strongly regular graph with parameters (n, k, λ, µ) is an n-vertex graph,
not a complete graph or its complement, such that every vertex has degree k,
every pair of adjacent vertices has λ common neighbors, and every pair of distinct,
non-adjacent vertices has µ common neighbors. One can check that such a graph is
connected if and only if µ > 0, and we will always assume this is the case.

A graph is triangle-free if there do not exist three mutually adjacent vertices;
for a strongly regular graph, this condition amounts to λ = 0. The only known
connected, triangle-free strongly regular graphs are one infinite family and seven
exceptional cases, namely

(1) the complete bipartite graph Kn,n, which has parameters (2n, n, 0, n),
(2) the 5-cycle, which has parameters (5, 2, 0, 1),
(3) the Petersen graph, which has parameters (10, 3, 0, 1),
(4) the Clebsch graph, which has parameters (16, 5, 0, 2),

‡This section is based on Section 1 of the publication “H. Cohn, D. de Laat and N. Leijenhorst,

Optimality of spherical codes via exact semidefinite programming bounds, 2024, arXiv:2403.16874”
and Section 3.2 of “D. de Laat, N. M. Leijenhorst and W. H. H. de Muinck Keizer, Traceless

projection of tensors with applications to hierarchies in discrete geometry, In preparation”.
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(5) the Hoffman-Singleton graph, which has parameters (50, 7, 0, 1),
(6) the Gewirtz graph, which has parameters (56, 10, 0, 2),
(7) the M22 graph, which has parameters (77, 16, 0, 4), and
(8) the Higman-Sims§ graph, which has parameters (100, 22, 0, 6).

See [23] for constructions of these graphs, as well as more information and references.
Each of these graphs corresponds to a spherical code via spectral embedding.

Specifically, let A be the graph’s adjacency matrix, which is indexed by vertices.
Orthogonally projecting the basis vectors indexed by these vertices into an eigenspace
of A yields points on a sphere, which we can rescale to be the unit sphere.

The complete bipartite graph Kn,n is a special case, because it is bipartite.
The eigenvalues of its adjacency matrix are 0 (with multiplicity 2n − 2) and ±n,
and projecting into the eigenspace with eigenvalue 0 gives two orthogonal (n− 1)-
dimensional regular simplices in R2n−2, which is an optimal spherical code, but not
unique for n > 2.

For each of the remaining cases, we orthogonally project into the eigenspace
with the smallest eigenvalue. The resulting spherical code is a two-distance set
(i.e., there are only two distances between distinct points), with the larger distance
corresponding to adjacency in the graph. Each of these codes is either already
known to be optimal (see, e.g., [38, Table 1.1]) or proved to be optimal in Section 7.6
(Table 7.1.1).

7.5.2. Kerdock spherical codes. Kerdock codes [77] are a family of binary

error-correcting codes in {0, 1}22k with 24k codewords and minimal Hamming dis-
tance 22k−1 − 2k−1, which can be constructed using Z/4Z-linear codes [65]. The
case k = 1 is trivial, while k = 2 is the Nordstrom-Robinson code [117], which is
known to be not only optimal [117] but also unique [134]. For k > 2 it has not
been known whether the Kerdock codes are optimal.

For each k, one can use the Kerdock code to construct a spherical code with 24k+
22k+1 points in 22k dimensions and maximal inner product 1/2k (see [27, 101, 81]).
Specifically, this spherical code contains the standard orthonormal basis and its
negatives as well as the 24k points ((−1)c1 , . . . , (−1)c22k )/2k with (c1, . . . , c22k) in
the Kerdock code. We call these configurations the Kerdock spherical codes. They
are known to be optimal among antipodal spherical codes [101], or equivalently as
point configurations in real projective space, but have not previously been known
to be optimal among all spherical codes.

7.5.3. Spherical codes of size 12 in dimension 4. In this section we give
the Gram matrices of two codes of size 12 in dimension 4 with maximum inner
product 1/4. In Section 7.6.3 we will prove that these are optimal spherical codes,
and that in fact these are the only two optimal spherical codes with these parameters,
up to isometry.

Let C1 and C2 be the codes with respective Gram matricesS1/4 E F
E S−1/3 E
F E S1/4

 and

G E E
E G E
E E G

 ,
§Before it was rediscovered by Higman and Sims [71] in the process of constructing the

Higman-Sims group, this graph was discovered by Mesner [106], as pointed out by Klin and Woldar

[79].
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where Sα = (1− α)I + αJ is the Gram matrix of the simplex with pairwise inner
product α, and where

E =


1/4 −3/4 1/4 1/4
−3/4 1/4 1/4 1/4
1/4 1/4 1/4 −3/4
1/4 1/4 −3/4 1/4

 , F =


1/8 −5/8 −5/8 −5/8
−5/8 1/8 −5/8 −5/8
−5/8 −5/8 1/8 −5/8
−5/8 −5/8 −5/8 1/8

 ,

G =


1 0 −1/2 −1/2
0 1 −1/2 −1/2

−1/2 −1/2 1 0
−1/2 −1/2 0 1

 .
One can check that the matrices are of rank 4, which means they are indeed Gram
matrices of 12-point codes in S3. The code C2 was first found in [104] and the code
C1 was first found in [32].

7.6. Optimality and uniqueness of spherical codes¶

7.6.1. New sharp three-point bounds. We compute the three-point bound
for the parameters listed in Table 7.6.1, where we also list the degrees and the
timing information. For the bounds in this section, we set f = 0, since this auxiliary
function does not contribute in these cases. In each case, |C| = 1 + ⟨F0, J⟩, and
therefore C must be optimal. Furthermore, in each case 3F (u, u, 1) + 1 has no roots
in [−1, cos θ] other than the inner products that occur in C; this observation will
play a key role in proving uniqueness, because it shows that no other inner products
can occur in any optimal code.

Theorem 7.2. The spherical codes with parameters (n,N, cos θ) in the set

{(16, 288, 1/4), (64, 4224, 1/8), (20, 56, 1/15), (21, 50, 1/21), (21, 77, 1/12)}
are unique up to isomorphism.

The proofs of uniqueness can be split into two types: one for antipodal (kerdock)
codes, and one for strongly regular graphs.

Proof for antipodal codes. There are two codes with −1 as possible inner
product in the list, with (n,N) ∈ {(16, 288), (64, 4224)}. Suppose C is a spherical
code with one of these parameters and the maximal inner product given by Ta-
ble 7.6.1. Let T = {−1,−α, 0, α} be the list of inner products possible in the code by
complementary slackness from the three-point bound. Then T ∪ {1} = −(T ∪ {1}),
and hence C must be antipodal: Suppose −x ̸∈ C for some x ∈ C. Then C ∪ {−x}
has the same list of inner products as C, and contains an extra point, which contra-
dicts the three-point bound. Therefore, the N points lie on N/2 lines through the
origin.

By Proposition 3.12 from [25], the N/2 lines can be partitioned in N/(2n) sets
of n orthogonal lines. Let one of these sets define the coordinates, then 2n lie on

¶This section is based on Section 4 of the publication “H. Cohn, D. de Laat and N. Leijenhorst,
Optimality of spherical codes via exact semidefinite programming bounds, 2024, arXiv:2403.16874”,

Section 5.1 of “D. de Laat, N. M. Leijenhorst and W. H. H. de Muinck Keizer, Optimality and

uniqueness of the D4 root system, 2024, arXiv:2404.18794”, and Section 3.2 of “D. de Laat,
N. M. Leijenhorst and W. H. H. de Muinck Keizer, Traceless projection of tensors with applications

to hierarchies in discrete geometry, In preparation”.
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Table 7.6.1. The degree d we use to obtain sharp three-point
bounds, the number of digits of accuracy to which we solve the

semidefinite programs, and the time in seconds it took to solve the
semidefinite programs, round the solutions, and verify the proofs.
For the last two cases, the three-point bound was already known

to be sharp.

n N cos θ d Digits Solve Round Check

16 288 1/4 8 40 205 4 2
64 4224 1/8 9 40 484 7 6
256 66048 1/16 10 40 1075 15 17

1024 1050624 1/32 18 100 219131 6147 3135

20 56 1/15 5 40 9 0.2 0.1
21 50 1/21 5 40 9 0.2 0.06
21 77 1/12 5 40 9 0.3 0.06

55 176 1/25 5 40 9 0.2 0.08
55 210 1/22 5 40 10 0.2 0.07
56 162 1/28 5 40 10 0.3 0.07
56 266 1/20 5 40 10 0.3 0.07
115 392 3/115 5 40 10 0.2 0.08
120 352 1/45 5 40 10 0.3 0.08
143 352 1/65 6 40 34 0.9 0.6

1520 3250 1/456 9 60 586 10 17

3 9 1/3 10 40 958 23 24

4 10 1/6 4 40 4 0.1 0.03

3 8 1/
(√

8 + 1
)

7 60 112 210 100

the coordinate axes, and the other points have coordinates ±α. The signs then
define a binary code C̃: we have c ∈ C̃ if and only if α((−1)c1 , . . . (−1)cn) ∈ C. The
inner product between two such points is given by 1 − 2α2d(c, c′), where d(c, c′)
is the Hamming distance d(c, c′) = |{i : ci ̸= c′i}|. This gives a binary code with

|C̃| = N − 2n and minimal Hamming distance (1−α)/(2α2), and a certain distance
distribution. Theorem 10.2.1 in [134] and Theorem 1 in [122] show that there are
unique binary codes with these properties, up to permutation and translation, which
translates into uniqueness of C up to isometry. □

Proof for triangle-free strongly regular graphs. This applies to the
codes in dimension 21 and 22, which are spherical embeddings from the Gewirtz,
Hoffman-Singleton and M22 strongly regular graphs.

By complementary slackness, an optimal code C of size N can have at most 2
different inner products, say α < β. It therefore defines a graph with vertex set C
and an edge between two vertices c, c′ if ⟨c, c′⟩ = α. It suffices to show that the code
must be a spherical 2-design: by Theorem 7.4 in [47], any spherical 2-design which
is a 2-distance set yields a strongly regular graph uniquely defined by the dimension,
size and distances of the design. Since the strongly regular graphs corresponding
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to these spherical codes are unique up to isomorphism by [59, 21, 73, 22], this
implies that the spherical codes are also unique, up to isometry.

Let k = |{(x, y) ∈ C2 : ⟨x, y⟩ = α}|/N . The characterization of spherical
designs in terms of Gegenbauer polynomials Pn

k of [47, Theorem 5.5] show that

kPn
i (α) + (N − k + 1)Pn

i (β) + Pn
i (1) ≥ 0

for i = 1, 2, and C is a spherical 2-design if we have equality. In our case, N,n, α
and β are determined, and one can check that the only way that k can satisfy both
inequalities is when they are equalities. Therefore C is a 2-design, as desired. □

These arguments also show that any spherical code with the hypothetical
parameters in Table 7.6.1 must be a spectral embedding of a strongly regular graph.
However, it is unknown whether such graphs would be unique if they exist.

7.6.2. The D4 root system. In this section, we prove that the D4 root system
is the unique optimal kissing configuration in dimension four and is an optimal
spherical code.

For this we first compute a numerically optimal solution to las2(4, 1/2). To get
a sharp bound, we use d1 = 14 and d2 = δ = 16 for the truncation of the inverse
Fourier transform and the sums-of-squares degrees. The resulting semidefinite
program is large, and to solve it the use of the semidefinite programming solver from
Chapter 5 is essential. We compute the optimal solution to 40 digits of precision
using 256-bit floating-point arithmetic. This takes about two weeks on 8 cores of a
modern computer equipped with 128GB of working memory.

The next step is to round the numerical solution to an exact optimal solution
using Chapter 6. Although a semidefinite program defined over the rationals does
not necessarily admit a rational optimal solution (see, e.g., [116]), this is the case
here, and the rounding procedure finds a rational optimal solution within 4 hours.
This gives an exact feasible solution K with objective value K(∅, ∅) = 24. We use
the same verification procedure as for the kissing number in dimension 6, which is
available at [86] together with the exact solution.

Using Sturm sequences we verify that the polynomial corresponding to A2K|I=2

has roots −1, ±1/2, and 0 in the interval [−1, 1/2]. That is, by complementary
slackness, for distinct x, y ∈ S3 with ⟨x, y⟩ ≤ 1/2, A2K({x, y}) = 0 if and only if
⟨x, y⟩ ∈ {−1,±1/2, 0} (see Lemma 7.3). In the remainder of this section, we use
this fact to show the D4 root system is an optimal spherical code and is the unique
optimal kissing configuration up to isometry.

Lemma 7.3. If C ⊆ S3 is a subset of size 24 with minimal angle at least π/3,
then

⟨x, y⟩ ∈ {−1,−1/2, 0, 1/2}
for all distinct x, y ∈ C.

Proof. By Corollary 7.1, we have for every x ̸= y ∈ C that

A2(K)({x, y}) = 0.

As mentioned above, for distinct x, y ∈ S3, we have A2K({x, y}) = 0 if and only if
⟨x, y⟩ ∈ {−1,±1/2, 0}.

□
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This shows the D4 root system corresponds to an optimal spherical code: among
the 24-point subsets of S3, the minimal distance between distinct points is as large
as possible.

Theorem 7.4. The D4 root system is an optimal spherical code.

Proof. If there were a spherical code C of cardinality 24 with smallest angle
strictly larger than π/3, then any small enough perturbation of C would correspond
to a kissing configuration of size 24, which contradicts with Lemma 7.3. □

Note that for cases where the Bachoc-Vallentin three-point bound is sharp,
optimality of the corresponding spherical code follows immediately, because in that
case sharpness directly implies that there are only finitely many possible inner
products; see Section 7.2. We do not know whether the same is always true for a
truncation of the Lasserre hierarchy, since it is not clear whether the polynomial p2
can be identically zero when the bound is sharp.

Theorem 7.5. The D4 root system is the unique optimal kissing configuration
in R4 up to isometry.

Proof. Let C ⊆ S3 be an optimal kissing configuration in R4. We first verify
that C is a root system.

(1) The vectors in C must span R4, since otherwise C would give a kissing
configuration in R3 of size 24.

(2) Since C is a subset of the unit sphere, the only scalar multiples of α ∈ C
can be α and −α.

(3) Let α, β ∈ C and consider the reflection β′ = β − 2⟨α, β⟩α of β through
the hyperplane orthogonal to α. By Lemma 7.3, it follows that

⟨β′, γ⟩ ∈ {±1,±1/2, 0}

for every γ ∈ C. So, β′ must be in C by optimality of C.
(4) By Lemma 7.3, for α, β ∈ C, the value 2⟨α, β⟩ is an integer. In other words,

the reflection of β through the hyperplane orthogonal to α is obtained by
subtracting an integer multiple of α from β.

Hence, the set C is a root system in R4.
The irreducible root systems have been classified, and the only irreducible root

systems where all vectors have the same length are Aj , Dj , E6, E7, and E8; see, for
instance, [133, Table 4.1]. Since all roots in C have the same length, it must be a
direct sum of these irreducible root systems. In other words,

C =

k⊕
i=1

Φi

for some k and root systems Φ1, . . . ,Φk, where each Φk is isomorphic to Aj , Dj ,
E6, E7, or E8.

Let us assume that D4 does not occur in the decomposition. By considering
the dimensions, the summands must be isomorphic to Aj with 1 ≤ j ≤ 4 and Dj

with 1 ≤ j ≤ 3. We denote by r the total number of roots occurring in C, by ri the
number of roots of Φi, and by di the rank of Φi. For Aj we have rj/dj = j + 1 and
for Dj we have rj/dj = 2(j − 1). Hence, we have ri/di < 6 for the root systems
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which occur in the decomposition. Furthermore, since the span of C is R4, we have∑
i=1 di = 4. We then have

r =

k∑
i=1

ri =

k∑
i=1

ri
di
di < 6

∑
i=1

di = 24.

Since the number of roots in C is equal to 24, this gives a contradiction. Hence, C
is D4 up to orthogonal transformations. □

Note that an alternative proof can be given along the lines of Theorem 7.2: the
code must be antipodal, and the corresponding set of lines is by [25, Proposition 3.12]
a union of 3 orthonormal bases. Taking one of the bases to define the coordinates,
the other points must have ±1/2 in every coordinate. The only possibility is to
have every such point, so the resulting configuration is unique.

7.6.3. Two 12-point codes in dimension 4. In this section we prove that
there are exactly two optimal spherical codes of size 12 in dimension 4, namely the
codes C1 and C2 constructed in Section 7.5.3. The proof relies on an exact solution
to las2(4, 1/4), and this solution and the Julia code to verify the statements we
make in this section about the solution are available at [87].

The k-point distance distribution of a subset C ⊆ Sn−1 assigns to each subset
S ⊆ Sn−1 with 2 ≤ |S| ≤ k the size of the set {R ⊆ C : R ∈ O(n)S}. The elliptope
is defined by

En = {X ∈ Sn
+ : X1,1 = · · · = Xn,n = 1},

where Sn
+ is the cone of positive semidefinite matrices. We will think of the 4-point

distance distribution of a subset C of S3 as the function that assigns to each matrix
in E2 ∪ E3 ∪ E4 the number of times this matrix appears as a principal submatrix of
the Gram matrix of C up to simultaneous permutations of the rows and columns.

Lemma 7.6. Let C ⊆ S3 be a subset of size 12. If the 4-point distance distribu-
tions of C and C1 agree, then C is equal to C1 up to isometry.

Proof. From the distance distribution we see there is a subset S of 4 points
in C with pairwise inner products −1/3. We may assume this 3-simplex lies in the
hyperplane x1 = 0. By the distance distribution there are 12 pairs of points in C
with inner product −1/3, which means any such pair is a subset of S.

By the distance distribution there are 8 subsets of C of size 4 such that 3 points
have inner product −1/3 with each other, and the fourth point has inner product
1/4 with the other three points in the subset. Given a subset of size 3 of S, there
are exactly 2 points in S3 that have inner product 1/4 with those three points: one
at each side of the hyperplane x1 = 0. Since there are 4 different subsets of size 3 of
S, this implies all points in C \ S are of this form, and this fully describes C up to
isometry. So C is equal to C1 up to isometry. □

Lemma 7.7. Let C ⊆ S3 be a subset of size 12. If the 4-point distance distribu-
tions of C and C2 agree, then C is equal to C2 up to isometry.

Proof. From the distance distribution we see that there are 3 subsets of C
with Gram matrix G. To see that these subsets are disjoint we observe the following.
The distance distribution shows that there are 6 pairs of orthogonal points, and
no triples of orthogonal points. Together this implies that the 12 points can be
partitioned into 6 pairs of orthogonal points. Therefore, the subsets of 4 points
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either have an overlap of 2 orthogonal points, or no overlap. Since the only triple of
inner products with −1/2 occurring at least twice is (−1/2,−1/2, 0), there are no
three pairs J1, J2, and J3 of orthogonal points such that the inner products between
the points in J1 and J2 as well as the inner products between the points in J1 and
J3 are −1/2.

From the distance distribution we see that there are 6 subsets of 4 points with
Gram matrix 

1 0 1/4 1/4
0 1 1/4 1/4
1/4 1/4 1 0
1/4 1/4 0 1

 .
and 6 subsets of 4 points with Gram matrix

1 0 −3/4 1/4
0 1 1/4 −3/4

−3/4 1/4 1 0
1/4 −3/4 0 1

 .
This implies the Gram matrix of C must be of the form

I − 1
2J A1 A2 A3 A4

− 1
2J I A5 A6 A7 A8

A1 A5 I − 1
2J A9 A10

A2 A6 − 1
2J I A11 A12

A3 A7 A9 A11 I − 1
2J

A4 A8 A10 A12 − 1
2J I


up to simultaneous permutation of the rows and columns, where

A1, . . . , A12 ∈
{[

1/4 1/4
1/4 1/4

]
,

[
1/4 −3/4
−3/4 1/4

]
,

[
−3/4 1/4
1/4 −3/4

]}
.

Using a computer we see that, up to simultaneous permutation of the rows and
columns, the Gram matrix of C2 is the only matrix of this form of rank at most 4,
which shows C is isometric to C2. □

In the remainder of this section show that if C ⊆ S3 is a subset of size 12 with
maximal inner product 1/4, then its 4-point distance distribution agrees with the
4-point distance distribution of C1 or C2. For this we use Corollary 7.1.

We use a computer to find a rational solution to las2(4, 1/4). For this we first
solve the semidefinite program in 256 bit floating-point arithmetic using the solver
of Chapter 5, and then we use the rounding procedure from Chapter 6 to extract
an optimal solution over the rationals from this. For some matrices, we could not
find the kernel vectors using the method of Section 6.2 with the given precision.
Therefore, we use the kernel vectors given by Corollary 7.1, where the first condition
gives kernel vectors of the sum-of-squares matrices, and the second of the matrices
Kλ. Numerically computing the rank of the matrices shows that in fact this gives
all kernel vectors in this case.

We first check that the kernel K defined by this solution satisfies the following
properties:

(1) K is a feasible for las2(4, 1/4) with K(∅, ∅) = 12.
(2) For x, y ∈ S3 with ⟨x, y⟩ ≤ 1/4, A2K({x, y}) = 0 if and only if

⟨x, y⟩ ∈ P := {−3/4,−5/8,−1/2,−1/3, 0, 1/8, 1/4}.
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(3) There are no x, y, v, w ∈ S3 with pairwise inner products in P , ⟨x, y⟩ ∈
{−1/2, 0}, ⟨v, w⟩ ∈ {−5/8,−1/3, 1/8}, and with A2K({x, y, u, v}) = 0.

Property (1) is verified by first checking that the matrices K̂λ, as well as the
matrices for the sums-of-squares characterizations, are positive semidefinite. This
is done by first writing each matrix in the form BABT of Section 6.3, where B
rectangular matrix and A is a positive definite matrix, both over the rationals.
Then we check the matrices are indeed positive definite by computing the Cholesky
factorizations in ball arithmetic. Finally, we check in exact arithmetic that the linear
conditions enforcing the sum-of-squares characterizations are satisfied. For Property
(2) we use that A2K({x, y}) is a univariate polynomial in ⟨x, y⟩. We check this
polynomial is zero at the appropriate inner products, and we use Sturm sequences
to show these are the only zeros in the interval [−1, 1/4]. Property (3) is verified by
enumerating all possibilities (by Property (2) there are only finitely many of them).
Here we do use the symmetries of S4 to do this efficiently. Such an enumeration
also yields a small subset of E3 ∪ E4 on which the distance distribution is potentially
nonzero.

Now let C ⊆ S3 be a subset of size 12 with maximal inner product 1/4. By
Corollary 7.1 and Property (1) it follows that A2K(S) = 0 for all S ⊆ C with
2 ≤ |S| ≤ 4. By Properties (2) and (3) it then follows that either

⟨x, y⟩ ∈ {−3/4,−1/2, 0, 1/4}

for all distinct x, y ∈ C or

⟨x, y⟩ ∈ {−3/4,−5/8,−1/3, 1/8, 1/4}

for all distinct x, y ∈ C.
Denote the 4-point distance distribution of C by z. By Corollary 7.1 and

Property (1) we have ∑
S⊆C
|S|≤4

A2Kλ(S) = 0

for each |λ| ≤ d, which translates into a number of linear constraints on the distance
distribution z. We have the additional linear constraints

(12− i)z(A) =
∑

B∈Ei+1

c(A,B)z(B)

for A ∈ Ei and i = 2, 3, where c(A,B) counts how often the matrix A appears as a
principal submatrix of B up to simultaneous permutations of the rows and columns.

We know that the inner products 0 and −1/3 cannot both appear in the code
C. If we add the linear constraint

z

([
1 0
0 1

])
= 0,

then by using row reduction in exact arithmetic we see there is a unique 4-point
distance distribution, which agrees with the distribution of C1. If instead we add
the linear constraint

z

([
1 −1/3

−1/3 1

])
= 0,

then there is a unique 4-point distance distribution which agrees with the distribution
of C2. Together with Lemma 7.6 and 7.7 the following result then follows.
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Theorem 7.8. Suppose C ⊆ S3 is a code of size 12 with pairwise inner products
at most 1/4. Then C is equal to C1 or C2 up to isometry.

Notice that the above theorem implies that C1 and C2 are optimal spherical
codes. A posteriori, it also implies C1 and C2 are defined, up to isometry, by their
2-point distance distributions.



CHAPTER 8

Energy minimization on the sphere

8.1. Introduction

In this chapter we consider the problem of energy minimization on a sphere.
Let C ⊆ Sn−1 be a spherical code, and let g : [0, 4) → R be a potential function.
The energy of C with respect to g is

Êg(C) =
1

2

∑
x,y∈C
x̸=y

g(d(x, y)2)

where d(x, y) =
√
2− 2⟨x, y⟩ is the chordal distance.

The energy minimization problem asks for a spherical code on Sn−1 of size N
which minimizes Êg(C) over all spherical codes C.

An important type of potential function is Riesz-s energy, given by

Rs(r) =

{
r−s/2 s > 0,

−r−s/2 s < 0.

For n = 3 and s = 1, the corresponding energy minimization problem is known
as the Thompson problem, which minimizes the Coulomb potential. A natural
generalization to higher dimensions is the minimization of harmonic energy: the
case s = n− 2.

Yudin introduced a linear programming bound, an analogue of the Delsarte-
Goethals-Seidel linear programming bound for spherical codes, and used this to
prove that the regular simplex (N = n+ 1) and the cross polytopes (N = 2n) are
minimizers of harmonic energy [144]. The bound is equivalent to the first level of
the Lasserre hierarchy for energy minimization.

Of special interest are configurations which are optimal for the class of completely
monotonic potential functions; these configurations are called universally optimal. A
function g is completely monotonic if it is infinitely differentiable, and (−1)kg(k) ≥ 0
for all k ≥ 0. The Riesz-s energy kernels are examples of completely monotonic
functions. Universally optimal configurations are automatically optimal spherical
codes: minimizing the energy of Rs as s→ ∞ is essentially maximizing the minimum
distance.

Since our techniques mainly work with polynomials in terms of the inner products
between points on the sphere, we instead optimize the energy

Ef (C) =
1

2

∑
x,y∈C
x̸=y

f(⟨x, y⟩)

where f(u) = g(2−2u). Then g is completely monotonic if and only if f is absolutely
monotonic: f is infinitely differentiable and f (k) ≥ 0 for all k ≥ 0.

95
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On the sphere, Cohn and Kumar use Yudin’s bound to show in [34] that all
sharp configurations are universally optimal. Recall that a spherical code C ⊆ Sn−1

is a spherical k-design if for every polynomial up to degree k, the average of the
polynomial over the sphere is the same as the average over the code. A spherical
code C ⊆ Sn−1 is sharp if there are m inner products between distinct points of
C and it is a (2m − 1)-design. Other than sharp configurations, the only known
universal optima are in projective space [42, 36].

In Section 8.2 and 8.3, we introduce the three-point bound and the Lasserre
hierarchy for energy minimization. We use the three-point bound in Section 8.4 to
show universal optimality of the Nordstrom-Robinson spherical code, and perform in
Section 8.5 computations on the second level of the Lasserre hierarchy for harmonic
energy. This leads to the conjecture that the second level of the Lasserre hierarchy
is sharp for harmonic energy for several families of configurations: n+ 2 and 2n− 1
points in dimension n. For 2n+ 2 points in dimension n the same may hold, but
it is less evident from the numerical results. We conclude in Section 8.6 with a
theorem giving conditions for two codes to be universally optimal together : for every
completely monotonic potential function, one of the two codes is optimal.

8.2. The three-point bound

The three-point bound for energy minimization was first defined in [42]. In
contrast to the three-point bound for packing, the three-point bound for energy
minimization is not clearly a relaxation of the second level of the Lasserre hierarchy
for this problem. Interestingly, it only uses a 3-point constraint, whereas k-point
bounds typically use l-point constraints for k0 ≤ l ≤ k with k0 ∈ {0, 1, 2}.

The bound utilizes the same matrices

Y n
k (u, v, t)ij = uivj

√
1− u2

k√
1− v2

k
Pn−1
k

(
t− uv√

1− u2
√
1− v2

)
as the three-point bound for the spherical code problem. Instead of the matrices
Sn
k = 1/6

∑
σ∈S3

σY n
k , we now define the matrices

Tn
k (u, v, t) = (N − 2)Sn

k (u, v, t) + Sn
k (u, u, 1) + Sn

k (v, v, 1) + Sn
k (t, t, 1).

Define the function H(u, v, t) by

H(u, v, t) = c+

d∑
k=0

⟨Hk, T
n
k (u, v, t)⟩

with Hk ⪰ 0 and c ∈ R. Then the problem

(8.2.1)

maximize
N

2
((N − 1)c− ⟨H0, J⟩)

subject to H(u, v, t) ≤ 1

3
(f(u) + f(v) + f(t)) for (u, v, t) ∈ ∆

Hk ⪰ 0 k = 0, . . . , d

c ∈ R

gives a lower bound on the energy of any configuration of N points on Sn−1 for the
potential function f . Here ∆ = {(u, v, t) : −1 ≤ u, v, t < 1, 1 + 2uvt− u2 − v2 − t2}.
If f is continuous at 1, we may extend ∆ to also include 1 ∈ {u, v, t}. In that case
the points in the configuration do not have to be distinct for the proof to work.
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Proof that (8.2.1) gives a lower bound on the energy. Let C be a con-
figuration of N points, and let (c,H1, . . . ,Hd) be a feasible solution to the problem.
Then

0 ≤
∑

x,y,z∈C

d∑
k=0

⟨Hk, S
n
k (u, v, t)⟩

= N⟨H0, J⟩+
1

N − 2

∑
x,y,z∈C
distinct

(H(⟨x, z⟩, ⟨y, z⟩, ⟨x, y⟩)− c)

≤ N⟨H0, J⟩+
∑

x ̸=y∈C

f(⟨x, y⟩)−N(N − 1)c,

and hence Ef (C) ≥ N
2 ((N − 1)c− ⟨H0, J⟩). □

8.3. The Lasserre hierarchy for energy minimization

The Lasserre hierarchy for energy minimization was introduced by de Laat [85],
who showed that it was numerically sharp for 5 points on S2 for the Riesz-s energy
with s = 1, . . . , 7, using polynomials of degree at most 8. With the harmonic analysis
in Chapter 3 and the solver from Chapter 5, we are able to perform computations
in any dimension using a much higher polynomial degree.

Let G = (V,E) be a graph, and f a function on the non-edges. The 0 − 1
problem is then given by

minimize
∑

{i,j}̸∈E

f({i, j})xixj

subject to
∑
i∈V

xi = N.

To generalize this, we take the graph with vertex set V = Sn−1, where distinct
x, y ∈ V are adjacent whenever ⟨x, y⟩ > ε for some ε < 1. Recall that I=k denotes
the independent sets in this graph of size equal to k, and that Ik is the disjoint
union of I=i for i = 0, . . . , k. Define the function

F (S) =

{
f(⟨x, y⟩) S = {x, y}, x ̸= y,

0 otherwise,

where f : [−1, 1) → R is the potential function as in the introduction of this chapter.
Note that F is continuous, because I=2 is not connected to Ik \I=2. We reformulate
the cardinality constraints using Example 2.6, which results in the problem

minimize λ(F )

subject to A∗
k(λ) ∈ M(Ik × Ik)⪰0,

λ(I=i) =

(
N

i

)
, i = 0, . . . , 2k.
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The dual problem is then given by

maximize

2k∑
i=0

ai

(
N

i

)
subject to ai +AkK(S) ≤ F (S) S ∈ I=i, i = 0, . . . , 2k

K ∈ C(Ik × Ik)⪰0,

a0, . . . , a2k ∈ R

Similar to the Lasserre hierarchy for spherical codes, the problem is O(n)-invariant,
and by averaging over O(n) we may assume that the kernel K is O(n)-invariant.
This allows us to use the description of Section 3.4 for the K. The i-th constraint
has Si-invariance which acts on the polynomials in the inner products by permuting
the rows and columns of the Gram matrix of S. For the constraints i with i ̸= 2, we
can use Chapter 4 and Example 3.4 to give an efficient semidefinite programming
relaxation through sum-of-squares polynomials.

If f is a polynomial, the same strategy works for constraint i = 2. Otherwise
it is possible to get lower bounds on Ef using a polynomial lower approximation
of f . However, if f is a Riesz-s potential for some positive integer s, it is possible
to reformulate the constraint. In this case we multiply all terms in the constraint
by (2 − 2t)s/2, and if s is odd, change variables to w =

√
2− 2t. This gives a

polynomial inequality in the variable w (or t if s is even), which can be reformulated
to semidefinite programming constraints using sums-of-squares polynomials, as in
Chapter 4.

Up to now, we have not considered a specific value for the maximum inner
product ε. Suppose there is an optimal configuration with maximum inner product
U . Then we may take ε = U . However, since the hierarchy contains cardinality
constraints, it has finite convergence for every ε ∈ [U, 1]. In practice, taking ε→ 1
does not significantly worsen the bounds. All bounds in this chapter take ε→ 1.

For certain potential functions f , it is possible to explicitly find a bound on the
maximum inner product. For example, let f be a strictly increasing function with
f(u) → ∞ when u→ 1 (e.g., a Riesz-s potential function), and consider a (possibly
suboptimal) configuration C ⊆ Sn−1. Then we can find a U such that f(u) ≥ Ef (C)
for all u ∈ [U, 1). In particular, this implies that any optimal configuration has
maximum inner product at most U .

8.4. Universal optimality of the Nordstrom-Robinson spherical code∗

The cone of absolutely monotonic functions has infinitely many extreme rays,
which makes it difficult to prove universal optimality. Instead of proving optimality
for a set of extreme rays, we follow the approach of [42]: we replace the cone of
absolutely monotonic functions by a slightly larger but finitely generated cone.

First we recall some facts about Hermite interpolation, see [34, Section 2.1].
Given a nonempty, finite multiset T ⊆ R, the Hermite interpolate HT (f) of a
function f is the unique polynomial of degree at most |T | − 1 that agrees with f to
order multT (t) at t for all t ∈ T :

f (i)(t) = HT (f)
(i)(t)

∗Part of this section is based on Section 4 of the publication “H. Cohn, D. de Laat and

N. Leijenhorst, Optimality of spherical codes via exact semidefinite programming bounds, 2024,
arXiv:2403.16874”.
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for all t ∈ T and i < multT (t).

Lemma 8.1 ([42, Lemma 9]). Let T be a finite, nonempty multiset of I = [a, b]
such that each point in the interior of I has even multiplicity. For each absolutely
monotonic function f : I → R we have

HT (f)(t) ≤ f(t)

for all t ∈ I.

Lemma 8.2 ([42, Lemma 10]). Let T = {t1, . . . , tM} be a nonempty multiset of
an interval I, with ti written according to multiplicity. If f : I → R is absolutely
monotonic, then HT (f) is a conic combination of the partial products

t 7→
m∏
i=1

(t− ti)

for m = 0, . . . ,M − 1.

Recall that a conic combination is a linear combination with nonnegative
coefficients.

Corollary 8.3 ([42, Corollary 11] for the sphere). Let C be a finite sub-
set of Sn−1, and let T = {t1, . . . , tM} be a finite subset of [−1, 1), written with
multiplicities, such that all elements other than −1 have even multiplicity and

{⟨x, y⟩ : x ̸= y ∈ C} ⊆ T.

If C minimizes Efm for the potential functions

fm(t) =

m∏
i=1

(t− ti)

with m = 0, . . . ,M − 1, then C is universally optimal in Sn−1.

Proof. Let f be an absolutely monotonic function. By Lemma 8.1 we have
f(t) ≥ HT (f)(t) for all t ∈ [−1, 1), and by Lemma 8.2

HT (f) =
∑
m

αmfm

for some αm ≥ 0. Let D be any configuration with |D| = |C|, then

Ef (D) ≥ EHT (f)(D) =
∑
m

αmEfm(D) ≥
∑
m

αmEfm(C) = Ef (C)

since C minimizes Efm and all inner products of C occur in T . □

To apply this result, one might need to use a multiplicity significantly higher
than 2 for some of the inner products. In the following, we require multT (−1) = 11
to prove universal optimality using the three-point bound.

Theorem 8.4. For each absolutely monotonic potential function f : [−1, 1) → R,
the Nordstrom-Robinson spherical code C minimizes the energy Ef over all subsets
C ⊆ S15 with |C| = 288, and is the unique minimizer up to isometry unless f is a
polynomial of degree at most 5.
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Uniqueness fails when f is a polynomial of degree 4 or less, since there exist
4-designs non-isomorphic to C. It is unclear whether C is the unique spherical
5-design of size 288 in dimension 16, but the existence of a different 5-design is the
only way uniqueness can fail to hold for polynomials of degree 5.

Proof. We use Corollary 8.3 in combination with the three-point bound for the
set T = {(−1)11, (− 1

4 )
2, 02, ( 14 )

2}, where the superscripts indicate the multiplicities.
Since C is a 5-design, the only cases we have to check are fm with m > 5. Instead
of using fm, we prove optimality of C for the polynomials fm(t)− p(t) where

p(t) = (1 + t)11(t+ 1/4)2t2(t− 1/4)2/10000.

For this, we use the rounding procedure of Chapter 6 to obtain an exact optimal
solution. The data set [37] includes the exact matrices as well as code for verifying
feasibility of the solution.

Since p(t) ≥ 0 on [−1, 1) and p(t) = 0 if and only if t ∈ T , this ensures
that Efm is minimized by codes with the same inner products as C: we have
Efm−p(t)(D) ≥ Efm−p(t)(C), and if ⟨x, y⟩ ̸∈ T for some x ̸= y ∈ D we have
Efm(D) > Efm(C), since p(t) ≥ 0 on [−1, 1] and p(t) = 0 only for t ∈ T . Since
the Nordstrom-Robinson code is the unique code of size 288 in S15 with these
inner products up to isometry, by Theorem 7.2, this proves uniqueness for the basis
polynomials except for polynomials up to degree 5.

To prove uniqueness, let f be an absolutely monotonic function with hermite
interpolant h. Suppose h is a polynomial of degree less than 16. We prove that
f = h, so that the only way uniqueness fails is when f is a polynomial of degree
at most 5. Note that f − h has 17 roots, counted with multiplicity, so that Rolle’s
theorem implies that (f −h)(16)(t) = 0 for some t ∈ (−1, 1). Since h is a polynomial
of degree less than 16, we have f (16)(t) = 0, and absolute monotonicity implies that
f (16) vanishes on (−1, t). By Theorem 3a of Chapter IV of [141], f is analytic, and
therefore f (16) = 0 everywhere. In particular, f is a polynomial of degree at most
16, and f = h because f − h has at least 17 roots.

□

8.5. Families of configurations for harmonic energy†

In [4], Ballinger, Blekherman, Cohn, Giansiracusa, Kelly, and Schürmann
find many configurations and families of configurations that they conjecture to be
harmonic energy minimizers, other than the known cases N = n+ 1 and N = 2n
by Yudin. In this section, we compute the second level of this hierarchy in higher
dimensions and using higher degrees. We use this to find various numerically sharp
cases for harmonic energy.

8.5.1. The case of n+ 2 points in Rn. Consider the configuration of n+ 2
points in Sn−1 consisting of two antipodal points and a regular simplex in the
plane orthogonal to the line through these points. In Table 8.5.1 we show for which
smallest even degrees we find a sharp harmonic energy lower bound with the second
level of the Lasserre hierarchy. Based on this data we make the following conjecture:

†This section is based on Section 3.4 of the publication “D. de Laat, N. M. Leijenhorst and
W. H. H. de Muinck Keizer, Traceless projection of tensors with applications to hierarchies in

discrete geometry, In preparation”.
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Conjecture 8.5. For each n ≥ 3, the second level of the Lasserre hierarchy
gives a sharp lower bound for the harmonic energy of n+ 2 points in Sn−1.

n 3 4-6 7-18 19-37 38
d 6 8 10 12 > 12

Table 8.5.1. Smallest even degree d for which the second level of
the Lasserre hierarchy is numerically sharp for harmonic energy of

n+ 2 points in Rn.

8.5.2. The case of 2n− 1 points in Rn. In Table 8.5.2 we show for which
smallest even degrees we find a numerically sharp harmonic energy lower bound for
2n− 1 points in Rn. In each case the configuration consists of the north pole and
a cross polytope on a circle below the equator. Based on this data we make the
following conjecture:

Conjecture 8.6. For each n ≥ 3, the second level of the Lasserre hierarchy
gives a sharp lower bound for the harmonic energy of 2n− 1 points in Sn−1.

n 3 4 5-10 11-30 31-59 60
d 6 8 10 12 14 > 14

Table 8.5.2. Smallest even degree d for which the second level of
the Lasserre hierarchy is numerically sharp for harmonic energy of

2n− 1 points in Rn.

8.5.3. The case of 2n+ 2 points in Rn. The diplo-simplex is the union of a
simplex with its antipodal simplex [46]. In [4] it is shown that the diplo-simplex
is suboptimal for harmonic energy with 3 ≤ n ≤ 5 but appears to be optimal
for n ≥ 6. Our calculations show that the second level of the Lasserre hierarchy
is numerically sharp for the problem of minimizing harmonic energy in at least
dimensions 3 ≤ n ≤ 12. In Table 8.5.3 we list the smallest even degree d for which
the bound is numerically sharp in dimension n.

Conjecture 8.7. For each n ≥ 3, the second level of the Lasserre hierarchy
gives a sharp lower bound for the harmonic energy of 2n+ 2 points in Sn−1.

n 3 4 5 6 7 8 9 10 11 12 13
d 10 12 14 14 12 12 12 12 12 14 ≥ 14

Table 8.5.3. Smallest even degree d for which the second level of
the Lasserre hierarchy is numerically sharp for harmonic energy of

2n+ 2 points in Rn.
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8.5.4. Other numerically sharp bounds. In Table 8.5.4 we list other cases
where the second level of the Lasserre hierarchy is numerically sharp. All computa-
tions have been performed with degree d = 14 or less.

n N

n ≤ 9 n+ 3
n ≤ 7 n+ 4
n = 4, 8 2n+ 4
n = 3 9, 10

Table 8.5.4. Other cases where the second level of the Lasserre
hierarchy is numerically sharp with n ≥ 3. For (n,N) = (4, 12),
the bound requires degree 14 polynomials; in the other cases

degree 12 suffices, although it may not necessarily be the lowest
degree for which the bound is sharp.

8.6. Two-code universal optimality

Cohn and Woo [42] conjecture that for 10 points in S3, every absolutely
monotonic potential function is optimized by the so-called Peterson code (the
unique optimal spherical code with maximal inner product 1/6, see [3]), or the
code consisting of two regular pentagons in orthogonal planes. They could prove
that for the potential functions (1 + t)k, the Peterson code is optimal for k ≥ 7,
and the pentagon code is optimal for 3 ≤ k ≤ 6, using the three-point bound.
These potentials span the cone of absolutely monotonic functions, and one approach
to proving the conjecture would be to prove that both codes are optimal for all
functions of the form

(1 + t)j + αj,k(1 + t)k

with 3 ≤ j ≤ 6 and k ≥ 7, where αj,k > 0 is chosen such that both codes have the
same energy.

Here we record a result that could potentially be used in such a case, and can
be seen as a simple generalization of Corollary 8.3 for two codes.

Corollary 8.8. Let C1, C2 ⊆ Sn−1 be two codes of the same size. Let T =
{t1, . . . , tM} be a finite subset of [−1, 1), written with multiplicities, such that all
elements other than −1 have even multiplicity, and

{⟨x, y⟩ : x, y ∈ Ci, i = 1, 2, x ̸= y} ⊆ T.

Define

fm(t) =

m∏
i=1

(t− ti)

for m = 0, . . . ,M − 1. Suppose Ci is the unique optimum for Efm with m ∈ Ii, and
both codes are optimal for m ̸∈ I1 ∪ I2. Suppose furthermore that both codes are
optimal for the functions

gi,j(t) = fi(t) + αi,jfj(t)
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with i ∈ I1 and j ∈ I2, where αi,j > 0 is chosen such that both codes have the same
energy. Then for every absolutely monotonic potential function, either C1 or C2 is
optimal.

Proof. Let f be an absolutely monotonic function. By Lemma 8.1 we have
f(t) ≥ HT (f)(t) for all t ∈ [−1, 1), and by Lemma 8.2,

HT (f) =
∑
m

βmfm

for some βm ≥ 0. Since the gi,j are linear combinations of the fm, we can redistribute
the coefficients and write

HT (f) =
∑

i∈I1,j∈I2

λi,jgi,j +
∑
m∈I1

λmfm +
∑
m∈I2

λmfm +
∑

m̸∈I1∪I2

βmfm

where λi,j , λm and βm are nonnegative, such that
∑

j λm,j + λm = βm for m ∈ I1
and similarly

∑
i λi,mαi,m + λm = βm for m ∈ I2. In particular, we can choose

λi,j such that either λm = 0 for all m ∈ I1 or λm = 0 for all m ∈ I2: Suppose
λi > 0 for some i ∈ I1 and λj > 0 for some j ∈ I2, then we can increase λi,j by
min{λi, λj/αi,j} to make at least one of λi and λj zero.

If λm = 0 for all m ∈ I1, clearly C2 is optimal for HT (f), and if λm = 0 for all
m ∈ I2, C1 is optimal. The codes have equal energy if λm = 0 for m ∈ I1 ∪ I2.

Then, for a code D of the same size, we have

Ef (D) ≥ EHT (f)(D)

≥ EHT (f)(Ci)

= Ef (Ci)

for some i ∈ {1, 2} such that Ci is optimal for HT (f). The last equality holds
because all inner products of Ci occur in T by assumption. □

Unfortunately, it seems that for the earlier mentioned case (n,N) = (4, 10) the
maximum degree of the polynomials fi and gi,j needs to be relatively high, if it is
possible to prove two-code universal optimality using Corollary 8.8 for this case.
For every set T of size at most 18, containing the inner products of the two codes
with even multiplicity, we could find a polynomial fi and a code C such that C had
strictly lower energy for the polynomial fi than both the pentagon and the Peterson
code, using a basic gradient descent algorithm. We used a tolerance of ε = 10−5 to
account for possible floating point errors, which are typically of much smaller size.





CHAPTER 9

Polarization with a threshold on the sphere∗

9.1. Introduction

Let f : [−1, 1) → R be a piecewise continuous potential function, and fix a
number E ∈ R, which we call the threshold. In this chapter, we consider the problem
of minimizing the number N ∈ N such that there is a configuration C ⊆ Sn−1 of
size N with the property that

Pf (C, y) =
∑
x∈C

f(⟨x, y⟩) ≥ E

for all y ∈ Sn−1. The quantity Pf (C, y) is called the polarization of y with respect
to C and f . Intuitively, the polarization problem asks for the minimum number of
light sources such that the darkest point has at least a certain brightness.

The polarization problem is typically stated for continuous functions f . In our
statement, we include piecewise continuous functions so that the problem can be
specialized to the sphere covering problem. For this, take f(u) = χ[r,1](u) for some
radius r. For fixed y, the corresponding function x 7→ f(⟨x, y⟩) is then the indicator
function of the spherical cap

B(y, r) = {x ∈ Sn−1 : ⟨x, y⟩ ≥ r}.
This was considered by Riener, Rolfes, and Vallentin in [124].

In both cases, we assume there is an optimal configuration C such that ⟨x, y⟩ ≤ ε
for all distinct x, y ∈ C, for some given ε ∈ (−1, 1). In general, this maximum inner
product is unknown, and the cases where it is known are typically solved instances.

In this chapter, we perform computations on semidefinite programming bounds
for this problem. We introduce the Lasserre hierarchy for the packing-polarization
problem with threshold in Section 9.2. For the special case of covering the sphere,
this is equivalent to the symmetry-reduced version of the hierarchy introduced
in [124], which is given in [125]. In Section 9.4, we show the importance of the
maximum inner product ε: With ε = 1, the hierarchy collapses to the first level of
the hierarchy, which we show to be the volume bound in Section 9.3.

From the formulation of the hierarchy, it is not directly clear that the constraints
are polynomial inequality constraints. In Section 9.5 we show that this is the case
for polynomial O(n)-invariant kernels, and perform explicit computations on the
integrals over the sphere present in the bounds to compute the polynomial inequality
constraints. This allows us to write the problem as a semidefinite program using
the techniques of Chapters 3 and 4. In Section 9.6 we give an adaptation to
(2k − 1)-point bounds, and a short explanation of how the bounds can be adapted

∗Parts of this chapter are based on the paper “N. Leijenhorst, A. Spomer, F. Vallentin
and M. C. Zimmerman, Semidefinite approaches to covering and polarization on the sphere, In

preparation”.
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to (2k+ t)-point bounds in general. In Section 9.7 we compute both the three-point
bound and the second step of the Lasserre hierarchy for a number of instances,
and show that the bounds are numerically sharp in several cases. We also consider
the relationship between the maximum inner product ε and the bound for various
polynomial degrees.

9.1.1. Polarization on the sphere with a threshold. For fixed N and
f : [−1, 1) → R, the polarization problem asks for a spherical code of size N that
maximizes

min
y∈Sn−1

Pf (C, y)

over all spherical codes of the same size. This is a bilevel optimization problem, and
as such, much more difficult than the problems considered in this thesis.

Little is known about exact solutions in the most general setting: only the cases
N ≤ n+ 1 are solved [16]. Some results are known in slightly more specific cases.
For example, in [15] Borodachov shows that the set of vertices of the cross-polytope
is optimal among all antipodal configurations of size 2n for potential functions
with a positive and convex second derivative. In [20] upper and lower bounds for
optimizing the polarization over all spherical t-designs of the same size are given.

As with the spherical code problem, we give bounds on the ‘transposed’ problem.
Given a polarization threshold E, what is the minimum number N such that there
is a configuration C ⊆ Sn−1 of N points with

Pf (C, y) ≥ E

for all y ∈ Sn−1. One basic observation is that the bound requires E > 0, since for
E ≤ 0 zero points suffice.

In general, a simple bound on the number of points can be given as follows.
Suppose the polarization equals the threshold everywhere, then the integral of the
polarization over the sphere equals Eωn(S

n−1). Each point in the configuration
adds a polarization

∫
Sn−1 f(⟨x, y⟩)dωn(y), so one needs at least

N ≥ Eωn(S
n−1)∫

Sn−1 f(⟨x, y⟩)dωn(y)
.

This is the polarization version of the volume bound for covering.

9.1.2. Sphere covering. A little more is known for the problem of covering
the sphere. It was first considered by Fejes-Toth [55], who gave a geometric bound
for dimension 3. The bound is sharp for N = 4, 6 and 12 points, corresponding to
the regular simplex, the cross-polytope and the icosahedron. In all other dimensions
the best known general bound is the volume bound. Similarly to the spherical code
problem, only few cases are known to be optimal. Examples of known optimal
configurations are the regular simplices in every dimension, and the cross-polytope
in dimensions 3 and 4; see, e.g., [18, Section 3.3.2] and the references therein. The
cross-polytope is conjectured to be optimal in every dimension.

Recently, Riener, Rolfes and Vallentin introduced in [124] the Lasserre hierarchy
for the ‘transposed’ problem: what is the minimum number of caps needed to cover
the sphere, given a covering radius r? As in Chapter 2, the hierarchy optimizes over
measures on independent sets of cardinality at most 2k, and to set up the problem,
one needs a maximum inner product ε. The points in an optimal configuration have
such a maximum inner product, but it is unknown in general. Without knowing a
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bound on the maximum inner product, the hierarchy gives a bound on a packing-
covering problem: what is the minimum number of points you need to cover the
sphere with a covering radius r, while giving a packing with packing radius ε?

9.2. The Lasserre hierarchy

In this section we apply the framework of Chapter 2 to the polarization problem
with threshold. For packing-covering, this gives a hierarchy equivalent to the
symmetry-reduced hierarchy in [125].

We minimize the number of points, so the objective function is given by −λ(I=1);
the minus sign is required because the general primal problem (2.3.1) is a maximiza-
tion problem. There are no equality constraints, and for every point on the sphere
there is an inequality constraint. In terms of a finite graph with binary variables,
the constraint reads ∑

i:{i,j} is an edge

f({i, j})xi − E ≥ 0

for all j ∈ V . This gives for our infinite graph the set of inequality constraints G
defined by

G = {g(·, y) : y ∈ Sn−1}
where

g(Q, y) =


−E if Q = ∅,
f(⟨x, y⟩) if Q = {x},
0 otherwise.

Recall that by a configuration is valid if∑
Q⊆C

g(Q, y) ≥ 0

for all y ∈ Sn−1. This gives for a spherical code C that∑
Q⊆C

g(Q, y) = −E +
∑
x∈C

f(⟨x, y⟩)

so C is valid if and only if Pf (C, y) ≥ E for all y ∈ Sn−1, so validity exactly
corresponds to feasibility of a code. Furthermore, if f is continuous or f(u) =
χ[r,1](u), an invalid configuration is strictly invalid, so Theorem 2.8 implies that the
hierarchy converges in a finite number of steps. For a valid configuration C, define
the measure

λ = χC =
∑
S⊆C

δS ,

so that

⟨(AG
k )

∗λ,K⟩ =
∫ ∑

S⊆C
|S|≤2k

Ay
kK(S)dωn(y)

=

∫ ∑
Q⊆C
|Q|≤1

g(Q, y)
∑

J1,J2⊆C
|J1|,|J2|≤k−1

K(J1, J2, y)dωn(y) ≥ 0

for every slice-positive kernel K ∈ C(Ik−1 × Ik−1 × Sn−1). Hence, this measure,
when restricted to I2k is feasible for the primal problem with objective value |C|, so
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every step of the hierarchy gives a lower bound on the size of an optimal configuration,
and strong duality holds.

The dual of the hierarchy is given by

(9.2.1)

maximize a0

subject to −AkK −
∫
Sn−1

Ay
kK

′
ydωn(y)

− a0χI0 ≥ −χI=1 on I2k
K ′ ∈ C(Ik−1 × Ik−1 × Sn−1) is slice-positive

K ∈ C(Ik × Ik)⪰0

where

Ay
kK

′
y(S) =

∑
x∈Sn−1,J1,J2∈Ik−1

J1∪J2∪{x}=S

f(⟨x, y⟩)K ′(J1, J2, y)−
∑

J1,J2∈Ik−1

J1∪J2=S

EK(J1, J2, y).

and we changed a0 to −a0 to obtain a maximization problem instead of a minimiza-
tion problem. We denote both the problem and the optimal value by lask(f,E).
Any feasible solution will give a lower bound on the optimal size of a configuration.

To compute the second level of this hierarchy, we again set

K(J1, J2) =
∑

|λ|≤d1

⟨Kλ, Zλ(J1, J2)⟩

where the entries of Zλ are polynomials with degree at most d2; see Chapter 3. For
K ′, we use the three-point function of Bachoc and Vallentin, and extend it to a
slice-positive kernel in C(I1 × I1 × Sn−1). That is, we have

K ′(J1, J2, y) =

d3∑
k=0

⟨K ′
k, Y

n
k (J1, J2, y)⟩

where for k > 0, Y n
k ({x}, {z}, y) = Y n

k (x, z, y) and 0 otherwise, and Y n
0 (J1, J2, y) =

v(J1, y)v(J2, y)
T with

v(J, y)i =


1 if J = ∅ and i = −1

⟨x, y⟩i if J = {x} and i ≥ 0

0 otherwise.

In Section 9.5, we give an explicit expression to compute the integral∫
Sn−1

Ay
kK

′
y(S)dωn(y),

which results in a polynomial in the inner products between vectors in S whenever
f is integrable over Sn−1. In particular, this implies that we can use Chapter 4 to
write the problem as a semidefinite program.

9.3. The first level of the hierarchy

In this section we show that the first level of the hierarchy gives the volume
bound for the polarization problem with threshold.
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Theorem 9.1. Suppose E > 0 and the integral of f over the sphere is at most
E. Then las1(f,E) equals

v =
Eωn(S

n−1)∫
Sn−1 f(⟨x, y⟩)dωn(y)

.

That is, the first level gives the volume bound.

Proof. Let C1 be a configuration with

|C1| = ⌈v⌉ ,
and C2 a configuration with

|C2| = ⌊v⌋.
Let a1, a2 ≥ 0 be constants such that a1|C1| + a2|C2| = v and a1 + a2 = 1, and
consider the measure

λ =

∫
O(n)

a1χγC1
+ a2χγC2

dγ

where the Haar measure is used for the integration over O(n). That is, we take an
average of a convex combination of the indicator measures of C1 and C2 such that
the objective function gives

λ(I=1) = a1|C1|+ a2|C2| = v.

Then λ is feasible: for any positive definite kernel K ∈ C(I1 × I1),

⟨A∗
1λ,K⟩ =

2∑
i=1

ai

∫
O(n)

∑
J1,J2⊆γCi

|J1|,|J2|≤1

K(J1, J2)dγ ≥ 0

by positivity of K, and for any nonnegative function K ′ ∈ C(I0 × I0 × Sn−1) we
have

⟨(AG
0 )

∗λ,K ′⟩

=

∫
Sn−1

∫
O(n)

2∑
i=1

ai
∑

x∈γCi

f(x, y)dγK(∅, ∅, y)− EK(∅, ∅, y)dωn(y)

=

∫
Sn−1

(
2∑

i=1

ai|Ci|ωn(S
n−1)−1

∫
Sn−1

f(x, y)dωn(x)− E

)
K(∅, ∅, y)dωn(y)

= 0

because
∑

i ai|Ci| = v. This gives v as upper bound on the optimal objective
function value.

For the other equality, let K ∈ C(I1 × I1) be the zero kernel, take K ′ ∈
C(I0 × I0 × Sn−1) constant and equal to v/(Eωn(S

n−1)), and let a0 = v. This is a
feasible solution to the dual, since the constraints read

−
∫
Sn−1

∑
x∈Sn−1

{x}=S

f(x, y)K ′(∅, ∅, y)dωn(y) = −1

for all S ∈ I=1, and ∫
Sn−1

EK ′(∅, ∅, y)dωn(y)− a0 = 0
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for S = ∅. For S = {x, y} the constraint vanishes, so all constraints are satisfied.
The objective is given by v, so the optimal objective function value of the first level
of the hierarchy equals v, the volume bound. □

9.4. Low minimum distances

The bound lask(f,E) has as additional parameter an upper bound on the
maximum inner product ε between the points in the configuration. In this section,
we show that for ε = 1, polynomial relaxations of the bound reduce to the first level
of the hierarchy: the volume bound. Without bound on the minimal distance, the
convergence proof breaks because of independent sets of infinite size. In particular,
this means that to improve on the volume bound with the second level of the
hierarchy, we need a lower bound on the minimum distance, equivalently, an upper
bound on the maximum inner product, between points in an optimal configuration.

We denote by lask,ε(f,E)d problem (9.2.1) after restricting to polynomials of
finite degree d, with constraints on inner products in [−1, ε].

Proposition 9.2. Let k > 1 and d ≥ 0. If f ≥ 0 on [−1, 1], then

lask,1(f,E)d = lask−1,1(f,E)d.

Proof. Let (K,K ′) be a feasible solution to the problem. Note that, since K
and K ′ are polynomials in the inner products in [−1, 1), the constraints also hold
for the inner product 1.

Consider the constraint

AkK(S) =
∑

J1,J2∈Ik
J1∪J2=S

K(J1, J2) ≤ 0

with S = {x1, . . . , x2k} ⊆ Sn−1. Since K(J1, J2) is a polynomial in the inner
products between vectors in J1 ∪ J2, the limit of xi → xj exists. This implies we
may take S to be a multiset. Given a tuple (λ1, . . . , λk) of nonnegative integers
and points x1, . . . , xk ∈ Sn−1, we denote by xλ the multiset with elements xi with
multiplicity λi. For an integer l and x ∈ Sn−1, we denote by {xl} the multiset with
the element x with multiplicity l. With multiplicities, the constraint is given by

AkK(xλ) =
∑

µ1,µ2∈Nk

µ1+µ2=λ

αµ1,µ2
K(xµ1 , xµ2) ≤ 0,

where

αµ1,µ2 =
∏
i

(
λi

(µ1)i

)
counts in how many ways xλ can be distributed over xµ1 and xµ2 when all elements
of the multiset would be labeled.

Consider the colexicographical order on the set P of partitions of k

P = {(λ1, . . . , λk) ∈ Zk : λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0,
∑
i

λi = k}.

That is, for λ, µ ∈ P we have λ < µ if λi < µi for the last i where λ and µ differ.
For example, (k, 0, . . . , 0) is the minimal partition, and (1, . . . , 1) is the maximal
partition of t.
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We apply induction on the partitions of k with this total order. As base case,
take λ = (k, 0, . . . , 0). For this partition we get

AkK(x2λ) = αλ,λK(xλ, xλ) = 0,

where αλ,λ > 0 is the product of binomials, since the left-hand side is nonpositive
by the constraint and nonnegative by positivity of K. By the positivity of K, this
implies that K({xk}, J) = 0 for all x ∈ Sn−1 and J ∈ Ik.

Now suppose that K(xλ, J) = 0 for any partition λ < µ, with xi ∈ Sn−1 and
J ∈ Ik. Then

AkK(x2µ) =
∑

µ1,µ2∈Nk

µ1+µ2=2µ

αµ1,µ2K(xµ1 , xµ2) = αµ,µK(xµ, xµ) = 0,

where the sum is over tuples of nonnegative integers of length k. The last equality
holds since either µ1 < µ < µ2, µ2 < µ < µ1, or µ1 = µ2 = µ, and by assumption
K(xµ1 , xµ2) = 0 in the first two cases. As above, the constraint and positivity of K
imply that K(xµ, J) = 0 for all xi ∈ Sn−1 and J ∈ Ik.

Hence for any solution (K,K ′), K(J1, J2) = 0 whenever J1 or J2 is of size k. In
particular, this is always the case for the constraints on I2k and I2k−1. Therefore
the constraint on I2k−1 reduces to∫

Sn−1

∑
x∈Sn−1,J1,J2∈Ik

J1∪J2∪{x}=S

f(x, y)αJ1,J2K
′(J1, J2, y)dωn(y) ≤ 0

for S ∈ I2k−1. Suppose S = {x2k−1}. Then for every y, we have the in-
tegrant f(x, y)αk−1,k−1K

′({xk−1}, {xk−1}, y), which is nonnegative due to posi-
tivity of K and nonnegativity of f , but the integral over y is nonpositive, so
K ′({xk−1}, {xk−1}, y) = 0.

Let µ be any partition of k − 1, and suppose K(xλ, J) = 0 whenever λ < µ.
Take S = x2µ+(1,0,...,0). Then the constraint reads∫ ∑

x∈B(y,r),µ1,µ2∈Nk

µ1+µ2+χx=2µ+(1,0,...,0)

f(x, y)αµ1,µ2
K ′(xµ1 , xµ2 , y)dy

=

∫
f(x1, y)αµ,µK

′(xµ, xµ, y)dy ≤ 0

since other terms have multiplicities µi < µ for some i. By positivity, we then obtain
K ′(xµ, J, y) = 0 for all multisets J of size k − 1.

Hence the kernels K and K ′ are identically 0 on arguments from I=k and I=k−1,
respectively, so the solutions of lask,1(f,E)d exactly correspond to the solutions of
lask−1,1(f,E)d. This implies that the objective function values are equal. □

Corollary 9.3. The optimal objective function value of lask,1(f,E)d equals

Eωn(S
n−1)∫

Sn−1 f(⟨x, y⟩)dωn(y)
.

Proof. Iterating Proposition 9.2 gives that the optimal value equals the op-

timal value of the first level of the hierarchy, which equals Eωn(S
n−1)∫

Sn−1 f(⟨x,y⟩)dωn(y)
by

Theorem 9.1 □
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Intuitively, it is reasonable to ask for a minimum distance r for the covering
problem: points in the covering should lie outside the caps around other points.
This does not hold for all optimal coverings, but it is very well possible that on the
sphere there always exists an optimal covering with this property. In dimension 3,
all putatively optimal coverings in [66] satisfy this property.

Conjecture 9.4. Given a dimension n and a covering radius r, there exists
an optimal covering C ⊆ Sn−1 with covering radius r such that d(x, y) ≥ r for all
distinct x, y ∈ C.

9.5. Explicit integration on the sphere

In this section we explicitly compute the integrals∫
Sn−1

f(⟨w, z⟩)⟨x,w⟩i1⟨y, w⟩i2dωn(w)

and ∫
Sn−1

⟨x,w⟩i1⟨y, w⟩i2dωn(w)

in terms of the inner products between x, y and z. We will show that this gives a
polynomial in these inner products, which allows us to use sum-of-squares polyno-
mials and semidefinite programming to compute a relaxation of the second level of
the hierarchy.

9.5.1. Integrating inner products over the sphere. Consider the integral

1

ωn

∫
Sn−1

⟨x,w⟩i1⟨y, w⟩i2dωn(w)

for n ≥ 3.
We write w = ux+

√
1− u2ξ and y = tx+

√
1− t2ζ, where ξ and ζ are unit

vectors orthogonal to x. The measures dωn and dωn−1 are then related by

dωn(w) = (1− u2)(n−3)/2dudωn−1(ξ),

which gives

1

ωn

∫
Sn−2

∫ 1

−1

ui1(ut+
√

1− u2
√
1− t2⟨ξ, ζ⟩)i2(1− u2)(n−3)/2dudωn−1(ξ)

=
1

ωn

i2∑
k=0

(
i2
k

)
ti2−k(1− t2)k/2

∫ 1

−1

ui1+i2−k(1− u2)(n+k−3)/2du

∫
Sn−2

⟨ξ, ζ⟩kdωn−1(ξ)

=
1

ωn

i2∑
k=0

(
i2
k

)
ti2−k(1− t2)k/2Ii1+i2−k,(n+k−3)/2ωn−2

∫ 1

−1

uk(1− u2)(n−4)/2du

=
ωn−2

ωn

i2∑
k=0

(
i2
k

)
ti2−k(1− t2)k/2Ii1+i2−k,(n+k−3)/2Ik,(n−4)/2,

where Iij denotes the integral ∫ 1

−1

ui(1− u2)jdu.
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This integral equals

(1 + (−1)i)

∫ 1

0

ui(1− u2)jdu

=
1

2
(1 + (−1)i)

∫ 1

0

ui/2−1/2(1− u)jdu

=
1

2
(1 + (−1)i)B(i/2 + 1/2, j + 1),

where B(x, y) denotes the Beta function.
Note that terms with k or i1+ i2−k odd become zero, so that the expression is 0

whenever i1+i2 is odd, and a polynomial in t otherwise. Since the original expression
is invariant under interchanging i1 and i2, we may replace i1 by max{i1, i2} and i2
by min{i1, i2} to reduce the number of terms present in the sum. In particular this
implies that the maximum power of t equals min{i1, i2}, and that only powers with
an even difference with min{i1, i2} occur.

When n = 2, which we will need in Section 9.5.2 when n = 3, the integrals
slightly change. Without loss of generality, we may assume that x = e1 and
y = te1 +

√
1− t2e2. We can write the integral in polar coordinates, which gives∫ 2π

0

cos(θ)i1(cos(θ)t+ sin(θ)
√

1− t2)i2dθ

=

i2∑
k=0

(
i2
k

)
ti2−k(1− t2)k/2

∫ 2π

0

cos(θ)i1+i2−k sin(θ)kdθ

=

i2∑
k=0

(
i2
k

)
ti2−k(1− t2)k/2(1 + (−1)i1+i2)

∫ π

0

cos(θ)i1+i2−k sin(θ)kdθ.

By changing variables to u = cos(θ), we can calculate the last integral in terms of
the Beta function. This gives∫ 1

−1

ui1+i2−k(1− u2)(k−1)/2du = Ii1+i2−k,(k−1)/2,

so that the complete result is

i2∑
k=0

(
i2
k

)
ti2−k(1− t2)k/2(1 + (−1)i1+i2)Ii1+i2−k,(k−1)/2.

9.5.2. Integrating inner products over a spherical cap. Consider the
integral ∫

Sn−1

f(⟨w, z⟩)⟨x,w⟩i1⟨y, w⟩i2dωn(w).

In the following, we write u = ⟨x, z⟩, v = ⟨y, z⟩ and t = ⟨x, y⟩.
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We first decompose the variables in parts parallel and orthogonal to z. This
gives∫

Sn−2

∫ 1

−1

f(u)(u1u+
√
1− u21

√
1− u2⟨ζ1, ξ⟩)i1(u1v +

√
1− u21

√
1− v2⟨ζ2, ξ⟩)i2

(1− u21)
(n−3)/2du1dωn−1(ξ)

=

i1∑
j1=0

i2∑
j2=0

(
i1
j1

)(
i2
j2

)
uj1vj2(1− u2)(i1−j1)/2(1− v2)(i2−j2)/2

∫ 1

−1

f(u)uj1+j2
1 (1− u21)

(n+i1+i2−j1−j2−3)/2du1

∫
Sn−2

⟨ζ1, ξ⟩i1−j1⟨ζ2, ξ⟩i2−j2dωn−1(ξ),

where ξ is the part of w orthogonal to z, and ζ1, ζ2 are the parts of x and y orthogonal
to z, all normalized to be unit vectors.

Recall from Section 9.5.1 that the last integral is a polynomial in

⟨ζ1, ζ2⟩ =
t− uv√

1− u2
√
1− v2

if i1 + i2 − j1 − j2 is even, and 0 otherwise. Furthermore, the maximum degree of
this polynomial is given by min{i1 − j1, i2 − j2} and every monomial with nonzero
coefficient has a power which differs from this by an even number. In particular,
this implies that the terms (1−u2)1/2 and (1− v2)1/2 in the denominator of ⟨ζ1, ζ2⟩
are canceled by similar terms in the summant, where such terms with even powers
remain. Hence this is a polynomial in the inner products between x, y and z.

It remains to calculate the integral∫ 1

−1

f(u)ui(1− u2)jdu.

We distinguish several cases. For the covering problem, we have f(u) = χ[r,1](u),

with r > 0†. We can compute this in terms of the incomplete Beta function:∫ 1

r

ui(1− u2)jdu =

∫ 1

0

ui(1− u2)jdu−
∫ r

0

ui(1− u2)jdu

=
1

2
B(i/2 + 1/2, j + 1)− 1

2

∫ r2

0

ui/2−1/2(1− u)jdu

=
1

2
B(i/2 + 1/2, j + 1)− 1

2
B(i/2 + 1/2, j + 1; r2),

where

B(a, b;x) =

∫ x

0

ua−1(1− u)b−1du

is the incomplete Beta function.
For the general polarization problem, it is interesting to consider polynomials

and Riesz-s potentials for f . Polynomials increase i in the integral Iij by the powers
of the monomials, and will be considered in Section 9.7.

†For −1 < r ≤ 0 the optimal number of caps required for a covering is 2 in any dimension.
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9.6. Adaption to a (2k − 1)-point bound

In Section 7.4, our computations on the second level of the Lasserre hierarchy
for packing problems do not necessarily give better bounds than our computations
on the three-point bound. This is mainly due to our inability to compute the second
level of the hierarchy with polynomial degree higher than 16 (which takes about two
weeks, while computing the three-point bound with polynomials of degree at most
40 takes about a day). In this section we show how the k-th level of the Lasserre
hierarchy can be adapted to a (2k − 1)-point bound. In Section 9.7, we give results
for both the second level of the hierarchy and the corresponding 3-point bound.

Let us first give a simple proof that the k-th level of the hierarchy gives a lower
bound on the number of points of an optimal configuration.

Proof that lask(f,E) gives a lower bound on |C|. Let (K,K ′, a0) be a
feasible solution to lask(f,E), and C a feasible configuration. Then∑

S⊆C
|S|≤2k

Ak(K)(S) =
∑

J1,J2⊆C
|J1|,|J2|≤k

K(J1, J2) ≥ 0,

because K is positive definite. Furthermore, we have for every point y ∈ Sn−1 that∑
S⊆C

|S|≤2k−1

Ay
k(K

′
y)(S)

=
∑
x∈C

∑
J1,J2⊆C

|J1|,|J2|≤k−1

f(⟨x, y⟩)K ′(J1, J2, y)−
∑

J1,J2⊆C
|J1|,|J2|≤k−1

EK(J1, J2, y)

=
∑

J1,J2⊆C
|J1|,|J2|≤k−1

K(J1, J2, y)(
∑
x∈C

f(⟨x, y⟩)− E) ≥ 0,

because K ′ is slice-positive and ∑
x∈C

f(⟨x, y⟩) ≥ E

for every feasible configuration C.
Summing the constraints over all sets S ⊆ C of size at most 2k thus gives

−|C| ≤ −
∑
S⊆C
|S|≤2k

(
Ak(K)(S)−

∫
Sn−1

Ay
k(K

′
y)(S)dωn(y)− a0χI0

(S)

)
≤ −a0,

and hence a0 ≤ |C|. □

Note that in the proof, the only property we required of K is that summing
the constraints over all sets S ⊆ C of size at most 2k is nonnegative. Define the
operator Bk : C(Ik−1 × Ik−1 × I1) → C(I2k−1) by

Bk(F )(S) =
∑

J1,J2∈Ik−1,Q∈I1

J1∪J2∪Q=S

F (J1, J2, Q).
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Then for any slice-positive function F ∈ C(Ik−1 × Ik−1 × I1), we have∑
S⊆C

|S|≤2k−1

Bk(F )(S) =
∑

J1,J2,Q⊆C
|J1|,|J2|≤k−1,|Q|≤1

F (J1, J2, Q) ≥ 0,

so replacing Ak(K) by Bk(F ) still gives a valid proof.
This can easily be generalized to slice-positive functions in C(Ia×Ia×Ib) with

2a+ b ≤ 2k, which, for a = 1, gives bounds reminiscent of the k-point bounds for
packing problems [89].

The adaptation for packing problems converges when a→ ∞ by Theorem 2.8,
and when b→ ∞ by [6], since the bound for (a, b) gives at least as good a bound as
the cases (a, 0) and (1, b). More generally, the corresponding (2a+ b)-point bounds
will converge when a→ ∞ by Theorem 2.8, and proving that the bounds converge
when b→ ∞ can most likely be done in a similar vein as for packing problems in
[6].

9.7. Computations

To compute the second level of the hierarchy, we use the kernels of Section 3.4
and the extension of the Bachoc-Vallentin kernel to I1 to parametrize the problem
(see Section 9.2). By Section 9.5, this results in polynomials in the inner products
between points in the sets S on which the constraints should hold, and therefore we
can again use Chapter 4 to write the problem as a semidefinite program.

In contrast to earlier chapters, the problem is not necessarily defined over an
algebraic field. The integrals present in the problem can result in polynomials with
powers of π in the coefficients. Instead, we use Arb [76] through the computer
algebra system Nemo.jl [56] to compute the semidefinite program, and in particular
the (incomplete) beta function, in high-precision ball-arithmetic. This also implies
that we cannot use the rounding procedure of Chapter 6 to obtain an exact solution
for the cases where the bounds are numerically sharp.

For covering problems, we denote by lask,r,ε the k-th level of the hierarchy for
f(u) = χ[r,1](u) and E = 1, where ε is the maximum inner product allowed between
distinct points in an independent set. That is, r is the covering radius expressed
as an inner product. Similarly, we denote by ∆3,r,ε the 3-point bound defined in
Section 9.6 by taking k = 2. The polynomial degrees used for the computation will
be mentioned in the captions of the tables and figures. For polarization problems,
we mention the function and threshold explicitly.

The code used to compute the bounds in this section is available at [97].

9.7.1. Packing-covering in low dimensions. Hardin, Sloane and Smith
computed in 1994 a number of putatively optimal coverings in dimension 3 [66].
Furthermore, it is known that the simplex is optimal in every dimension [14], and
conjectured that the cross-polytope is optimal in every dimension (this has been
proven only in dimension 3 [55] and 4 [14]).

In the computations in this section we always give both the result obtained by
taking the minimum distance of the putatively optimal configuration as the bound
on the minimum distance, and by taking the covering radius of the configuration.
Typically, the configurations will be optimal for their covering radius, so that using
their minimum distance as bound is allowed. In general, however, such an optimal
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configuration is not known; the computations show how much the bound typically
improves by using a better bound on the minimum distance.

In Table 9.7.1, we show the results for the configurations in dimension 3 of at
most 12 points, together with the geometric bound of Fejes-Toth [55]. The bounds
for the covering radii corresponding to N = 4, 6 and 12 points are numerically sharp
when using the best possible bound on the minimum distance, but not when using
a worse bound.

N las2,r,ε las2,r,r ∆3,r,ε ∆3,r,r Fejes-Toth bound

4 3.9999 3.8648 3.9999 3.9186 4
5 4.4901 4.3034 4.8099 4.6218 4.6979
6 5.9999 5.7244 5.9999 5.8606 6
7 6.0292 5.9904 6.5112 6.3929 6.7808
8 6.74 6.6446 7.2053 7.136 7.5219
9 7.6334 7.2906 8.2108 7.9375 8.2051
10 8.8468 8.4219 9.2428 9.0739 9.5199
11 8.8348 8.6657 9.3997 9.3659 9.8982
12 11.999 10.297 11.999 11.341 12

Table 9.7.1. Lower bounds on the minimum number of points
needed to cover the sphere with caps B(x, r). The second step of
the Lasserre hierarchy is calculated using polynomial degree 12,

and the three-point bound is calculated with polynomial degree 32
(which corresponds to d = 16 in the construction of the three-point

function).

In Table 9.7.2, we focus on the simplex in low dimensions. The simplex
is known to be optimal in all dimensions, and for the spherical code and the
energy minimization problems, the first level of the hierarchy is already sharp using
polynomials of low degree. As can be seen here, this is not the case for the covering
problem, even when using the optimal minimum distance.

The cross-polytope is conjectured to be optimal in every dimension, and recently
it was shown to be optimal among antipodal configurations [15]. The second level
of the Lasserre hierarchy numerically reproduces the results that it is optimal in
dimension 3 and 4 when using the optimal minimum distance, but not beyond
dimension 4, see Table 9.7.3. However, as with all bounds in this chapter, these
bounds are valid if the bound on the maximum inner product is correct.

9.7.2. Sharp configurations. In this section we show results for several sharp
configurations. Recall that a configuration is called sharp if it is a (2t− 1)-design
with t distinct inner products between distinct points in the configuration [34].

In [20], upper and lower bounds are given for the best max-min and min-max
polarization among spherical k-designs. For max-min polarization, which we also
consider in this chapter, they used these bounds to give an alternative proof of
optimality of the simplex, and the optimality of the cross-polytope among 2-designs
under the condition that it is the optimal covering with N = 2n points among all
2-designs.
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n las2,r,ε las2,r,r ∆3,r,ε ∆3,r,r

3 3.9999 3.8648 3.9999 3.9186
4 4.5512 4.0707 4.4333 4.2137
5 4.1997 4.0068 4.4114 4.1677
6 4.0872 3.8642 4.3301 4.0292
7 3.9635 3.704 4.2297 3.8743
8 3.837 3.5576 4.1237 3.7323
9 3.714 3.4343 4.0171 3.6106
10 3.5995 3.3309 3.9114 3.5061

Table 9.7.2. Lower bounds on the minimum number of points
needed to cover the sphere Sn−1 with caps B(x, 1/n), with

ε = −1/n. For the second step of the Lasserre hierarchy we use
polynomial degree 12, and for the three-point bound we use

polynomial degree 32.

n las2,r,ε las2,r,r ∆3,r,ε ∆3,r,r

3 5.9999 5.7244 5.9999 5.8606
4 7.9999 6.4533 7.9872 6.899
5 7.2325 6.8552 7.7518 7.3547
6 7.7243 7.132 8.2825 7.6347
7 8.0521 7.2642 8.7457 7.7262
8 8.2825 7.3195 9.0416 7.7286
9 8.5289 7.3335 9.2657 7.6991
10 8.7691 7.3253 9.4589 7.6558

Table 9.7.3. Lower bounds on the minimum number of points
needed to cover the sphere Sn−1 with caps B(x, 1/

√
n), with ε = 0.

For the second step of the Lasserre hierarchy we use polynomial
degree 12, and for the three-point bound we use polynomial degree

32.

The volume bound is sharp for polynomials up to degree k for k-designs. In
Table 9.7.4, we give bounds on the minimum number of points needed to reach
the threshold given by the polarization of a number of sharp configurations, for
polynomials of the form (1 + u)k. These polynomials form a basis of the cone of
absolutely monotonic functions, which follows from [141, Theorem 9b, p.154].

We also computed the bound with the same parameters for the D4 and E6 root
systems, which are not sharp configurations, and in those cases the bound was only
sharp up to the design strength.

9.7.3. Dependence on the maximum inner product. As proven in Sec-
tion 9.4, the bound on the minimum distance, or the maximum inner product, is
fundamental to obtain nontrivial bounds through the Lasserre hierarchy for polar-
ization. As shown in the previous sections, there are cases where the bounds are
sharp when using the best possible bound on the minimum distance. In this section,
we show the dependence of the bounds on ε for low degrees.
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Configuration n N design strength k

Icosahedron 3 12 5 23
Schläfli 6 27 4 8
Simplex 4 5 2 6

5 6 2 5
6 7 2 4
7 8 2 4
8 9 2 4
9 10 2 4
10 11 2 3

Cross-polytope 4 8 3 11
5 10 3 10
6 12 3 9
7 14 3 9
8 16 3 8
9 18 3 8
10 20 3 8

Table 9.7.4. Several configuration together with the maximum k
for which the bound las2(f,E) is numerically sharp for the

potential function f(u) = (1 + u)k, with degree 10 polynomials.
We use the minimum distance of the configuration as ε, and the
polarization of the configuration as threshold E. The minima of

the configurations are described in [17].

Figure 9.7.1 shows the three-point bound for covering as a function of the
maximum inner product ε allowed for the putatively optimal configuration of 5
points in dimension 3, for degree 4, 5 and 6 (from bottom to top). As can be seen,
for high ε, the function is flat, and gives the volume bound. For fixed ε, the bound
increases with the degree. For a given degree d, the bound decreases slowly for ε
close to the minimum ε possible, and then decreases rapidly to the volume bound;
the ε where the bound starts to decrease faster increases with the degree.

In Figure 9.7.2, we show a similar plot but for the second step of the Lasserre
hierarchy, for the simplex in dimension 4. Note that the polynomial degrees used are
much lower than for the three-point bound, and it is possible the graph for higher
degree will have a similar shape as the graph of the three-point bound for ε not
close to the best maximum inner product. However, for ε close to −1/4 the second
level of the Lasserre hierarchy with degree 8 is already better than the three-point
bounds with degree 12.

In Figure 9.7.3, a similar plot is shown for the second level of the Lasserre
hierarchy for polarization, for the function (1 + u)8. The threshold is given by the
minimum polarization of the simplex in dimension 4. The shape of the bound is
very comparable to the shape of the Lasserre hierarchy for covering, for the same
configuration. A key difference is that the ratio between the second level of the
hierarchy with ε = −1/4 and the volume bound is much larger for this function
compared to the covering problem.
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Figure 9.7.1. The three-point bound for covering in dimension 4
with covering radius r = 1/4, corresponding to the simplex, for

varying minimum distance. From bottom to top, the lines
correspond with d = 4, 5, 6, or equivalently, polynomial degree 8, 10

and 12.
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Figure 9.7.2. The second level of the Lasserre hierarchy for
covering in dimension 4 with r = 1/4, for varying minimum

distance. The optimal configuration is the regular simplex. From
bottom to top, the lines correspond with polynomial degrees 4, 6

and 8.
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Figure 9.7.3. The second level of the Lasserre hierarchy for
polarization with a threshold, where the potential function is

(1 + u)8, where we use the polarization of the simplex in dimension
4 as threshold. From bottom to top, the lines correspond with

polynomial degrees 4, 6 and 8.





CHAPTER 10

n-point correlations in analytic number theory∗

10.1. Introduction

In this chapter, we give universal bounds on the fraction of nontrivial zeros having
given multiplicity for L-functions attached to a cuspidal automorphic representation
of GLm/Q. For this, we apply the higher-level correlation asymptotic of Hejhal
[69] and Rudnick and Sarnak [127] in conjunction with semidefinite programming
bounds.

Let m ≥ 1 and let π be an irreducible cuspidal automorphic representation of
GLm/Q. Let L(s, π) be its attached L-function (see [75] for theoretical background).
Such functions generalize the classical Dirichlet L-functions (the case m = 1). Let
ρj = 1/2 + iγj , with j ∈ Z, be an enumeration of the nontrivial zeros of L(s, π)
repeated according to multiplicity. The Generalized Riemann Hypothesis (GRH)
for L(s, π) states that all its nontrivial zeros are aligned in the line Re s = 1/2; that
is, γj ∈ R for all j. Assuming GRH, we can enumerate the ordinates of the zeros in
a nondecreasing fashion

. . . ≤ γ−2 ≤ γ−1 < 0 ≤ γ1 ≤ γ2 ≤ . . .

and we have

N(T ) :=
∑
j≥1
γj≤T

1 ∼ m

2π
T log T.

Hejhal [69] and later on Rudnick and Sarnak [126, 127] investigated the n-
level correlation distribution of the zeros of L(s, π) guided by the relationship with
Gaussian ensemble models in random matrix theory, pointed out by the breakthrough
work of Montgomery [111]. This area has a long history, and we recommend [127],
and the references therein, for more information.

Let aπ(n) be the coefficients such that

L(s, π) =
∑
n≥1

aπ(n)

ns
.

The results of Rudnick and Sarnack hold under the hypotheses that GRH holds for
L(s, π) and that ∑

p prime

|aπ(pk) log p|2

pk
<∞

∗This chapter is based on the publication “F. Gonçalves, D. de Laat and N. Leijenhorst,

Multiplicity of nontrivial zeros of primitive L-functions via higher-level correlations, Math. Comp.

(2024), arXiv:2303.01095, doi:10.1090/mcom/4005”. The main difference is that Section 10.4 is
generalized to m > 1, which allows us to prove the case (n,m) = (3, 2) of Theorem 10.1 without

the additional assumption required for the case (n,m) = (4, 1).
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for all k ≥ 2. This second condition holds whenever m ≤ 3 [127, Proposition 2.4].
They then show that

1

N(T )

∑
j1,...,jn≥1 distinct

γj1 ,...,γjn≤T

f(m log T
2π γj1 , . . . ,

m log T
2π γjn)(10.1.1)

→
∫
Rn

f(x)Wn(x)δ

(
x1 + · · ·+ xn

n

)
dx1 · · · dxn

as T → ∞, where

Wn(x) = det

[
sin(π(xi − xj))

π(xi − xj)

]
i,j=1,...,n

is Dyson’s limiting n-level correlation density for the Gaussian Unitary Ensemble
(GUE) model, and f is any admissible test function satisfying

• f ∈ C∞(Rn), f is symmetric, and f(x+ t(1, . . . , 1)) = f(x) for t ∈ R;
• supp(f̂) ⊆ {x ∈ Rn : |x1|+ . . .+ |xn| < 2/m} (in the distributional sense);
• f(x) → 0 rapidly as |x| → ∞ in the hyperplane

∑
j xj = 0.

Let mρ denote the multiplicity of ρ, and define

N∗(T ) :=
∑
j≥1
γj≤T

mρj
.

Montgomery’s pair correlation approach has been used to obtain bounds of the form

(10.1.2) N∗(T ) ≤ (c+ o(1))N(T ),

where for m = 1 the current smallest known value for c assuming the Riemann
hypothesis is 1.3208 [30, 31, 111, 112]. Let Zn(T ) count the number of nontrivial
zeros of L(s, π) with multiplicity at most n− 1 up to height T :

Zn(T ) =
∑
j≥1

γj≤T,mρj
≤n−1

1.

Then Z2(T ) ≥ 2N(T )−N∗(T ), so (10.1.2) can for instance be used to give a lower
bound on the fraction of simple zeros, although the current best known bound is
obtained using different techniques [24, 30, 31, 45, 60].

The goal of this chapter is to use the n-level correlations by Hejhal, Rudnick,
and Sarnak (that is, Equation 10.1.1) to obtain bounds analogous to (10.1.2), and
use this to obtain universal bounds on the fraction of nontrivial zeros of L(s, π)
having multiplicity at most n− 1.

Theorem 10.1. Let L(s, π) be the L-function attached to an irreducible cuspidal
automorphic representation π of GLm/Q. Assuming GRH for L(s, π) we have

lim inf
T→∞

Zn(T )

N(T )
≥


0.9614 if n = 3 and m = 1,

0.2997 if n = 3 and m = 2,

0.9787 if n = 4 and m = 1,

where the result for (n,m) = (4, 1) holds under the additional assumption that certain
series of rational functions are summed correctly using Maple; see Section 10.6.
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As far as we know, the bounds in Theorem 10.1 are all new. Using a different
method, it has been shown that at least 95.5% of the nontrivial zeros of the zeta
function are simple or double zeros [44]. Our (n,m) = (3, 1) case improves on this
result. The case m = 2 is of special interest, since for this there are no previous
effective bounds in the literature. Proving a positive proportion of zeros are simple
in the case (n,m) = (2, 2) is a notoriously difficult problem [54], and no positive
lower bounds for Z2(T )/N(T ) are known (in general), but there has been a great
deal of interesting work on simple zeros for GL2 L-functions (via Ω-results, for
instance) [9, 10, 11, 29, 43, 107, 135]. Our methods do not seem to give positive
lower bounds when m ≥ n.

Montgomery’s approach to finding a good value for c in (10.1.2) leads to
an optimization problem that is similar to the one-dimensional version of the
Cohn-Elkies bound [33] for the sphere packing problem. However, the higher-order
correlation approach in this chapter is very different from the higher-order correlation
approach for the sphere packing problem recently introduced in [39], although both
approaches essentially restrict the support of the function or the Fourier transform
to a compact set.

In Section 10.2 we set up the optimization problem to compute the above
bounds, and we show how the optimal solution connects to reproducing kernels,
inspired by the approach from [28].

We use a computational approach to obtain rigorous bounds. In Section 10.3
we use the symmetry and the rank-1 structure to find the bounds by solving linear
systems. We then give two approaches for finding good solutions to the optimization
problem. In Section 10.4 we use a parametrization using polynomials to find a good
value when n = 3 and explain why this approach becomes problematic for n > 3. In
Section 10.6 we give an alternative parametrization based on lattice shifts and use
this to compute bounds for all cases in Theorem 10.1. Since the bounds using the
polynomials are slightly better, the additional hypothesis in Theorem only applies
to (n,m) = (4, 1).

10.2. Derivation of the optimization problem

Let

Mn(T ) =
∑

j1,...,jn≥1 distinct
γj1

=...=γjn≤T

1 =
∑
j≥1
γj≤T

(mρj
− 1) · · · (mρj

− n+ 1).

Then M1(T ) = N(T ) and M2(T ) = N∗(T )−N(T ). For a nonnegative admissible
test function f , we have that

Mn(T )

N(T )
f(1, . . . , 1) ≤ 1

N(T )

∑
j1,...,jn≥1 distinct

γj1 ,...,γjn≤T

f(m log T
2π γj1 , . . . ,

m log T
2π γjn),

where we use that

f(1, . . . , 1) = f(m log T
2π γj1 , . . . ,

m log T
2π γjn)

whenever γj1 = . . . = γjn . Dividing by f(1, . . . , 1) and applying (10.1.1) therefore
gives

lim sup
T→∞

Mn(T )

N(T )
≤ cn,m,
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where

cn,m := inf
1

f(1, . . . , 1)

∫
Rn

f(x)Wn(x)δ
(x1 + . . .+ xn

n

)
dx

and where the infimum is taken over nonnegative admissible test functions f .
We have∫

Rn

f(x)Wn(x)δ

(
x1 + . . .+ xn

n

)
dx

=

∫
Rn−1

∫
R
f(x+ (xn, . . . , xn, 0))Wn(x+ (xn, . . . , xn, 0))

· δ
(
x1 + . . .+ xn−1

n
+ xn

)
dxndx1 · · · dxn−1

=

∫
Rn−1

f(x1, . . . , xn−1, 0)Wn(x1, . . . , xn−1, 0) dx1 · · · dxn−1.

With g(x1, . . . , xn−1) = f(x1, . . . , xn−1, 0), we see that supp(ĝ) is now contained in
the interior of 2

mHn−1, where

Hn−1 = {x ∈ Rn−1 : |x1|+ . . .+ |xn−1|+ |x1 + . . .+ xn−1| ≤ 1}.
Note that Hn−1 ⊆ [−1/2, 1/2]n−1. Now let

νn(g) :=

∫
Rn−1

g(x)Wn(x, 0) dx

for any g ∈ L1(Rn−1) satisfying

(i) supp(ĝ) ⊆ 2
mHn−1;

(ii) g is nonnegative;
(iii) g(0) = 1.

It is now obvious that cn,m ≥ infg νn(g), where the infimum is taken over functions
g satisfying (i), (ii) and (iii). We show that cn,m = infg νn(g). Let g ∈ L1(Rn−1)
satisfy the conditions above and assume further that g is invariant under the group
G generated by

Fig(x) = g(x− xi(1, . . . , 1)− xiei),

for i = 1, . . . , n − 1. Note that F 2
i = Id and FiFjFi simply flips xi by xj . In

particular, G is a finite group. Let φϵ ∈ C∞(Rn−1) be a radial approximate identity
as ϵ → 0, such that supp(φϵ) ⊂ ϵHn−1,

∫
φϵ = 1 and φϵ ≥ 0. Let gϵ = gφ̂ϵ, and

observe that since ĝϵ = ĝ ∗ φϵ, we then have that gϵ ∈ S(Rn−1) and

supp(ĝϵ) ⊂
(

2

m
+ ϵ

)
Hn−1.

In particular, the function fϵ(x1, ..., xn) = gϵ(a(x1 − xn), ..., a(xn−1 − xn)), with
a = 1/(1 +mϵ/2), is now an admissible test function for (10.1.1) and we obtain

cn,m ≤
∫
Rn

fϵ(x)Wn(x)δ
(x1 + . . .+ xn

n

)
dx = νn(gϵ(a·)) ≤ νn(g(a·)).

Taking ϵ → 0 we conclude that cn,m ≤ infg νn(g) over functions g satisfying (i),
(ii), (iii) and invariant under G. Assume now g is not invariant under G. Since
Wn(x1, . . . , xn−1, 0) is G-invariant, is it clear that νn(g) = νn(g̃), where

g̃(x) =
1

|G|
∑
ρ∈G

ρg(x),
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and so νn(g) ≥ cn,m.
Let PW(Ω) be the Paley-Wiener space of functions g ∈ L2(Rn−1) whose Fourier

transform is supported in Ω. Given a finite-dimensional subspace F of PW( 1
mHn−1)

and a basis {gi} of F , we can optimize over functions of the form

(10.2.1) g(x) =
∑
i,i′

Xi,i′gi(x)gi′(x),

where X is a positive semidefinite matrix. These are integrable functions satisfying
conditions (i) and (ii). Since νn(g) and g(0) are linear in the entries of X, this
reduces the optimization problem to the semidefinite program

(10.2.2)

minimize νn(g)

subject to g(0) = 1

X ⪰ 0

Here X ⪰ 0 means X is a positive semidefinite matrix of appropriate size. Since we
optimize a linear functional over positive semidefinite matrices with affine constraints,
this is a semidefinite program, which can be solved efficiently in practice.

We have that ∑
j≥1

γj≤T,mρj
≥n

1 ≤ Mn(T )

(n− 1)!
,

and therefore
Zn(T )

N(T )
≥ 1− Mn(T )

N(T )(n− 1)!
.

Thus,

lim inf
T→∞

Zn(T )

N(T )
≥ 1− cn,m

(n− 1)!
,

which shows we can use the problem in (10.2.2) to obtain a lower bound on the
fraction of zeros having multiplicity at most n− 1.

As an alternative to Mn(T ) we could also use the parameters

Nk(T ) =
∑
j≥1
γj≤T

mk−1
ρj

,

which satisfy N(T ) = N1(T ) and N
∗(T ) = N2(T ). We have

(10.2.3) Nn(T ) =

n∑
k=1

S(n, k)Mk(T ),

where S(n, k) are the Stirling numbers of the second kind. Since S(n, k) ≥ 0 for all
n and k, we can use our bounds on cn,m, computed Section 10.4 and 10.6, to obtain

(10.2.4) lim sup
T→∞

Nn(T )

N(T )
≤


2.0597 if n = 3 and m = 1,

5.8984 if n = 3 and m = 2,

3.8834 if n = 4 and m = 1,

provided the hypothesis of Theorem 10.1 hold. We also adapted the problem in
(10.2.2) to bound Nn(T ) directly, but we were not able to improve over the results
in (10.2.4) in this way.
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We end this section with a possible formal solution to the problem of computing
cn,m. Note that the following result is true for Hn−1 replaced by any compact set
with a nonempty interior, with essentially the same proof.

Theorem 10.2. For n,m > 0 there exists a kernel K : Cn−1 × Cn−1 → C such
that

(10.2.5) g(w) =

∫
Rn−1

g(v)K(w, v) dνn(v)

for all g ∈ PW( 1
mHn−1) and w ∈ Cn−1. We have

cn,m ≤ 1

K(0, 0)
,

and equality is attained if every nonnegative g ∈ L1(Rn) with supp ĝ ⊆ 2
mHn−1 is a

sum of squares in the sense that there are gj,N ∈ PW( 1
mHn−1) such that

(10.2.6) g(x) = lim
N→∞

N∑
j=1

|gj,N (x)|2,

with almost everywhere convergence.

Proof. We have that 0 ≤ Wn(x) ≤ 1 for all x, and Wn(x) = 0 if and only if
xi = xj for some i ̸= j. Using induction it can be shown that for every ϵ > 0 there
exists c(ϵ) > 0 such that Wn(x) ≥ c(ϵ) whenever |xi − xj | ≥ ϵ for all i ̸= j. Define

Sϵ = {x ∈ Rn−1 : |xi| > ϵ and |xi − xj | > ϵ for all distinct i, j = 1, . . . , n− 1}.

Then νn(|g|2) ≤ ∥g∥22 and

νn(|g|2) ≥ c(ϵ)

∫
Sϵ

|g(x)|2 dx.

Observe that the set Sϵ is relatively dense, that is, there is a cube Q (e.g., Q =
[−3ϵ, 3ϵ]n−1) and γ > 0 such that

inf
x∈Rb−1

Vol(Sϵ ∩ (Q+ x)) ≥ γVol(Q).

We could then apply the Logvinenko-Sereda Theorem [68, p. 112], which says there
exists b(ϵ) > 0 such that ∫

Sϵ

|g(x)|2 dx ≥ b(ϵ)∥g∥22,

proving the norms νn(|g|2) and ∥g∥22 are equivalent. For completeness, we give a
direct proof of the above inequality in our particular case.

We apply the Hardy-Littlewood-Sobolev theorem of fractional integration (see,
e.g., [136, Section V.1.2]), which implies that there exists a constant C > 0 such
that

∥h(·)| · |−1/4∥2 ≤ C∥ĥ∥4/3
for all h ∈ L2(R). If in addition supp(ĥ) ⊆ [−a, a], then using Hölder’s inequality
we obtain

∥h(·)| · |−1/4∥2 ≤ C∥ĥ∥4/3 ≤ (2a)1/4C∥ĥ∥2 = (2a)1/4C∥h∥2.
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Then, with h(xi) = g̃(x+ xjei) and a = 1/2, we get∫
{x:|xi−xj |<ϵ}

|g(x)|2 dx ≤ ϵ1/2
∫
{x:|xi−xj |<ϵ}

∣∣∣∣ g(x)

|xi − xj |1/4

∣∣∣∣2 dx ≤ Cϵ1/2∥g∥22.

A similar procedure shows that
∫
{x:|xi|<ϵ} |g(x)|

2 dx ≤ Cϵ1/2∥g∥22. Hence,∫
Sϵ

|g(x)|2 dx ≥ ∥g∥22 −
n−1∑
i=1

∫
{x:|xi|<ϵ}

|g(x)|2 dx−
∑

1≤i<j≤n

∫
{x:|xi−xj |<ϵ}

|g(x)|2 dx

=

(
1−

(
n

2

)
Cϵ1/2

)
∥g∥22.

By choosing ϵ > 0 small enough the constant 1−
(
n
2

)
Cϵ1/2 is positive, which shows

νn defines a norm equivalent to the L2 norm. Hence, PW( 1
mHn−1) is a Hilbert

space with the inner product given by νn.
Using Fourier inversion, Cauchy’s inequality, and Plancherel’s theorem it can

be shown that the evaluation functions f 7→ f(x) on PW( 1
mHn−1) are continuous

in the L2 topology, so by the Riesz representation theorem there exists a kernel
K : Cn−1 × Cn−1 → C with K(x, ·) ∈ L2(Cn−1) satisfying (10.2.5).

To finish, observe that if g satisfies conditions (i), (ii), and (iii) and condition
(10.2.6), then by the monotone convergence theorem, limit (10.2.6) holds also in the
L1(Rn−1)-sense, and since PW( 1

mHn−1) ∩ L1(Rn−1) is a reproducing kernel space,
it is simple to show that we actually have uniform convergence in compact sets.
Then,

1 = g(0) = lim
N→∞

N∑
j=1

|gj,N (0)|2 = lim
N→∞

N∑
j=1

|νn(gj,N (·)K(0, ·))|2

≤ lim
N→∞

N∑
j=1

νn(|gj,N |2)K(0, 0) = νn(g)K(0, 0).

This shows cn,m ≥ 1/K(0, 0). Since g(x) = K(0, x)2/K(0, 0)2 satisfies conditions
(i), (ii), and (iii) and νn(g) = 1/K(0, 0), we have cn,m ≤ 1/K(0, 0), which completes
the proof. □

It is worth mentioning that condition (10.2.6) holds true, and so equality
cn,m = K(0, 0)−1 is true, in the one-dimensional case (Hadamard factorization),
which implies this condition is true in higher dimensions if Hn−1 is replaced by a
cube. Condition (10.2.6) also holds true for a ball (see [52]) and radial g, which
is enough to show cn,m = K(0, 0)−1. It is an open problem to prove condition
(10.2.6) when Hn−1 is replaced by a generic convex body. J. Vaaler, via personal
communication, proposed an interesting way of obtaining (10.2.6). He conjectures
the following: For any centrally symmetric convex body K there is a constant
c(K) ∈ (0, 1) such that for any nonnegative g ∈ PW(K) ∩ L1 there is h ∈ PW(K)
such that

g ≥ |h|2 and ∥h∥22 ≥ c(K)∥g∥1.
If this conjecture is true, iterating this procedure ones finds functions h1, h2, . . .
such that g ≥ |h1|2 + . . .+ |hN |2 and

∥hN∥22 ≥ c(K)(∥g∥1 − ∥h1∥22 − . . .− ∥hN−1∥22).
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Then it is easy to see that we must have g =
∑

n≥1 |hn|2 pointwise.

10.3. Symmetry and rank-1 structure

In this section, we show how we can use symmetry and a rank-1 structure to
solve the problem in (10.2.2) efficiently.

Let Gn be the symmetry group of Hn−1; that is, let Gn be the group containing
the matrices A ∈ R(n−1)×(n−1) with AHn−1 = Hn−1. Let

Γn = {AT : A ∈ Gn}.

If g is a function satisfying conditions (i), (ii), and (iii), then, for γ ∈ Γn, the
function L(γ)g defined by L(γ)g(x) = g(γ−1x), also satisfies these constraints and
νn(g) = νn(L(γ)g). It follows that the function g defined by

g(x) =
1

|Γn|
∑
γ∈Γn

L(γ)g(x)

also satisfies these constraints and νn(g) = νn(g). Since g is Γn-invariant, this
shows we may restrict to Γn-invariant functions, which can be parametrized using
Section 3.2.

Suppose F is some Γn-invariant space of functions Rn−1 → R. Consider a

complete set Γ̂n of irreducible, unitary representations of Γn. Let {gπ,i,j} be a
symmetry adapted system of the space F . By this we mean that {gπ,i,j} is a basis
of F such that Hπ,i := span{gπ,i,j : j = 1, . . . , dπ} is a Γn-irreducible representation
with Hπ,i equivalent to Hπ′,i′ if and only if π = π′, and for each π, i and i′ there
exists a Γn-equivariant isomorphism Tπ,i,i′ : Hπ,i → Hπ,i′ such that gπ,i′,j = Tgπ,i,j
for all j. In other words, a symmetry adapted system is a basis of F according to
a decomposition of F into Γn-irreducible subspaces, where the bases of equivalent
irreducibles transform in the same way under the action of Γn.

Then, assuming the representations of Γn are of real type, we have the following
block-diagonalization result: any function g that is a sum of squares of functions
from F can be written as

g(x) =
∑
π

∑
i,i′

X
(π)
i,i′

∑
j

gπ,i,j(x)gπ,i′,j(x),

for positive semidefinite matricesX(π). This follows from Schur’s lemma as explained
in [58] (see also Section 3.2 for a detailed proof).

To generate a concrete symmetry-adapted system {gπ,i,j} for F we use an
implementation of the projection algorithm as described in [130]. For this, first
define the operators

(10.3.1) p
(π)
j,j′ =

dπ
|Γ|
∑
γ∈Γ

π(γ−1)j,j′L(γ),

where dπ is the dimension of π and L(γ) is the operator L(γ)g(x) = g(γ−1x). Then

choose bases {gπ,i,1}i of Im(p
(π)
1,1 ) and set gπ,i,j = p

(π)
j,1 gπ,i,1. As shown in Section 3.2

this indeed gives a symmetry-adapted system of F .

Lemma 10.3. If π is not the trivial representation, then gπ,i,j(0) = 0.
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Proof. Let p
(π)
j,j′ be the operator as defined in (10.3.1) and g ∈ F . Then,

(p
(π)
j,1 p

(π)
1,1g)(x) =

d2π
|Γ|2

∑
β,γ∈Γ

π(β−1)j,1π(γ
−1)1,1g(β

−1γ−1x),

and thus

(p
(π)
j,1 p

(π)
1,1g)(0) =

d2π
|Γ|2

∑
β∈Γ

π(β−1)j,1

∑
γ∈Γ

π(γ−1)1,1

 g(0).

If π is not the trivial representation, then
∑

γ∈Γ π(γ
−1)j,j′ = 0 by orthogonality of

matrix coefficients. By linearity, the result then follows. □

This shows optimizing over functions of the form (10.2.1) is the same as opti-
mizing over functions of the form

g(x) =
∑
i,i′

Xi,i′g1,i,1(x)g1,i′,1(x),

where X is positive semidefinite and where we denote the trivial representation by
1. That is, instead of using a Γ-invariant space of functions, we can use the much
smaller space of Γ-invariant functions gi(x) = g1,i,1(x). In other words, the problem
in (10.2.2) reduces to the simpler semidefinite program

(10.3.2)

minimize ⟨A,X⟩

subject to ⟨bbT, X⟩ = 1

X ⪰ 0

where Ai,i′ = νn(gigi′) and bi = gi(0). Here we use the notation ⟨A,B⟩ = tr(ATB).
A semidefinite program with m equality constraints has an optimal solution of

rank r with r(r + 1)/2 ≤ m [120]. Since the above semidefinite program has only
one equality constraint, we know that there exists an optimal solution of rank 1. In
fact, the following lemma shows we can find this rank 1 solution by solving a linear
system. We can view this lemma as a finite-dimensional version of Theorem 10.2.

Lemma 10.4. Let A be a positive semidefinite matrix and let x be a solution
to the system Ax = b. Then xxT/(xTb)2 is an optimal solution to the semidefinite
program

minimize ⟨A,X⟩

subject to ⟨bbT, X⟩ = 1

X ⪰ 0

Proof. Let X be feasible to the semidefinite program and consider the spectral
decomposition X =

∑
i viv

T
i . Using Cauchy-Schwarz we have

1 = bTXb =
∑
i

(bTvi)
2 =

∑
i

(xTAvi)
2 ≤

∑
i

(xTAx)(vTi Avi) = xTb⟨A,X⟩,

so

⟨A,X⟩ ≥ 1

xTb
=

〈
A,

xxT

(xTb)2

〉
. □
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C
x1

x2

Figure 10.4.1. The hexagon H2 and the square C (shaded).

10.4. Parametrization using polynomials

Here we consider the case n = 3. Let χ 1
mH2

(x) be the indicator function of the

region 1
mH2 and define the functions gα(x) for α = (α1, α2) ∈ N2

0 by

ĝα(x) = xα1
1 xα2

2
χ 1

mH2
(x).

Fix a degree d and let F = span{gα : α1 + α2 ≤ d}. As before, we let {gi} be a
basis for the Γn-invariant functions in F , and we use the parametrization

g(x) =
∑
i,i′

Xi,i′gi(x)gi′(x).

Since each function gi is a linear combination of the functions in F we have that
ĝi(x) = pi(x)χ 1

mH2
(x) for some polynomial pi of degree at most d; and as explained

in Section 10.2.2 these polynomials pi can be computed explicitly.
To set up the linear system for solving (5.1.1) we need to compute explicitly

how the linear functionals g(0) and ν3(g) depend on the entries of the matrix X.
Set a = 1

2m . The region 1
mH2 is the open hexagon with vertices (a, 0), (a,−a),

(0,−a), (−a, 0), (−a, a), (0, a). Its symmetry group G3 is the dihedral group of
order 12 with generators

r =

[
0 −1
1 1

]
and s =

[
0 1
1 0

]
.

With C = [−a, 0]× [0, a] we have 1
mH2 = C ∪ r2C ∪ r4C; see Figure 10.4.1.

Since gi is Γ3-invariant, the polynomial pi(x) is G3-invariant, so

gi(0) =

∫
1
mH2

pi(x) dx =

∫
1
mC

(
pi(x) + pi(r

2x) + pi(r
4x)
)
dx = 3

∫
1
mC

pi(x) dx

= 3

∫ a

0

∫ 0

−a

pi(x1, x2) dx1dx2,

which can be computed explicitly. This shows how we can write

g(0) =
∑
i,i′

Xi,i′gi(0)gi′(0)

explicitly as a linear combination of the entries of the matrix X.
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u1

u2

u1

u2

Figure 10.4.2. The possible shapes of the intersection of the
supports of gi(u1, u2) and gi′(u1 + x, u2 − x) for 0 ≤ x ≤ 1/2 (left)

and 1/2 ≤ x ≤ 1 (right).

As computed in Hejhal [69], we have

ν3(g) =

∫
R2

g(x1, x2)W3(x1, x2, 0) dx1dx2

= 2 + ĝ(0) + 6

∫ 1

0

ĝ(x, 0)(x− 1) dx− 12

∫ 1

0

∫ 0

−x2

ĝ(x1, x2)x2 dx1dx2.

To compute this explicitly, note that

ĝ(x) =
∑
i,i′

Xi,i′(ĝi ∗ ĝi′)(x).

The term ĝ(0) can be computed similarly to how gi(0) is computed above, since

ĝ(0) =
∑
i,i′

Xi,i′

∫
H2

pi(x)pi′(x) dx,

where we used that pi′(−x) = pi′(x).
Since ĝi and ĝi′ have bounded support, the convolution (ĝi ∗ ĝi′)(x) is an integral

over a bounded region whose shape depends on x. For the third term, symmetry
gives ∫ 1

0

ĝ(x, 0)(x− 1) dx =

∫ 1

0

ĝ(x,−x)(x− 1) dx.

Figure 10.4.2 shows the shape of the integration region used to compute ĝ(x,−x)
for different values of x. This gives∫ 1

0

ĝ(x,−x)(x−1) dx =
∑
i,i

Xi,i′

∫ 2a

0

Jx pi(u1, u2)pi′(u1+x, u2−x)(x−1) du1du2dx,

where

Jx =

{∫ 0

−a+x

∫ a−x

−a−u2
+
∫ x

0

∫ a−x

−a
+
∫ a

x

∫ a−u2

−a
0 ≤ x ≤ a,∫ a

x−a

∫ a−x

−a
a ≤ x ≤ 2a.

Similarly, we split the convolution integral for the fourth term into the 4 regions
R1 = {−2a ≤ −x2 ≤ x1 ≤ −a}, R2 = {−a ≤ a− x2 ≤ x1 ≤ 0}, R3 = {0 ≤ −2x1 ≤
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Table 10.4.1. Upper bounds on the best possible value for c3,1
and c3,2 obtained using a parametrization using polynomials of

degree d.

d c3,1 c3,2

10 0.077516654 1.401390812
20 0.077222625 1.400561480
30 0.077206761 1.400505357
40 0.077200000 1.400480863
50 0.077198398 1.400474931
60 0.077197284 1.400470845

x2 ≤ a− x1 ≤ 2a} and R4 = {0 ≤ −x1 ≤ x2 ≤ −2x1 ≤ 2a}. Then the fourth term
can be computed as∫ 1

0

∫ 0

−x2

ĝ(x1, x2)x2 dx1dx2 =
∑
i,i′

Xi,i′

∫ 2a

0

∫ 0

−x2

Ix pi(u)pi′(u−x)x2 du1du2dx1dx2,

where

Ix =


∫ a

x2−a

∫ x1+a

−a
(x1, x2) ∈ R1,∫ a

x2−a

∫ a−u2

−a−u2+x1+x2
(x1, x2) ∈ R2,∫ a

x1+x2

∫ a−u2

−a
+
∫ x1+x2

−x1

∫ a−u2

x1+x2−u2−a
+
∫ −x1

x2−a

∫ x1+a

x1+x2−u2−a
(x1, x2) ∈ R3,∫ a

−x1

∫ a−u2

−a
+
∫ −x1

x1+x2

∫ x1+a

−a
+
∫ x1+x2

x2−a

∫ x1+a

x1+x2−u2−a
(x1, x2) ∈ R4.

In Table 10.4.1 we show the bounds on c3,1 and c3,2 obtained with this
parametrization for degree d. This proves the cases (n,m) ∈ {(3, 1), (3, 2)} of
Theorem 10.1. At [97]† , we give the GAP source code to compute the polynomials
pi in exact arithmetic and a Julia file to compute the above bound rigorously by
solving the linear system from Section 10.3 in ball arithmetic.

10.5. The Fourier transform of χHn−1

In Section 10.6, we give bounds using an alternative parametrization using
phase shifts of the indicator functions of Hn−1. This requires, in particular, the
Fourier transform of the indicator function of Hn−1.

To compute this, we use the Fourier transform of the indicator function of the
simplex Sn = {x ∈ Rn : xj ≥ 0, x1 + . . .+ xn ≤ 1} as computed in [13, Eq. 18]:

χ̂Sn
(y) =

(−1)n+1

(2πi)n

n∑
j=1

1− e−2πiyj

yj
∏

i ̸=j(yj − yi)
.

†Compared to the code available with the arXiv version of the paper on which this chapter is

based, the code allows for general m instead of only m = 1. This allows us to remove the additional
assumption in Theorem 10.1 for the case (n,m) = (3, 2), but does not change the result in the

theorem.
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The Fourier transform of the indicator function of the cross-polytope Cn = {x ∈
Rn : |x1|+ . . .+ |xn| ≤ 1} is given by

χ̂Cn
(y) =

∑
σ∈{±1}n

χ̂Sn
(σ1y1, . . . , σnyn).

If we consider each term in χ̂Sn
(y) individually, then it is simple to deduce that∑

σ∈{±1}n

1− e−2πiσjyj

σjyj
∏

i̸=j(σjyj − σiyi)
=

∑
σ∈{±1}

(2σyj)
n−1 1− e−2πiσyj

σyj
∏

i̸=j(y
2
j − y2i )

,

while the latter depends on the parity of n. This implies that

χ̂Cn(y) =

π
−n(−1)(n−1)/2

∑n
j=1

yn−2
j sin(2πyj)∏

i̸=j(y
2
j−y2

i )
if n is odd, and

π−n(−1)n/2−1
∑n

j=1

2yn−2
j sin(πyj)

2∏
i̸=j(y

2
j−y2

i )
if n is even.

Finally, notice that Hn−1 can be identified with Cn ∩ {x : x1 + . . .+ xn = 0} and
thus one can rigorously justify that

χ̂Hn−1
(y1, . . . , yn−1) = lim

T→∞

∫ T

−T

χ̂Cn
(y1 + t, . . . , yn−1 + t, t) dt

The function under the integral sign above only has simple poles at t = −yj+yk

2 for

k ̸= j and t = −yj/2 (for generic y ∈ Rn−1). A routine application of the residue

theorem and a grouping of terms shows that χ̂Hn−1(y) is equal to

(−1)(n−1)/2

2n−2πn−1

[
−

∑
1≤j<k≤n−1

(yj − yk)
n−3 cos(π(yj − yk))

yjyk
∏

i̸=j,k(yj − yi)(yk − yi)
+

n−1∑
j=1

yn−3
j cos(πyj)∏
i̸=j(yj − yi)yi

]
if n is odd, and equal to

(−1)n/2−1

2n−2πn−1

[ ∑
1≤j<k≤n−1

(yj − yk)
n−3 sin(π(yj − yk))

yjyk
∏

i ̸=j,k(yj − yi)(yk − yi)
+

n−1∑
j=1

yn−3
j sin(πyj)∏
i ̸=j(yj − yi)yi

]
if n is even.

10.6. Parametrization using shifts

Now we consider the functions gλ obtained by shifting the Fourier transform of
the indicator function of 1

mHn−1 by λ ∈ mZn−1:

gλ(x) = ̂χ 1
mHn−1

(x− λ) =
1

mn−1
χ̂Hn−1

(
1

m
(x− λ)

)
.

Then gλ(x) is the Fourier transform of χ 1
mHn−1

(·)e−2πi⟨λ,·⟩, so gλ(γx) = gγ−1λ(x)

for all γ in the group Γn as defined in Section 10.3.
We observe that for n = 2, the functions gλ for λ ∈ Λ = mZn−1 form an

orthogonal basis of PW( 1
mHn−1) with respect to the Lebesgue L2-norm. This,

however, is not true for n ≥ 3. For n = 3, a classical result of Venkov [139] shows
that it is an orthogonal basis if we take Λ as the dual lattice of

{(u/2 + v, u/2− v/2) : u, v ∈ 1

m
Z}.

For n ≥ 4, a recent result [62, 100] implies that no set of translations Λ exists
for which {gλ}λ∈Λ is an orthogonal basis of PW( 1

mHn−1), otherwise Hn−1 would
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need to be centrally symmetric, have only centrally symmetric faces and tile the
space by translations, but none of these properties hold. In any case, in practice,
using Λ = mZn−1 works reasonably well since {gλ}λ∈Λ is an orthogonal basis of
PW( 1

m [−1/2, 1/2]n−1) which contains PW( 1
mHn−1).

Let F be a finite-dimensional, Γn-invariant subspace of span{gλ : λ ∈ mZn−1},
and again use the parametrization

g(x) =
∑
i,i′

Xi,i′gi(x)gi′(x),

where {gi} is a basis for the Γn-invariant functions in F .
To set up the linear system from Section 10.3 we need to compute the matrix

Ai,i′ = νn(gigi′) and the vector bi = gi(0). By Lemma 10.4 the optimal function
then is given by

g(x) =
(
∑

i cigi(x))
2

(cTb)2

with c a solution to Ac = b.
In Section 10.5 we calculate the Fourier transform of χHn−1

(x) for general n.
This function has removable singularities whenever xi = 0 for some i or xi = xj
for some i ̸= j. The function gi is a linear combination of shifts of the Fourier
transform, and thus can also have removable singularities. To compute gi(0) we
consider each term individually, check whether the denominator evaluates to zero
and if it does, we use repeated applications of L’Hôpital’s rule.

To compute the entries Ai,i′ = νn(gigi′), we need to compute integrals of the
form

∫
Rn−1 f(x) dx, where f(x) = gi(x)gi′(x)Wn(x, 0). To simplify the computations

we change variables to m−1x. Since the Fourier transform of gi(mx) is supported in
[−1/2, 1/2]n−1 and the Fourier transform of Wn(mx, 0) is supported in [−m,m]n−1,
the Fourier transform of f is supported in [−(m + 1), (m + 1)]n−1. By Poisson
summation, we then have∫

Rn−1

f(x) dx = f̂(0) =
∑

k∈(m+1)Zn−1

f̂(k) =
1

(m+ 1)n−1

∑
k∈ 1

m+1Zn−1

f(k).

By again using Poisson summation, we have∑
k∈ 1

m+1Zn−1

f(k) = (m+ 1)n−1f̂(0)

= (m+ 1)n−1
∑

k∈(m+1)Zn−1

f̂(k)e2πi⟨k,s⟩

=
∑

k∈ 1
(m+1)

Zn−1

f(k + s)

for any s ∈ Rn−1. To avoid evaluation of f on a removable singularity, we set

s =

(
1

m(m+ 1)n
,

2

m(m+ 1)n
, . . . ,

n− 1

m(m+ 1)n

)
,

and compute the integral as∫
Rn−1

f(x) dx =
1

(m+ 1)n−1

∑
k∈ 1

(m+1)
Zn−1

f(k + s).
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Because of the sines and cosines in the formula of χ̂Hn−1
(see Appendix 10.5),

each series
∑

k f(k + s) can be split into (2(m+ 1))n−1 series of rational functions
over the lattice Zn−1, one for each value appearing for the sines and cosines.

Computing these series exactly is the computational bottleneck in our approach.
Maple is the only system among the computer algebra systems we tried in which
we could successfully compute the sums of all the series, and for this we needed
several ad hoc tricks. For instance, for series over Z3, we first compute the outer
series over Z, and then use partial fraction decomposition to simplify the terms
before summing over Z2. Here a complicating factor was that after partial fraction
decomposition the series of some terms no longer converge, which meant we needed
to recombine certain terms in ad hoc ways before summing over Z2.

Unfortunately, Maple 2022.2 contains a bug where it acts nondeterministically
and sometimes gives a completely wrong answer. We, therefore, check that the sum
computed with Maple deviates at most 0.1% from the sum we obtain by truncating
the series to the box [−C/(m+ 1), C/(m+ 1)]n−1, where for n = 3 we use C = 400
(or C = 1300 for the cases where this is not sufficient) and for n = 4 we use C = 25.
We give text files containing the series in Maple syntax and for each series an interval
containing the correct sum given by decimal expressions of a midpoint and a radius.
We also give a Julia file with the code to obtain the rigorous bounds using the data
in these text files.

For (n,m) = (3, 1) and (n,m) = (3, 2), Table 10.6.1 gives the results for the
subspaces F = span{gλ : λ ∈ Sd}, where

Sd = Γn{mλ ∈ Zn−1 : ∥λ∥1 ≤ d}.
This proves the case (3, 2) of Theorem 10.1 (the case (3, 1) was already done in
Section 10.4). For (n,m) = (4, 1), we only compute the series exactly for λ = 0
(partly because of the aforementioned Maple bug), which gives c4,1 ≤ 447/3500 ≈
0.1277 as used in Theorem 10.1. Numerically we estimate that by using more values
of λ this can be improved to c4,1 ≤ 0.026. This would improve the lower bound in
Theorem 10.1 from 0.9787 to 0.9956.

Table 10.6.1. Upper bounds on the best possible value for cn,m
obtained through a parametrization using shifts S2

d .

d c3,1 c3,2

0 0.144444445 1.488888889
1 0.077710979 1.401604735
2 0.077580416 1.401343568
3 0.077261926 1.400616000
4 0.077247720 1.400581457
5 0.077213324 1.400506625





CHAPTER 11

Discussion and future work

This chapter consists of a number of remarks, questions and possible directions
for future research.

Lasserre hierarchies

In Chapter 2, we gave a framework that encompasses all known Lasserre
hierarchies for problems in discrete geometry on compact spaces. It would be
interesting to consider similar hierarchies for problems that do not immediately fit
in this framework. One example is the extension to non-compact spaces, which is
considered by Cohn and Salmon for the sphere packing problem [41]. In dimension
4, the optimal sphere packing is conjectured to be the D4 root lattice. Our result
that the second level of the Lasserre hierarchy is sharp for the kissing number in
dimension 4, where we prove that the unique optimal solution is the D4 root system,
indicates that the second level of the Lasserre hierarchy for the sphere packing
problem may also be sharp.

Currently, the only equality constraints that are used in the Lasserre hierarchies
in discrete geometry are the cardinality constraints of Example 2.6. It would
be interesting to consider a problem that requires different or additional equality
constraints. Does this influence the finite convergence of the hierarchy? In the
convergence proof, we obtain through Lemma 2.9 a measure of the form

λ =

∫
R

χRdσ(R),

where χR =
∑

Q⊆R δQ and σ is a probability measure. If such a measure satisfies

λ(g) = b for some continuous function g and b ∈ R, that does not imply that

χR(g) = b

almost everywhere on the support of σ, which would be required for the convergence
proof. Therefore, the convergence of the hierarchy will depend on the exact equality
constraints that are required.

Solving semidefinite programs

In Chapter 5, we introduced a high-precision semidefinite programming solver,
which uses low-rank structures present in the problem. Further development of the
solver would be useful. In particular, pre- and post-processing steps would simplify
the use of the solver, as would a better integration with the Julia optimization
ecosystem. Here, one could think of removing linearly dependent free variables and
linearly dependent constraints.

139
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Rounding

As with many heuristics, the rounding procedure of Chapter 6 can be further
improved. In the first step, we use the uniqueness of the row-reduced echelon form
to find the exact kernel vectors that describe the optimal face. However, even if
there is a basis of the kernel of a rational matrix of relatively small bitsize, the
row-reduced echelon form can have large bitsize, thereby requiring a high-precision
solution for a good enough numerical approximation. It would be interesting to find
a different method (with similar computational complexity) that would reduce the
precision needed to find the correct kernel vectors.

The size of the final solution seems to depend mainly on the number of variables
taken into account during the last step of the rounding procedure. Taking more
variables into account gives a closer approximation to the numerical solution at the
cost of a larger bitsize. If the small non-zero eigenvalues of the numerical solution
matrix decrease through the transformation of Section 6.3, a better approximation
is warranted, leading to a solution of larger bitsize. Since only the span of the
first k basis vectors corresponding to the transformation is fixed, it might be
possible to avoid such a decrease in the small eigenvalues by constructing a different
transformation matrix.

Spherical Codes

There are many semidefinite programming bounds available for the spherical
cap packing problem: the k-th level of the Lasserre hierarchy which gives 2k-point
bounds, the k-point bounds of [89] consisting of relaxations of the k-th level of
the Lasserre hierarchy, the bounds described by Musin in [115], and the bounds
which use the approximation of the copositive cone by Kuryatnikova and Vera [83].
Some of these bounds are known to be related, and such a relation has been used by
Bekker and Oliveira in [6] to prove the convergence of the k-point bounds in [89].
However, typically the relation stated is between different levels of the hierarchy. It
would be interesting to numerically compare the strength of the different hierarchies.
With the solver of Chapter 5, it is now possible to compare the three and four-point
bounds of the different hierarchies. Such a numerical study might give an indication
which path of research would be most promising for other problems in discrete
geometry.

Energy minimization

In Chapter 8, we conjecture that the second level of the Lasserre hierarchy is
sharp for some families of configurations. In these cases, the potential is given by
the harmonic energy potential, and the polynomial degree needed increases with the
dimension. Because of this, the extrapolation techniques as used in [90] to prove
asymptotic bounds cannot be used. However, maybe it is possible to avoid such an
increase in the number of representations needed by using non-polynomial kernels,
or to avoid an increase in the polynomial degree by using Hermite interpolation of
fixed degree.

Analytic number theory

In Chapter 10, we use 3 and 4-point correlations to bound the fraction of
non-trivial zeros of certain Dirichlet L-functions with multiplicity at most 2 and 3.
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This is in contrast to the problems in discrete geometry, where k-point bounds give
bounds on the same quantity as the 2-point bound. Is it possible to use k-point
bounds with k > 2 to bound the fraction of simple zeros?
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14. K. Böröczky, Jr., Finite packing and covering, Cambridge Tracts in Mathematics, vol. 154,

Cambridge University Press, Cambridge, 2004. doi:10.1017/CBO9780511546587
15. S. Borodachov, Optimal Antipodal Configuration of 2d Points on a Sphere in Rd for Covering,

arXiv:2210.12472, October 2022. doi:10.48550/arXiv.2210.12472

16. S. Borodachov, Polarization Problem on a Higher-Dimensional Sphere for a Simplex, Discrete
Comput Geom 67 (2022), no. 2, 525–542. doi:10.1007/s00454-021-00308-1

17. S. Borodachov, Absolute minima of potentials of a certain class of spherical designs, Applied
and Numerical Harmonic Analysis, Volume dedicated to Edward Saff’s 80-th birthday (A.

Martinez-Finkelshtein, A. Stokols, D. Bilyk, and E. Jacob, eds.), Springer, 2025, pp. 101–129.

18. S. V. Borodachov, D. P. Hardin, and E. B. Saff, Discrete Energy on Rectifiable Sets, Springer
Monographs in Mathematics, Springer, New York, NY, 2019. doi:10.1007/978-0-387-84808-2

19. S. P. Boyd and L. Vandenberghe, Convex optimization, Cambridge University Press, Cam-

bridge, UK ; New York, March 2004.
20. P. G. Boyvalenkov, P. D. Dragnev, D. P. Hardin, E. B. Saff, and M. M. Stoyanova, On

polarization of spherical codes and designs, Journal of Mathematical Analysis and Applications

524 (2023), no. 1, 127065. doi:10.1016/j.jmaa.2023.127065
21. A. E. Brouwer, The uniqueness of the strongly regular graph on 77 points, J. Graph Theory

7 (1983), no. 4, 455–461. doi:10.1002/jgt.3190070411

143

https://doi.org/10.1017/CBO9781107325937
https://doi.org/10.1090/S0894-0347-07-00589-9
https://doi.org/10.1090/S0894-0347-07-00589-9
https://doi.org/10.1016/j.jcta.2008.05.001
https://doi.org/10.48550/arXiv.2306.02725
https://doi.org/10.1145/1356052.1356057
https://doi.org/10.1137/141000671
https://doi.org/10.4171/JEMS/603
https://doi.org/10.1112/s0010437x19007279
https://doi.org/10.1112/s0025579318000530
https://doi.org/10.1080/10556789908805765
https://doi.org/10.1007/s00454-017-9946-z
https://doi.org/10.1017/CBO9780511546587
https://doi.org/10.48550/arXiv.2210.12472
https://doi.org/10.1007/s00454-021-00308-1
https://doi.org/10.1007/978-0-387-84808-2
https://doi.org/10.1016/j.jmaa.2023.127065
https://doi.org/10.1002/jgt.3190070411


22. A. E. Brouwer and W. H. Haemers, The Gewirtz Graph: An Exercise in the The-

ory of Graph Spectra, European Journal of Combinatorics 14 (1993), no. 5, 397–407.
doi:10.1006/eujc.1993.1044

23. A. E. Brouwer and H. Van Maldeghem, Strongly regular graphs, Encyclopedia of Math-

ematics and Its Applications, vol. 182, Cambridge University Press, Cambridge, 2022.
doi:10.1017/9781009057226

24. H. M. Bui and D. R. Heath-Brown, On simple zeros of the Riemann zeta-function, Bull.
Lond. Math. Soc. 45 (2013), no. 5, 953–961. doi:10.1112/blms/bdt026

25. A. Calderbank, P. Cameron, W. Kantor, and J. Seidel, Z4-kerdock codes, orthogonal spreads,
and extremal euclidean line-sets, Proceedings of the London Mathematical Society. Third
series 75 (1997), no. 2, 436–480. doi:10.1112/S0024611597000403

26. P. J. Cameron, J. M. Goethals, and J. J. Seidel, Strongly regular graphs having strongly

regular subconstituents, Journal of Algebra 55 (1978), no. 2, 257–280. doi:10.1016/0021-
8693(78)90220-X

27. P. J. Cameron and J. J. Seidel, Quadratic forms over GF(2), Indagationes Mathematicae

(Proceedings) 76 (1973), no. 1, 1–8. doi:10.1016/1385-7258(73)90014-0

28. E. Carneiro, V. Chandee, F. Littmann, and M. B. Milinovich, Hilbert spaces and the pair
correlation of zeros of the Riemann zeta-function, J. Reine Angew. Math. 725 (2017), 143–182.
doi:10.1515/crelle-2014-0078

29. E. Carneiro, A. Chirre, and M. B. Milinovich, Hilbert spaces and low-lying zeros of L-functions,
Adv. Math. 410 (2022), Paper No. 108748, 48. doi:10.1016/j.aim.2022.108748

30. A. Y. Cheer and D. A. Goldston, Simple zeros of the Riemann zeta-function, Proc. Amer.

Math. Soc. 118 (1993), no. 2, 365–372. doi:10.2307/2160310
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129. K. Schütte and B. L. van der Waerden, Das Problem der dreizehn Kugeln, Math. Ann. 125

(1953), 325–334. doi:10.1007/BF01343127
130. J.-P. Serre, Compact groups, Linear Representations of Finite Groups (J.-P. Serre, ed.),

Graduate Texts in Mathematics, Springer, New York, NY, 1977, pp. 32–34. doi:10.1007/978-

1-4684-9458-7 4
131. J.-P. Serre, Linear representations of finite groups, corr. 5th print ed., Graduate Texts in

Mathematics, no. 42, Springer-Verlag, New York, 1996.
132. D. Simmons-Duffin, A Semidefinite Program Solver for the Conformal Bootstrap,

arXiv:1502.02033, February 2015.

133. N. J. A. Sloane, Tables of sphere packings and spherical codes, IEEE Trans. Inform. Theory
27 (1981), no. 3, 327–338. doi:10.1109/TIT.1981.1056351

134. S. L. Snover, The uniqueness of the Nordstrom-Robinson and the Golay binary codes, ProQuest

LLC, Ann Arbor, MI, 1973. doi:10.25335/M56D5PM3R
135. K. Sono, A note on simple zeros of primitive Dirichlet L-functions, Bull. Aust. Math. Soc.

93 (2016), no. 1, 19–30. doi:10.1017/S0004972715000623

136. E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathe-
matical Series, vol. No. 30, Princeton University Press, Princeton, NJ, 1970.

137. K.-C. Toh, A Note on the Calculation of Step-Lengths in Interior-Point Methods
for Semidefinite Programming, Comput. Optim. Appl. 21 (2002), no. 3, 301–310.

doi:10.1023/A:1013777203597
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