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Summary

We discuss whether closed curves on closed orientable surfaces are contractible, and for non-
contractible curves whether they are homotopic to a curve having no self-intersections. We
prove that the minimal number of self-intersections of an (m,n)-torus curve is gcd(m,n)− 1.
We discuss Dehn’s algorithm for solving the word problem in the fundamental group, which is
the algebraic equivalent of the contractibility problem, and Poincaré’s solution of the problem
concerning intersection-free curves.

Before doing this we develop the theory of curves on surfaces. By triangulating the sur-
faces we can associate them with normal form schemata and use this to realize the surfaces
geometrically. We construct a locally isometric map from the spherical, Euclidean, or hyper-
bolic covering 2-spaces onto the surfaces and construct a group of isometries on this covering
space. This map is used to give a characterization of homotopy and we prove that the funda-
mental group, consisting of the homotopy equivalence classes, is isomorphic to the covering
isometry group. The Cayley graph explains the structure of the fundamental group and is
important in the development of Dehn’s algorithm. The geometric properties of the covering
isometry group are important in Poincaré’s approach.
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Introduction

Consider a rubber band knotted around a ball, a torus, or another three-dimensional object
with any number of holes. Assume that the band fits tightly around the object, as if it where
glued to the surface. When the object is a ball then we know for sure that we can pull the
band off the object without having to cut it loose. When the object has one or more holes
this might or might not be possible. This is the content of chapter 4. When a band can not
be pulled off the object we can still move it around, varying the number of self-crossings. In
chapter 5 we find a way to see whether the minimal number of self-crossings of a band is zero,
and for the special case where the surface has one hole (the torus), we also find an explicit
expression for this minimum.

The background theory needed to state and solve these problems is discussed in the first
three chapters. Chapter 1 is concerned with closed orientable surfaces and how to represent
them by schemata. The closed orientable surfaces are the surfaces corresponding with the
surfaces of three-dimensional objects like balls or doughnuts, for simplicity we will restrict
ourselves to these surfaces even if a result holds for a more general case.

Then in chapter 2 we introduce geometric surfaces and we use the results of the previous
chapter to realize the closed orientable surfaces geometrically. We use this to construct a
locally isometric map, denoted the pencil map, from the spherical, Euclidean, or hyperbolic
covering space onto the surface and prove that this map is a covering map. Although it is
possible to construct such a covering map by topological means only, we choose to use a more
geometric approach since we will need the local isometry property in a alter chapter. We use
this map to construct the covering isometry group.

In chapter 3 we finally introduce curves which represent the rubber bands. We also
introduce homotopy which corresponds with moving the rubber band on the surface without
cutting it open. We use the pencil map and the covering surface to give a characterisation for
homotopic curves. By doing this it starts to become clear why the theory that we have build
up so far is useful when discussing contractibility and self-intersections. We then divide the
set of closed curves on the surface into homotopy classes to form the fundamental group and
we show that this group is isomorphic to the covering isometry group. Finally we discuss the
Cayley graph which forms a bridge between the group structure of the fundamental group
and the geometric properties of the covering isometry group.

In the presentation of this theory we focus on our goal of solving the contractibility and
self-intersections problems. This means that almost all results are used later on to solve
these two problems. We focus on explaining the idea behind the theory and leave out some
technical proofs, referring to the literature instead. We use particularly many results from
John Stillwell’s books [10] and [9].

At this point we have developed enough theory to state and solve the contractibility
problem. We define a contractible curve to be a curve that is homotopic to the constant
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ii INTRODUCTION

curve and use the pencil map to give a characterisation of contractible curves. Then we
discuss the more computational side of the problem by giving an algorithm that decides, in a
finite number of steps, whether a curve is contractible. Finally we describe Dehn’s algorithm
which uses the Cayley graph to give the steps required to contract a curve.

In the last chapter we start by defining what self-intersections of curves are and prove
that contractible curves are homotopic to a curve having no self-intersections. In [9] a proof
is given of the theorem that the minimal number of self-intersections of a (m,n)-torus is zero
if and only if m and n are relatively prime. We extend this by proving that the minimal
number of self-intersections of a (m,n)-torus curve is gcd(m,n)− 1. We finish by describing
a method for determining whether a curve on a surface with more then one hole is homotopic
to a curve without self-intersections.



Chapter 1

Surfaces and schemata

We start by defining closed orientable surfaces and we will give an idea of what these surfaces
are by giving examples and counter examples. Then we continue by defining schemata, which
are combinatorial representations of surfaces. We will introduce the so called identification
space corresponding to a schema and we will show that, up to homeomorphism, there is
exactly one identification space corresponding to each schema. By defining a metric on an
identification space we prove that such a space is a surface.

Then we introduce the normal form schemata, which form a subset of all schemata and
we will show that the g-th normal form schema represents a surface with g holes. After that
we introduce the concept of a triangulation and show that any closed orientable surface can
be triangulated. In the last section of this chapter we use this triangulation to show that
any closed orientable surface is homeomorphic to the identification space of a normal form
schema.

1.1 Closed orientable surfaces

A surface is a Hausdorff topological space in which every point has an open neighbourhood
homeomorphic to some open subset of the plane. Examples of surfaces are the sphere

S = {(x, y, z) ∈ R3 | x2 + y2 + z2 = r2} (1.1)

and the torus, parametrized by

{((R+ r cos v) cosu, (R+ r cos v) sinu, r sin v) ∈ R3 | u, v ∈ [0, 2π]}, (1.2)

with 0 < r < R. To see that the sphere S is a surface, we note that it is a subset of R3, so it is
a Hausdorff space, and any point X ∈ S has an open neighbourhood homeomorphic to some
open subset of the plane. This can be seen, for instance, by using stereographic projection in
the antipodal point of X to map an open neighbourhood of X to the plane.

The double cone is not a surface since the point where the two cones meet does not have
an open neighbourhood homeomorphic to some open subset of the plane. Another example of
a Hausdorff space that is not a surface is the closed unit disk D = {(x, y) ∈ R2 | x2 +y2 ≤ 1}.
Points on the boundary of this disk do not have a neighbourhood homeomorphic to some open
subset of the plane. The closed unit disk, however, is what is called a surface with boundary.

A surface with boundary is a Hausdorff space on which every point has an open neighbour-
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2 CHAPTER 1. SURFACES AND SCHEMATA

Figure 1.1: The double cone, the Möbius strip, and linked tori

hood homeomorphic to some open subset of the upper half plane {(x, y) ∈ R2 | y ≥ 0}. In the
closed unit disk example, points in the interior of the disk have a neighbourhood homeomor-
phic to some open neighbourhood of an interior point of the upper half plane, while points
on the unit circle have a neighbourhood homeomorphic to an open neighbourhood of a point
on the x-axis. Note that the word ‘boundary’ here does not refer to the usual topological
definition of boundary.

A surface is compact when it is compact as a topological space. The sphere is a compact
surface since it is a subset of R3 which means that it is compact if and only if it is closed and
bounded, which it clearly is. The sphere without north pole

S = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1} − {(0, 0, 1)}

is not compact because it is not closed as a topological space.

We call a surface orientable if a consistent concept of clockwise rotation can be defined on
the surface in a continuous manner. The sphere, for instance, is an orientable surface since
its normal varies continuously when moving over the surface. The Möbius strip, however, is
a compact surface with boundary but is not orientable.

When we can connect any two points in a surface by a path that lies in the surface, then the
surface is connected. The surface consisting of two linked tori, for example, is disconnected.

Figure 1.2: The closed orientable surfaces

In this report we will only discuss compact connected orientable surfaces (without bound-
ary), which we will call closed orientable surfaces (closed, again, does not have the usual
topological meaning). After having seen examples of Hausdorff spaces that are not surfaces,
not compact, not connected, not orientable, or have a boundary, we might wonder which
spaces are closed orientable surfaces. We will see that, up to homeomorphism, each closed
orientable surface is a sphere with g ≥ 0 handles. The sphere with zero handles is usually just
called the sphere, the sphere with one handle the torus, and the sphere with two handles the
double torus. The number of handles that a surface has is called the genus of the surface. We
will see that two surfaces with an unequal number of handles are not homeomorphic. That



1.2. SCHEMATA 3

is, a closed orientable surface is completely determined by its genus. Consequences of this are
that there are, up to homeomorphism, only countably many closed orientable surfaces and
that it is possible to embed any closed orientable surface in R3.

1.2 Schemata

A schema Π is a finite collection of ordered sets each containing a finite number of labels.
Each label occurs exactly twice in the collection and each label can be inverted. An example
of a schema is the collection:

Π = {(e3, e
−1
2 , e−1

1 , e2, e4), (e−1
1 , e−1

3 , e−1
4 )}. (1.3)

Note that, as the example shows, it is not required that for each label its inverse also occurs.
The possibilities of a label occurring twice not inverted, once inverted and once not inverted,
and twice inverted, are all allowed.

We construct a set PΠ corresponding to a schema Π by constructing the ordered sets of
labels πi ∈ Π as disjoint regular polygons in the plane where each edge has equal length.
The polygon corresponding to πi is constructed to have #πi edges which are assigned, in
a clockwise manner, the labels of the corresponding ordered set πi. When the label is an
inverse then the edge is given a clockwise orientation and otherwise it is given an anticlockwise
orientation, see Figure 1.3.

The set PΠ is a compact subspace of R2 but, since it has a boundary, is not a surface.
Let SΠ be another space which is the same as PΠ except that we identify the edges that
have the same label. We make these identifications according to the orientations of the edges,
such that, for instance, the point that is the front of an edge is identified with the point that
is the front of the edge bearing the same label. Since each label occurs exactly twice in a
schema the edges are identified in pairs. This means that each point in the interior of an
edge is identified with precisely one other point that is also an interior edge point. The edge
identifications however can imply that more than two vertices are identified to each other.
That is, the edge identifications subdivide the set of vertices in so called equivalence classes
of identified vertices. The space SΠ is called the identification space of Π and consists of:

• interior points X of PΠ,

• identified point pairs {X,X ′} where X and X ′ are points in the interior of two edges of
the polygons of PΠ that bear the same label, and

• equivalence classes {X1, X2, . . . , Xk} where the Xi are vertices of the polygons in PΠ

which are identified by the edge identifications.

The surjective non-injective map I : PΠ → SΠ that sends interior points to itself, interior
edge points to their identified point pairs and vertices to their vertex equivalence classes is
called the identification map.

Note that, unlike PΠ, the set SΠ is not a subspace of R2, so although we have called SΠ

the identification space of Π we do not know yet that it is a topological space. We will show
that it is a metric space by defining a distance function on it. For this we first need the
concept of a polygonal path.

Let M1,M2, . . . ,Mn ∈ SΠ for some n ≥ 2 and let W1,W2, . . . ,Wn be points in PΠ where
Wi = Mi if Mi is an interior point and Wi ∈ Mi if Mi is an edge pair or vertex equivalence
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class. A polygonal path from M1 to Mn is a set of line segments w1, w2, . . . wn−1 where wi
connects Wi with Wi+1. Since the polygons are convex we know that these line segments are
fully contained in PΠ. Note that for fixed M1 and Mn there are many possible polygonal
paths between them, for we can choose the M2, . . . ,Mn−1 freely and if Mi is an edge pair or
a vertex equivalence class we can choose the point Wi ∈Mi freely. We define the length of a
polygonal path to be the sum of the lengths of the line segments it consists of.

For two points A,B ∈ SΠ we define the distance dSΠ
(A,B) between them as the infinum

of the lengths of all polygonal paths connecting them. It is clear that this function is a metric
and thus that SΠ is a metric space.

It is known that polygons with the same number of vertices are homeomorphic. Further-
more it is possible to construct a homeomorphism that maps vertices to vertices and edges to
edges, preserving the order and orientations of the edges. From this it follows that any two
spaces SΠ and S′Π corresponding to some schema Π are homeomorphic to each other. This
means that for each schema Π there is a topologically unique identification space SΠ.

Figure 1.3: Open disks in SΠ

Theorem 1. The identification space SΠ of a schema Π is a surface.

Proof. We have already seen that we can define a distance function on the set SΠ such that
it becomes a metric space, so it is, in particular, a Hausdorff space. We will now show that
each point X ∈ SΠ has an open neighbourhood homeomorphic to an open disk in the plane.
If X is an interior point of a polygon then we can take a small open disk around it which is
homeomorphic, by the inclusion map, to an open disk in the plane. If X it is a set {X1, X2}
of identified interior edge points then we can take the two half disks around the two points
and paste them together to obtain an open planar disk. Note that this pasting of two half
disks is just a renaming of the points in the half disks, the distance between any two points
stays the same, so this operation can certainly be done by a homeomorphism. If X is a vertex
equivalence class {X1, · · · , Xk} then a small open neighbourhood consists of n slices. Let αk
be the angle of the sharp edge of the k-th slice. By picturing a slice in the upper half plane
with its sharp vertex at the origin and one edge on the x-axes we see that the map

φk(re
iθ) = re

iθ 2π
nαk
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is a homeomorphism that squeezes the slice so that its sharp angle is 2π
n , see Figure 1.4. The

like labeled edges of the n slices can now be pasted as to obtain an open planar disk.

Figure 1.4: Resizing a slice

1.3 Normal forms

The orientable normal form schemata are the collections:

Π0 = {(e1, e
−1
1 )}

Π1 = {(e1, e2, e
−1
1 , e−1

2 )}
...

Πk = {(e1, e2, e
−1
1 , e−1

2 , . . . , e2k−1, e2k, e
−1
2k−1, e

−1
2k )}

...

(1.4)

In the previous section we noted that the operation of pasting two edges, whose labels
agree and whose orientations match, can be realized by a homeomorphism. The same holds
for the reverse operation of cutting a polygon in two parts and identifying the cutting edges.
The polygons PΠ are compact subspaces of R2, but seeing them as subspaces of R3 keeps the
topology of PΠ, and SΠ after identification, intact. Finally, the operation of smoothly curving
the polygons of PΠ can be done by a diffeomorphism, so in particular this keeps the topology
of PΠ and thus SΠ intact. We will use these homeomorphisms to show that the identification
spaces SΠi are homeomorphic to the surfaces depicted in Figure 1.4.

The surface SΠ0 is a disk with two identified edges. This disk can be folded, and the edges
pasted, to obtain the sphere. Note that the orientation of the edges is correct, so the pasting
can indeed be realized by a homeomorphism.

The schema Π1 corresponds to the torus. This can be seen by realizing SΠ1 as a square
where the opposite edges are identified. This square can be rolled up and pasted to obtain a
cylinder. Then we can roll this cylinder up and paste the two remaining edges to obtain the
torus, see Figure 1.5.

The next normal form Π2 corresponds to the double torus. To see this we take SΠ2 to be a
regular polygon and cut it in half in such a way that by giving the two new edges both the same
label c and an opposite orientation we get the schema {(e1, e2, e

−1
1 , e−1

2 , c), (e3, e4, e
−1
3 , e−1

4 , c−1)}.
These two polygons are called handles and we can fold and paste them as shown in Figure 1.6.
Finally, we can paste the two remaining edges having label c to obtain the double torus.
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Figure 1.5: Folding and pasting of the torus

Figure 1.6: Folding and pasting of a handle

The rest of the normal form schemata, Πk for k > 2, correspond to the sphere with k
handles. We start with the schema

{(e1, e2, e
−1
1 , e−1

2 , . . . , e2k−1, e2k, e
−1
2k−1, e

−1
2k )}.

Now we cut of k handles (as shown in Figure 1.7 for the case where i = 3) to obtain the
schema

{(e1, e2, e
−1
1 , e−1

2 , c1), . . . , (e2k−1, e2k, e
−1
2k−1, e

−1
2k , ck), (c

−1
1 , c−1

2 , . . . , c−1
k )}.

Each handle can be folded like we did for the double torus. The edge identifications of the
original schema imply that all vertices of (c−1

1 , c−1
2 , . . . , c−1

k ) are identified, so we can take all
vertices together and fold this k-gon like a table sheet. Now we can paste each handle to one
opening of this folded table sheet to obtain the sphere with k handles. Note that although
the figure shows this only for Π3, every step can be done for the general Πk where k ≥ 3.

The sphere with g handles. In chapter 1.1 we gave a precise definition of the sphere (by
an implicit equation) and the torus (by a parametrization). In general we define the sphere
with g handles to be the surface SΠg . As we have just seen this general definition agrees with
the definitions already given for the cases g = 0 and g = 1. In chapter 2.1 we see that this
new definition is very natural when we discuss distances on surfaces. To prove that a surface
is completely determined by its genus we have to prove that any surface is homeomorphic to
SΠg for some g, and that SΠi and SΠj are not homeomorphic for i 6= j. To prove the first
part we need a triangulation of the surface which we will discuss in the next section.
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Figure 1.7: Cutting the polygon for a sphere with three handles

1.4 Triangulations

A triangulation of a surface S is a subdivision of the surface as a finite union of sets τi called
faces. Each face is homeomorphic to a closed triangle in the plane. The intersection of two
faces is either empty, a single point called a vertex, or is a set homeomorphic to the interval
[0, 1] called an edge. The intersection of two edges is either empty or a vertex. Each face has
exactly three edges. When two faces share an edge they are called adjacent.

The criterion that each face is homeomorphic to a closed triangle in the plane is not
significant for a triangulation. We could as well have said that it must be homeomorphic
to a closed disk, since these are topologically the same. What is significant, however, is the
criterion that the intersection of two faces is either empty, a vertex or an edge and that each
face has exactly three edges.

Figure 1.8: Subdivisions of the square

In Figure 1.8 we see three subdivisions of the square. When we identify the sides of these
squares to obtain the torus then these subdivisions are no triangulations. The first one is
no triangulation because, after identification, the two faces are not homeomorphic to closed
disks. The second one is no triangulation because the faces have four edges, and the third
one because the intersection of, for instance, face 1 and 2 is a vertex and an edge.

In Figure 1.9 we see two subdivisions of the square that are triangulations of the torus.
This can be checked directly by using the definition of a triangulation. In [4] it is shown that
the minimal number of vertices required to triangulate the torus is 7. The second triangulation
in Figure 1.9 is such a minimal triangulation.
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Figure 1.9: Triangulations of the torus

Triangulations of closed orientable surfaces. Having constructed explicit triangula-
tions for the torus we might wonder whether every closed orientable surface S can be triangu-
lated. This is indeed the case and we will show how we can use the fact that S is a compact
surface to prove this. This is only a sketch of the proof, the full proof is quite delicate and
can be found in [2].

Since S is a surface each point x ∈ S has an open neighbourhood homeomorphic to an
open disk in the plane. The union of these neighbourhoods cover S, but since S is compact
there is a finite subset of these neighbourhoods that also cover S. In each of the remaining
neighbourhoods we can take a subset that is homeomorphic to a closed disk in such a way
that the union of these closed subsets still cover S. It can be shown that these closed subsets
can be chosen in such a way that their boundaries intersect each other only finitely often (this
is the hard part). When we remove the unnecessary sets from this collection of closed sets
we have a covering of S that looks like Figure 1.10. We can now add vertices and edges as
shown in figure 1.10 to obtain a triangulation.

Figure 1.10: Triangulation of a compact surface

1.5 Surfaces as normal forms

In chapter 1.4 we saw that each closed orientable surface S can be triangulated. We will
use this triangulation to construct a homeomorphism from S to a polygon in the plane with
pairwise identified edges. After that we will see that this polygon is homeomorphic to SΠi

where Πi is the i-th orientable normal form schema.

Unfolding of a surface. We start by taking a face τ1 of the triangulation. By the definition
of a triangulation there is a homeomorphism φ1 from this face to a planar triangle T1. We
can choose this homeomorphism in such a way that the three edges of the face τ1 are mapped
to the edges of T1. Since the surface is orientable we have a concept of clockwise orientation,
so we are able to give the edges of T1 an anticlockwise orientation. Now we take one of the
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adjacent faces of τ1 which we denote by τ2. For this face there is a homeomorphism φ2 to
a triangle T2 in the plane. We can again choose this homeomorphism such that vertices are
mapped to vertices, but we also choose it such that φ1 and φ2 agree on the common edge and
such that T1 ∪ T2 is convex, which is always possible.

We can now choose a third face τ3 that is adjacent to τ1 or τ2 for which we do the same. If
τ3 is adjacent to both τ1 and τ2 then we will not try to make the triangle T3 large enough to
be adjacent to both T1 and T2 but instead we will identify the two edges that should otherwise
be a common edge. Since the surface is connected we can continue this process until there are
no faces left. Note that due to the consistent concept of orientation we will, when we traverse
the edge path around the final convex polygon, traverse the corresponding edges in opposite
directions. Since the maps φi agree where their domains overlap we can define a map φ by
φ(x) = φi(x) where i is an index such that x ∈ τi. Now we have that φ is a homeomorphism
from ∪iτi = S to a planar polygon with pairwise identified edges. [3, page 233]

Reduction to a normal form polygon. In [10, page 127] it is shown that the polygon that
results from unfolding a closed orientable surface can be reduced, by cutting and pasting, to
a polygon with a single vertex cycle. After that it is shown in [10, page 136] that this polygon
can be reduced, again by cutting and pasting, to an orientable normal form polygon. The
cutting surface SΠ corresponding to this new normal form polygon is, since we only used
cutting and pasting, homeomorphic to the original surface. This shows that each closed
orientable surface S is homeomorphic to SΠi for some i.
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Chapter 2

Geometry

In this chapter we start by defining the spherical, Euclidean, and hyperbolic 2-spaces, and we
will define geometric surfaces. Then we will show that any closed orientable surface can be
realized as a geometric surface. We define the geometric concept of completeness and prove
that closed orientable surfaces are complete.

After that we use the fact that a closed orientable surface S is a complete geometric surface
to construct a locally isometric map, called the pencil map, from the spherical, Euclidean,
or hyperbolic 2-space onto S. We also define a covering map and covering space and claim
that the pencil map is a covering map. We use the pencil map to introduce the concept of
a covering isometry and continue by proving a couple of important properties of covering
isometries. We use the covering isometries to prove that the pencil map is a covering map.

2.1 Geometric surfaces

The Euclidean 2-space, denoted E2, is the metric space (R2, dE2) where dE2 is the usual
Euclidean distance function:

dE2 : R2 × R2 → R, (x, y) 7→ ((x1 − y1)2 + (x2 − y2)2)
1
2 .

An open Euclidean disk is a set Dε(x) = {y ∈ E2 | dE2(x, y) < ε} for some x ∈ E2 and some
ε > 0.

An isometry is a map from one metric space onto another that preserves distance. That
is, if (M1, d1) and (M2, d2) are metric spaces and f : M1 →M2 is an isometry, then d1(x, y) =
d2(f(x), f(y)) for all x, y ∈ M1. Isometries are bijective maps: they are injective since if
f(x) = f(y) then d(x, y) = d(f(x), f(y)) = 0 so x = y, and they are surjective by definition.
An isometry and its inverse clearly are continuous, so an isometry is a homeomorphism. Two
metric spaces are called isometric when there exists an isometry between them. From the
above it follows that two isometric spaces are, in particular, homeomorphic.

A Euclidean surface is a metric space (S, d) such that for any x ∈ S there is an ε > 0
such that Dε(x) = {y ∈ S | d(x, y) < ε} is isometric to a Euclidean disc. Hyperbolic space,
denoted H2, is the set {(x, y) ∈ R2 | y > 0} with the hyperbolic metric defined on it, see [8]
for a general introduction to hyperbolic geometry. Spherical space, denoted S2 is the unit
sphere with the spherical distance function. By replacing Euclidean space by spherical space
or hyperbolic space in the definition of Euclidean surface we get the definitions of spherical

11
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and hyperbolic surfaces.

When it is possible to define a distance function on a surface such that it is a Euclidean,
spherical or hyperbolic surface then we say that we can realize the surface geometrically, or we
just say that the surface is a geometric surface. A geometric surface is, in particular, a surface.
It is a metric space so it is a Hausdorff space, and any point has an open neighbourhood
isometric to an open disk in E2, S2, or H2 which, in turn, is homeomorphic to an open disk
in R2. In the next section we will prove that, conversely, any closed orientable surface can be
realized geometrically.

2.2 Geometric realization

In chapter 1.2 we assigned a distance function to the set SΠg in order to prove that it is a
surface. Then we proved that each closed orientable surface is homeomorphic to SΠg for some
g. We will now assign specific distance functions to each of the spaces SΠg and show that in
this way we can realize the closed orientable surfaces geometrically.

We have seen that the space SΠ0 is homeomorphic to S2. Let φ : SΠ0 → S2 be a home-
omorphism between the two spaces and let dS2 be the spherical distance function. Let
d(x, y) = dS2(φ(x), φ(y) for all x, y ∈ SΠ0 , d is a distance function on SΠ0 and with this
distance function SΠ0 becomes a spherical surface.

The torus SΠ1 is a Euclidean surface. To see this we just have to repeat the proof of
Theorem 1 and note that the homeomorphisms used in the proof are in fact isometries. The
only tricky part here is the last step where we resize the slices in order to have a total angle
sum of 2π, but since the polygon is a square the angle sum of the four angles already is 2π, so
we do not need to resize the slices and as such the last step can also be done by an isometry.

The rest of the spaces, SΠg for g ≥ 2, are hyperbolic surfaces. We will again use a variation
of Theorem 1 but now we take PΠg to be a regular polygon in the hyperbolic plane with angle
sum 2π. We define polygonal paths in the same way except that we take hyperbolic geodesic
segments as the straight line segments. We define the distance between two points to be
the infinum of all hyperbolic polygonal paths between them. We have already noted that
k-gons are homeomorphic, the same holds if the edges are not (Euclidean) straight lines so
this identification space SΠg is, as it should be, homeomorphic to the one given in chapter 1.2.

Small open neighbourhoods of interior points are isometric, by the inclusion map, to
open hyperbolic disks and small open neighbourhoods of edge pairs are isometric to open
hyperbolic disks by the hyperbolic isometry that pastes the two half disks. Now we also want
a neighbourhood of a vertex cycle to be isomorphic to an open hyperbolic disk. For this to
be the case we need the angle sum of the polygon to be 2π. Since if this is the case we do not
need to rezise the slices and we can use a hyperbolic isometry to paste the slices to obtain a
hyperbolic disk [10, page 124]. We will now show that it is always possible to constuct any
regular hyperbolic polygon in such a way that the angle sum is 2π.

Construction of regular polygons with angle sum 2π. In the Euclidean plane the only
regular polygon with angle sum 2π is the square, we will see that in the hyperbolic 2-space
we can construct any regular polygon in such a way that it has angle sum 2π. This explains
why the torus is Euclidean and why surfaces of higher genus are hyperbolic.

The area of a hyperbolic triangle is π−α− β − γ where α, β, and γ are the angles of the
triangle. We can divide a regular hyperbolic n-gon with angle sum s into n triangles with
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angles 2π
n , s

2n , and s
2n . This means that the area A of a regular hyperbolic n-gon with angle

sum s is nπ − 2π − s. In order to get angle sum 2π we need the area to be (n − 4)π, which
is positive since n ≥ 8. By taking the center of the polygon to be 0 in the Poincaré disk
we see that the diameter of the polygon can be anything between 0 and ∞. It is also clear
that the area of the polygon varies with the diameter d between 0 and nπ − 2π, since s→ 0
when d→∞. So by the intermediate value theorem there is a diameter such that the area is
(n− 4)π which gives us angle sum 2π [10]s.

Distance on surfaces. This explains why it is nice to define the sphere with k handles
to be SΠk . The distance function follows naturally from the geometric space in which we
take the polygon. When we take some closed orientable surface S that is a subset of R3, for
instance as the image of some map p : [0, 1]2 → R3, then it is homeomorphic to some SΠk .
The distance function on SΠk induces some distance function on S, but this distance function
will be quite strange. That is, it will be very different from the distance function induced
from embedding the surface in E3.

As an example we can take a look at the torus, as defined in (1.2), with the Euclidean
distance function. In Figure 1.5 we see how we obtain the torus in R2 from folding a square
in E2. Now, the paths e1 and e2 on the torus do have the same length, while it looks as if e2

is longer.

2.3 Completeness

Euclid’s second postulate asserts that straight line segments can be continued indefinitely.
This means that a straight line segment in the spherical, Euclidean or hyperbolic 2-space,
can be extended in either direction in such a way that the length of the half line diverges
to infinity. There are geometric surfaces for which this is not true. Take for instance the
Euclidean plane without the origin. This is a Euclidean surface, but when we extend the
line segment between the points (1, 0) and (2, 0) in the direction of the origin then its length
converges to 2.

A surface for which this postulate does hold is called a complete surface. We will now
prove that all closed orientable surfaces S are complete.

Theorem 2. A closed orientable surface S is complete.

Proof. When a surface S is spherical then it is isometric to S2. A straight line segment l
on S2 lies on a great circle, by following this circle around and around this line segment can
clearly be extended in either direction in such a way that its length diverges to infinity.

We have seen that any other closed orientable surface S is homeomorphic to SΠg for some
g > 0. A line segment l on SΠg is the image, under the identification map I , of a set of line
segments L1, L2, . . . , Lk on PΠg . See Figure 2.1 for an example of three of these segments on
the polygon for the double torus. When we extend l we will need more and more Li’s in the
pre-image. All but maybe the first and last segments connect two edge points of the polygon.

The length of l is the sum of the lengths of the segments Vi. Now assume that the length
of l does not diverge to infinity. Since the lengths of the segments Vi are non-negative this
means that limk→∞ Vk = 0. The only way for this to happen is when these segments come
closer and closer to some vertex V of PΠg , that is, l converges to I (V ).
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Figure 2.1: Line segments on PΠ2

From chapter 2.1 we know, however, that SΠg is a geometric surface so I (V ) has an open
neighbourhood isometric to an open disk in the Euclidean or hyperbolic plane. We can now
use Euclid’s second postulate to reach a contradiction.

2.4 The pencil map

A covering for a topological space S is a topological space S̃ together with a map ρ : S̃ → S,
such that for all points x ∈ S there is an open neighbourhood N such that ρ−1(N) is a disjoint
union of open sets, each of which is mapped homeomorphically by ρ onto N . Such a space S̃
and map ρ are called a covering space and a covering map for the space S, respectively.

From the definition it follows that a covering map is surjective, another important property
is that is is continuous.

Theorem 3. A covering map ρ : S̃ → S is continuous.

Proof. To prove continuity we have to prove that the inverse image of any open set in S is
open. Let O ⊂ S be some open set. For each x ∈ O there is an open neighbourhood Nx such
that ρ−1(Nx) is a disjoint union open sets, each of which is mapped homeomorphically by ρ
onto Nx. From this it follows that the ρ inverse image of the open set Nx ∩ O ⊂ Nx is also
open. Now we have that

ρ−1(O) = ρ−1(
⋃
x∈O

(Nx ∩O)) =
⋃
x∈O

(ρ−1(Nx ∩O))

and since an arbitrary union of open sets is open we have that ρ−1(O) is open.

We will show that for any closed orientable surface S there is a covering. For this we are
going to construct a map ρ from S2, E2 or H2 onto S.

If the surface S is spherical then there is a homeomorphism φ from S2 to S, this φ is a
covering map. Now assume that the surface S is Euclidean or hyperbolic and let S̃ be E2 or
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H2, respectively. In the following proof we will use the previously obtained results that the
closed orientable surfaces are geometric and complete surfaces.

Let O ∈ S, since S is a geometric surface there is a Õ ∈ S̃ and an isometry ρ : Dε(Õ)→
Dε(O). We now look at the straight half lines that originate from Õ. From the first postulate
of Euclid it follows that these lines fill the entire space S̃. Since ρ is an isometry we have that
the ρ-images of the parts of the straight lines that lie in the open disk Dε(Õ) are parts of
straight lines that lie in Dε(O). That is, for each straight half line in S̃ that originates from
Õ there is a unique corresponding straight half line in S that originates from O.

Figure 2.2: The pencil map

We now extend the map ρ so that it maps all of S̃ to S. Let X̃ ∈ S̃, this point lies on a
unique straight line originating from Õ and has a distance dS̃(Õ, X̃) to Õ. We now let X ∈ S
be the point on the corresponding straight half line in S such that dS(O,X) = dS̃(Õ, X̃).
This is always possible since we know that S is complete so we can extend each straight line
indefinitely.

We now define X to be the ρ-image of X̃. This makes ρ a well defined map from S̃ onto
S. Additionally, it is shown in [10, page 36] that this map is onto S and that it is a local
isometry.

So we have that when a closed orientable surface S is spherical then we already have a
covering map, and when the surface is Euclidean or hyperbolic then we have constructed a
locally isometric map ρ from E2 or H2 onto S. In the next section we will develop the tools
we need to prove that a locally isometric surjective map is a covering, which proves that any
closed isometric surface has a covering.

2.5 Covering isometries

In this section we will introduce the covering isometry group, which will give more insight in
the geometry of the covering surface. We will give a couple of results about this group which
will come to use in later chapters. Additionally we will prove, as claimed in chapter 2.4, that
the pencil map ρ is a covering map.

The isometry group of a metric space M is the set of isometries from M onto itself with
function composition as group operator. In chapter 2.1 we saw that an isometry is bijective
and that its inverse is also an isometry. Furthermore, we have that the composition of two
isometries f : M → M and g : M → M is also an isometry, since d(g(f(x)), g(f(y))) =
d(f(x), f(y)) = d(x, y). Using this it is easy to see that the isometry group of a metric space
M is a well defined group.
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Let G be a subgroup of the isometry group of a metric space M . For an element X ∈M
we define the G-orbit of X to be the set G(X) = {g(X) | g ∈ G}, note the ambiguity of the
symbol G. A subgroup G is discontinuous if none of the G-orbits contain limit points. The
group G is fixed point free if for any X ∈M we have: g(X) = X for some g ∈ G implies g is
the identity. The next theorem shows that if G is fixed point free then for any two points A
and B there is at most one element g ∈ G such that B = g(A).

Theorem 4. Let G be a fixed point free subgroup of the isometry group of some surface S,
for any two X,Y ∈ S there is at most one isometry g ∈ G such that Y = g(X).

Proof. Let g1, g2 ∈ G and assume that g1(X) = Y = g2(X). This means that X = g−1
2 (g1(X))

but since G is fixed point free this means that g−1
2 g1 is the identity element so we have that

g1 = g2.

The covering isometry group. Given a closed orientable surface S and the pencil map
ρ : S̃ → S we define a covering isometry γ to be an isometry of S̃ onto itself such that for
any X̃ ∈ S̃ we have that ρ(γ(X̃)) = ρ(X̃). The set of covering isometries of S̃ clearly is a
subgroup of the isometry group of S̃. We denote this subgroup by Γ. In [10] it is shown that
this subgroup is fixed point free and the following theorem shows that it also is discontinuous.

Theorem 5. The covering isometry group Γ is discontinuous.

Proof. If Γ is not discontinuous then there is a X ∈ S such that Γ(X) has a limit point L.
Since ρ is a local isometry there is an ε > 0 such that ρ is an isometry on Dε(L). Since Dε(L)
is isometric to an open subset of S each point in Dε(L) must be mapped to a unique point
on S. Since L is a limit point of Γ(X) there are infinitely many points of Γ(X) in the disk
Dε(L). By the definition of an orbit we have that there is a covering isometry that maps one
of these points to another, and by the definition of a covering isometry these two points are
mapped to the same point on S. This is a contradiction, so Γ is discontinuous.

For two points X̃, Ỹ ∈ S̃ there clearly are isometries σ in the isometry group of S̃ such
that Ỹ = σ(X̃). In [10] it is shown that that if X̃ and Ỹ are mapped to the same point on S,
then at least one of those isometries is a covering isometry. We use this result to prove that
inverse ρ images of points on the surface are orbits of the covering isometry group.

Lemma 6. The inverse image ρ−1({X}) for any X ∈ S is non-empty and equals Γ(X̃) for
any X̃ ∈ ρ−1({X}).

Proof. The pencil map ρ is surjective so its inverse images are non-empty. Let X̃ be some
point in ρ−1({X}) for some X ∈ S, we will prove that ρ−1({X}) = Γ(X̃).

(⊂) If Ỹ ∈ ρ−1({X}) then ρ(X̃) = ρ(Ỹ ) so there is some γ ∈ Γ such that Ỹ = γ(X̃) which
means that Ỹ ∈ Γ(X̃).

(⊃) If on the other hand Ỹ ∈ Γ(X̃) then there is a γ ∈ Γ such that Ỹ = γ(X̃), but γ
is a covering isometry so by definition we have that ρ(Ỹ ) = ρ(X̃) which means that Ỹ ∈
ρ−1({X}).

We can use this result together with the fact that Γ is discontinuous to prove the following
theorem:

Theorem 7. The pencil map ρ is a covering map.
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Proof. Let X ∈ S, by Lemma 6 the inverse image ρ−1({X}) is non-empty and equals Γ(X̃)
for some X̃ ∈ ρ−1({X}).

Since ρ is a local isometry there is some ε > 0 such that ρ is an isometry between Dε(X̃)
and Dε(X). Since Γ is discontinuous we know that Γ(X̃) = ρ−1({X}) does not contain a
limit point. This means that we can choose ε small enough such that the disks Dε(Ỹ ) for all
Ỹ ∈ ρ−1({X}) are disjoint.

The open disk Dε(X̃) gets mapped isometrically onto Dε(X). But since for any Ỹ ∈
ρ−1({X}) there is a covering isometry γ ∈ Γ such that Ỹ = γ(X̃) we have that Dε(Ỹ ) is also
mapped isometrically onto Dε(X).

So we have that ρ−1(Dε(X)) is a disjoint union of open sets, each of which is mapped
isometrically and thus homeomorphically by ρ onto N , so ρ is a covering map.

Geometric aspects of the covering isometry group. We will now discuss in some more
detail what the covering isometry group of the closed orientable surface S looks like. If the
genus of S is 0 then the universal covering surface is S2, and the covering map is a global
isometry. This means that the covering isometry group consists just of the identity map.

If S has genus g = 1 then the universal covering surface is E2, the isometry group of E2

consists of rotations, translations, reflections, and glide reflections. We have seen that the
covering isometry group is fixed point free, so it does not contain rotations or reflections,
and since S is orientable it does not contain glide reflections either. So the covering isometry
groups consist just of translations.

If S has genus g > 1 then the universal covering surface is H2. The hyperbolic translations
and hyperbolic glide reflections are the only fixed point free isometries on H2. Since S is
orientable its covering isometry group consists of just the hyperbolic translations. We will
now explain in some more detail what hyperbolic translations are.

In the Poincaré disk a hyperbolic translation τ is the composition of two circle inversions
in disjoint circles that both are orthogonal to the boundary of the disk. These circle arcs are
hyperbolic geodesics and since they do not intersect they are called ultra-parallel. The TODO
unique geodesic which is orthogonal to both circles is invariant under τ . The equidistant
curves to this invariant geodesics, which are not geodesics, are clearly also invariant under τ .
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Chapter 3

Curves on surfaces

3.1 Homotopy and curve lifting

In this section we will finally introduce the concept of curves, which will, when they are closed,
represent the rubber bands which we talked about in the introduction. We will define the
concept of homotopy to represent the operation of moving these bands. The main result of
this section is the characterisation of homotopic curves using the covering surface.

A curve on a surface S is defined to be a continuous map p : [0, 1] → S. The endpoints
p(0) and p(1) of a curve are respectively called the origin and the terminus. When we
can ‘continuously deform’ two curves with the same endpoints into each other we call them
homotopic. Formally, two curves are homotopic if there exists a continuous map h : [0, 1]2 → S
such that:

• p1(t) = h(0, t) and p2(t) = h(1, t) for all t ∈ [0, 1], and

• p1(0) = h(s, 0) = p2(0) and p1(1) = h(s, 1) = p2(1) for all s ∈ [0, 1].

Universal coverings. A space is called simply connected if it is connected and if any two
curves whose endpoints coincide are homotopic. When a covering surface is simply connected
it is called a universal covering. It is clear that any curve p in R2 can homotopically be
‘contracted’ to the straight line segment connecting the endpoints of p. From this it follows
immediately that R2 is simply connected. By viewing H2 as a part of R2 we also have that
H2 is simply connected. By using stereographic projection we have that any two non space
filling curves on S2 are homotopic. By cutting a space filling curve p on S2 into smaller parts
it can be shown, using the compactness of p, that p is homotopic to a non space filling curve
and thus that S2 is simply connected [10, page 142]. This means that the covering surfaces
used in the construction of the pencil map ρ are universal covering surfaces.

Curve lifting. When we have a curve p on a surface S and a curve p̃ on its universal
covering surface S̃ such that ρ ◦ p̃ = p then p̃ is called a lift of p. In [3, page 156] the
compactness of curves is used to show that for any curve p on S and for any Õ ∈ ρ−1({p(0)})
there is a unique lift p̃ for which p̃(0) = Õ.

The following important theorem will be used extensively to determine whether two curves
on a surface are homotopic.

19
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Theorem 8. Let p1 and p2 be curves on a closed orientable surface S whose endpoints coincide
and let p̃1 and p̃2 be lifts of p1 and p2, respectively, whose origins coincide. The curves p1

and p1 are homotopic if and only if the termini of p̃1 and p̃2 coincide.

Proof. (⇒) If p1 and p2 are homotopic then there is a homotopy h between them. In [3, page
156] it is shown that just as for a curve there is also a uniqe lift for a homotopy. This lift h̃
then is a homotopy between p̃1 and p̃2 which is, by definition, only possible if their endpoints
coincide.

(⇐) If on the other the hand the termini of p̃1 and p̃2 coincide then p̃1 and p̃2 share the
same endpoints. By the definition of a lift, the covering surface is a universal covering surface,
which means that it is simply connected. This means that there is a homotopy h̃ between p̃1

and p̃2. The map h = ρ ◦ h̃ is continuous since it is the composition of two continuous maps
and it is easy to check that h is a homotopy between p1 and p2.

3.2 The fundamental group

In this section we will close the curves which we have defined in the previous section and we
will group these closed curves according to their homotopy type. We will see that we can
associate an element of the covering isometry group to each of these homotopy classes.

Definitions. When the origin and terminus of a curve coincide then it is closed, the origin
(or terminus) of a closed curve is called the base point. The product of two closed curves c1

and c2 whose base points coincide is defined as

(c1c2)(t) =

{
c1(2t), 0 ≤ t ≤ 1

2
c2(2t− 1), 1

2 ≤ t ≤ 1

and the inverse of a closed curve c is defined as

c−1(t) = c(1− t)

for all t ∈ [0, 1].
The homotopy relation is an equivalence relation on the set of closed curves with fixed

base point B ∈ S. The equivalence class of a closed curve c is denoted by [c] and the collection
of equivalence classes by π1(S). The product of two classes is defined as [c1][c2] = [c1c2], the
inverse as [c1]−1 = [c−1

1 ], and the identity element as [1], where 1 is the constant curve at the
base point. It is straightforward to show directly that this product is well defined and that
the set π1(S) is a group under this product [3, page 165]. For a connected surface it does
not matter which base point we choose so in particular we have that the fundamental group
π1(S) of a closed orientable surface S is unique.

Isomorphism. In chapter 3.1 we saw that two curves c1 and c2 are homotopic if and only
if the termini of their lifts, each having the same origin Õ, coincide. This means that there is
a bijection between the collection π1(S) and the set

{c̃(1) | c̃ is a lift with origin Õ of a closed curve c with base point O} (3.1)

for some fixed Õ that lies over O.
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Since the curve c is closed the endpoints of a lift are both mapped to the same point by
the covering map. This means that for any X̃ in the set of (3.1) there is a covering isometry
γ ∈ Γ such that X̃ = γ(Õ). On the other hand, for any covering isometry γ, there is a closed
curve c with base point O such that its lift has endpoints Õ and γ(Õ). This means that the
set of (3.1) equals Γ(Õ) = {γ(Õ) | γ ∈ Γ}.

From Theorem 4 it follows that there is a bijection between Γ(Õ) and Γ. So we have
that there is a bijection between π1(S) and Γ where the homotopy class of a closed curve c is
mapped to the covering isometry that maps the origin of a lift of c to its terminus. In [10] it
is shown that this bijection is a group isomorphism, which proves the following theorem:

Theorem 9. Given a closed orientable surface S, the fundamental group π1(S) is isomorphic
to the covering isometry group Γ of S, by the isomorphism that maps the homotopy class of
a curve c to the covering isometry that maps the origin of a lift of c to its terminus.

3.3 The Cayley graph

The goal of this section is to describe the group structure of the fundamental group of a closed
orientable surface. In order to do this effectively we will start by introducing the concepts
of generators, words, relators and group presentations. We have seen that the fundamental
group is isomorphic to the covering isometry group of the surface, but although the covering
isometry group tells us a lot about the covering surface it does not, in a direct way, help
in making the group structure more clear. The Cayley graph will turn out to be a bridge
between the geometric aspects of the covering isometry group and the, more abstract, group
aspects of the fundamental group.

Generators, words, relators and presentations. A generating set for a group G is a
subset H such that any g ∈ G can be expressed as a product of finitely many elements in H
and their inverses. A word is a finite ordered non-empty set of elements of some generating
set. Note that different words can represent the same element of a group. For instance, if
a and b are two generators then aa−1 and bb−1 are different words but both represent the
identity element. When two words represent the same group element we call them equivalent.

Let F be some subset of G, that does not contain the identity element. The Cayley graph
G associated with G and F is the graph such that there is a bijection φ from the set of
vertices in G to G and such that there is a directed edge between two vertices a, b ∈ G if
and only if φ(a)φ(b)−1 ∈ F . The subset F clearly is a generating set for G if and only if the
corresponding Cayley graph is connected.

When a word w is equivalent to the identity element of the group then w is a relator.
Each group G has the trivial relators gg−1 and g−1g for each g ∈ G. Two words w1 and w2

are equivalent if and only if we can transform w1 into w2 by insertions of relators between
two consecutive symbols, insertions of relators before the first or after the last symbol, and
by removing blocks of consecutive symbols which are equal to a relator.

When we can use a set of relators r1, . . . , rn to transform another relator r into the identity
element then we say that we can deduce the relator r from the relators r1, . . . , rn. A set of
relators r1, . . . , rn is a set of defining relators if each relator of a group can be deduced from
the relators in this set together with the trivial relators. When a group has an empty set of
defining relators, that is, all relators can be deduced from the trivial relators, then it is a free
group. The Cayley graph of a free group is a tree. Figure 3.1, for instance, shows the Cayley
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graph of the free group with two generators. Note that a graph consists just of vertices and of
directed connections between these vertices, so when we embed a graph in R2 we can choose
the positions of the vertices and the shapes of the edges freely. This means that Figure 3.1 is
just one of many ways of depicting the Cayley graph of the free group with two generators.

Figure 3.1: The Cayley graph of a free group with two generators

A set of generators H and a set of defining relators R together give a group presentation
〈H|G〉. In [5, page 13] it is shown that for any group there is such a group presentation and
that a presentation defines, up to isomorphism, a unique group.

The Cayley graph of the fundamental group. We want to describe the fundamental
groups of the closed orientable surfaces in more detail by giving their group presentations. In
order to do this we will construct the Cayley graph corresponding to the fundamental group
and use this graph to find a generating subset and a set of defining relators.

A surface of genus g = 0 has a trivial fundamental group so we will focus on the surfaces
of genus g > 0. In chapters 1.3 and 2.2 we saw that a surface SΠg , with g > 0, is the image,
under the identification map I , of a regular Euclidean or hyperbolic polygon PΠg with 4g
edges. In chapter 1.3 we also saw that identifying the edges and then folding the polygon
and pasting the identified edges resulted in bringing together all the vertices of the original
polygon. We can view the pasted lines as curves with as base point the point where all vertices
of the original polygon meet. We denote these curves by e1, e2, . . . , e2g. Any set of curves
e′1 ∈ [e1], e′2 ∈ [e2], . . . , e′2g ∈ [e2g] which are disjoint, except for their common base point, is
called a set of canonical curves. We will refer to the set e1, e2, . . . , e2g as the set of canonical
curves.

Lemma 10. The graph G consisting of the lifts of the canonical curves e1, e2, . . . , e2g of a sur-
face SΠg is an embedding of the Cayley graph associated with π1(SΠg) and H = {[e1], [e2], . . . , [e2g]}.

Proof. We will first prove that there is a bijection φ between the vertices of G and the elements
in π1(SΠg). We associate an arbitrary vertex Õ of G with the identity element of π1(SΠg).
Since G consist of the lifts of the canonical curves, which all have the same base point, we
know that the covering map ρ maps all the vertices of G to the same point. This means that
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for any vertex Ṽ of G there is a covering isometry γ such that Ṽ = γ(Õ) and from Theorem 4
it follows that there is only one covering isometry for which this is true. So we have a bijection
between the set of vertices of G and the covering isometry group and by using the result of
Theorem 9 we are done.

Let Ṽ1 and Ṽ2 be vertices in G and let γ1 and γ2 be the covering isometries such that
γi(Õ) = Ṽi for i = 1, 2. The covering isometry γ2γ

−1
1 maps Ṽ1 to Ṽ2 and corresponds,

by the bijection between the covering isometry group and the fundamental group, with the
equivalence class of any closed curve that lifts to a curve with origin Ṽ1 and terminus Ṽ2.
From this it is clear that φ(V1)φ(V2)−1 ∈ H if and only if the two vertices are connected by
an edge.

Presentation of the fundamental group. In [10, page 149] it is shown that G is con-
nected and that it partitions the covering surface into polygons isometric to SΠg . From the
connectedness we know that the set of canonical curvesH is a generating set for π1(SΠg). From

the result that each polygon is isometric to SΠg it is clear that e1e2e
−1
1 e−1

2 · · · e2g−1e2ge
−1
2g−1e

−1
2g

is equivalent to the identity word. When the path of a word in the fundamental group runs
along more then half the edges of a polygon we can use the above relator to pull it across the
polygon and let it run along the other edges of the polygon in opposite direction. In [10, page
151] it is shown that in this way we can use the relator e1e2e

−1
1 e−1

2 · · · e2g−1e2ge
−1
2g−1e

−1
2g to

reduce any other relator to the identity word, which makes this relator a defining relator.
This proves the following theorem:

Theorem 11. π1(SΠg) = 〈[e1], [e2], . . . , [e2g] | [e1e2e
−1
1 e−1

2 · · · e2g−1e2ge
−1
2g−1e

−1
2g ]〉.

We have already seen that each closed orientable surface has a unique fundamental group.
We will now show that the surfaces with an unequal number of handles are not homeomorphic.
For this we abelianize π1(SΠg) to obtain 〈[e1], [e2], . . . , [e2g]〉, which is the free group with 2g
generators. Two free groups with an unequal number of generators are not isomorphic, and
when the abelianized versions of two groups are not isomorphic then the original groups are
neither, so we have that π1(SΠi) is not isomorphic to π1(SΠj ) for i 6= j. Together with the
proof that any closed orientable surface is homeomorphic to SΠg for some g we have finally
finished the proof of the following assertion made in chapter 1.1:

Theorem 12. A closed orientable surface is, up to homeomorphism, completely determined
by its genus.
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Chapter 4

Contractibility

4.1 A characterisation of the problem

The problem of deciding whether a closed curve c with base point B is in the homotopy class
of the constant curve at B is known as the contractibility problem. We can use the covering
surface to give a characterisation of the null-homotopic curves:

Theorem 13. A closed curve c on a closed orientable surface S is null-homotopic if and only
if its lifts are closed.

Proof. Let c be a closed curve with base point B and let c̃ be a lift with origin Õ ∈ ρ−1({B}).
(⇒) If the curve c is null-homotopic then it is homotopic to the constant curve t 7→ B.

Since the covering map ρ is a local bijection, the lift of t 7→ B with origin Õ must be the
constant path t 7→ Õ. Using Theorem 8 we have that the terminus of c̃ must be the same as
the terminus of t 7→ Õ which is Õ, so c̃ is closed.

(⇐) If the lift c̃ is closed then, since the universal covering surface is simple, there is a
homotopy h̃ between c̃ and the constant curve t → Õ. It is straightforward that the map
h = ρ ◦ h̃ is a homotopy between the curve c and the constant curve t → B̃ so c is null-
homotopic.

In chapter 3.3 we saw that the set [e1], [e2], . . . [e2g] is a generating set for the fundamental
group, which means that any closed curve c is homotopic to some product of canonical curves.
That is, a closed curve c corresponds with a word in the fundamental group. The curve is
null-homotopic if and only if this word is equivalent to the identity word. In the section about
Dehn’s algorithm we will find out how we can use the relators of the fundamental group to
reduce the word of a contractible curve to the identity element. In the next section we will
first look into the more computational aspects of the problem of deciding contractibility.

4.2 Edge curves

In chapter 1.4 we saw that each closed orientable surface S can be triangulated. A closed edge
curve is a closed curve that runs only over the boundary of the faces in such a triangulation.
A closed edge curve can be uniquely described by the non-empty ordered set of edges of the
triangulation it meets. A closed edge curve is a closed curve by definition, and the next lemma
shows that for a given triangulation, up to homotopy, the converse is also true.
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Figure 4.1: Homotopy between a curve and an edge curve

Lemma 14. Given a triangulation of a surface S, any closed curve c on this surface is
homotopic to a closed edge curve of this triangulation.

Proof. We can cut the closed curve c into curves pi such that each pi intersects with the
interior of at most one face of the triangulation. This can be done in such a way that the
endpoints of a curve pi lie on the boundary of a face. Each face of the triangulation is, by
definition, homeomorphic to a closed triangle in the plane. This implies that a face is simply
connected, so any two curves contained in a face, that have the same endpoints, are homotopic
to each other. Let p′i be the curve that connects pi(0) and pi(1) and runs over the boundary
of a face. From the above we know that pi and p′i are homotopic.

By replacing each pi by p′i we get a new curve, homotopic to the old one, that runs only
over the boundary of the faces. By removing spurs, which can be done homotopically, we get
a curve e that can be written as the product of curves ei, each running over an edge from one
vertex to another.

Since there are only finitely many faces in a triangulation, the length of the edges and
thus of the curves ei are bounded from below. From the facts that [0, 1] is compact and that
a curve is a continuous map it follows that the image of a curve is compact and thus that the
length of a curve is bounded. This means that e is the product of finitely many curves, so it
is a closed edge curve.

We have seen that an edge curve is a curve and that any curve is homotopic to an edge
curve. Since we are only interested in curves up to homotopy we may assume that the
closed curve c, of which we are to decide whether it is contractible, is an edge curve on some
triangulated closed orientable surface. The advantage of this assumption is that this turns
the contractibility problem into a combinatorial problem for which, as we will see, a concrete
algorithm can be given that solves it.

4.3 Computational solution

Canonical curve crossings. Assume that we have a triangulation of a closed orientable
surface and a closed edge curve c on this surface. The first step in the algorithm is to find
out which canonical curves it crosses in which order. To do this we also write the canonical
curves as edge curves. We will see that it is important that these canonical curves are disjoint,
except for their common base point. It is, however, possible that there are not enough faces
in the triangulation to achieve this. In [11] it is shown that in this case it is possible to refine
the triangulation in such a way that the canonical curves can be given as edge curves of this
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triangulation and are disjoint except for their common base point. Furthermore it is shown
that the operation of refining the triangulation and constructing the canonical curves can be
done in O(gn) time where g is the genus of the surface and n the number of faces in the
triangulation. This can be done in such a way that the curve c does not intersect the base
point of the canonical curves. We will see in a moment why this is important. Since there
are 2g canonical curves, the refinement can transform an edge in a sequence of at most 2g
edges. This means that when the curve c consists of k edges before the refinement it has at
most 2gk edges after the refinement.

We can now iterate over the ordered edges of the closed edge curve c and make an ordered
list L of the canonical curves that c crosses. The canonical edge curves are oriented, so when
c crosses a canonical curve we can discriminate between the side from which we cross over
it. When c approaches the canonical curve from the right side then we append the canonical
curve to L and when it crosses the canonical curve from the left side we will add the inverse
of the canonical curve to L . From the fact that the canonical curves are disjoint, except
for their common base point, and the fact that c does not intersect this common base point,
we have that it is indeed possible to make an ordered list of crossings. It is clear that the
complexity of this operation is O(gk) and that there are at most 2gk elements in L .

The dual graph. Note that the product of the elements in L is a closed curve that is not
homotopic to c. This follows immediately from the fact that the base point of c does not
coincide with the common base point of the canonical curves, but there is a deeper difference.
Usually, when we trace a curve in the Cayley graph we start at a vertex and then trace along
the edges in the graph. Our edge curve c starts in the interior of a polygon of the graph and
then crosses over the edges of the graph. Would we transform it homotopically as in chapter
4.2 so that it only runs over the edges of the polygons then this would result in a sequence of
canonical curves different from L .

We define the dual of the Cayley graph to be the graph that has a vertex associated with
each polygon in the Cayley graph and a directed edge between two vertices if and only if the
two corresponding polygons are adjacent. The direction of an edge is towards the vertex for
which the common edge between the two adjacent polygons is an anticlockwise edge of the
polygon corresponding to the vertex.

It is clear that L is a word traced out on the dual graph. From the symmetry of the
Cayley graph it follows that the dual graph also is the Cayley graph of the surface. That is,
the primal and the dual graphs are equal. So although the product of the curves in L is not
homotopic to the orignial curve c we have that c is null-homotopic if and only the product of
the elements in L is.

Testing for contractibility. We have to find out whether the product of this sequence of
canonical curves is null-homotopic. The simple approach would be to build a large part of the
universal covering surface, start at some vertex in this graph and then trace the elements of L
in the graph. When the final vertex equals the first vertex then the curve is null-homotopic.
The disadvantage of this approach is that we would have to build an unnecessarily large part
of the covering surface which will greatly increase the complexity of the algorithm.

A more efficient way to do this is to start with some polygon, the first element in L
tells us over which edge the curve will leave this polygon, so we add the adjacent polygon on
that edge. We continue in this way until enough adjacent polygons are attached to contain
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the entire curve. If the curve ends in the same polygon as where it started then it is null-
homotopic. The hard part here is to keep track of the location of the current polygon in
relation to the polygon where the curve starts. The solution is to build the Cayley graph in
a different than usual shape, where it is easier to track the position of the current polygon in
relation to the polygon where the curve starts. We describe this shape in the next section,
where we use it for another reason. In [7] it is shown that the complexity of attaching another
polygon is O(g). Since there are at most 2gk elements in L the complexity of the operation
of testing whether the curve of L is null-homotopic is O(g2k). This means that the total
complexity of the algorithm is O(gn+g2k). In [1] it is shown that this bound can be improved
to obtain a complexity of O(n+ k log g).

The rubber band problem. The above method can be used to solve the rubber band
contractibility problem, as stated in the introduction, by hand. For many objects it is quite
easy to use a pen to draw a set of canonical curves on it. We can then give them labels and
orientations and use these to obtain an ordered set of directed crossings of the rubber band.
Although the product of these crossings is not homotopic to to the rubber band we can still
trace it out on a hand drawn Cayley graph of the surface and find out whether this path is
closed. If it is then the band is contractible and otherwise it is not.

4.4 Dehn’s algorithm

Assume that we have a curve c for which [c] is written as a product of the homotopy classes
of the canonical curves e1, e2, . . . , e2g, since the set {[e1], . . . , [e2g]} is a generating set for the
fundamental group, this is always possible. Dehn’s algorithm tells us how we can use the
defining relators of the fundamental group to reduce [c] to the shortest word equivalent to [c].
When the curve c is contractible this shortest word will be the identity word.

The torus. The fundamental group of the torus is π1(SΠ1) = 〈e1, e2 | e1e2e
−1
1 e−1

2 = 1〉,
which can be seen by looking at the Cayley graph of the torus. We can also write this group
as 〈e1, e2 | e1e2 = e2e1〉 which means that the fundamental group of the torus is commutative.
From this it follows that we can write any curve [c] on the torus as [e1]m[e2]n, such a curve
is called an (m,n)-torus curve. By Theorem 13 we have that a curve on the torus is null-
homotopic if and only if it is a (0, 0)-torus curve.

The curve in Figure 4.2, for instance, corresponds to e1e2e1e
−1
2 e−1

2 e−1
1 e−1

1 e2, but using
the commutativity this is the same as e0

1e
0
2 so this is a (0, 0)-torus curve and as such it is

null-homotopic.

The hyperbolic surfaces. When we first constructed the Cayley graphs G for the fun-
damental groups of the hyperbolic surfaces we took the edges in the graph to be the lifts
of the canonical curves of the surface. In this way the graph consisted of regular hyperbolic
polygons each with 4g-edges. Since G is a graph it does not matter what the shapes of the
connected components of S̃ − G are, they do not necessarily have to be regular hyperbolic
polygons.

The idea of Dehn’s algorithm is to construct the Cayley graph in a different shape which
enables us to develop a systematic way to reduce a null-homotopic closed curve that is traced
on this graph.
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Figure 4.2: A curve on the Cayley graph of the torus

Construction of the graph. Let Cn be a circle with as center the origin and with radius
1 − 1

2n . Subdivide the first circle C1 by 4g vertices and to each of these vertices add 4g − 2
edges, called spokes, that connect this vertex with the next circle C2. The annulus between
C1 and C2 consists of triangles and quadrilaterals. The quadrilaterals are called bridges and
the sets of spokes between two consecutive bridges are called fans. Add vertices to C2 such
that these triangles and quadrilaterals become 4g-gons. Note that 3 edges meet at the vertices
that where already present and that 2 edges meet at the new vertices. We continue by adding
a fans, now from the vertices on C2 to C3, if two edges meet at a vertex of C2 then we add
a fan consisting of 4g − 2 edges and when a vertex is the meeting point of 3 edges then we
add a fan consisting of 4g − 3 edges. Continuation of this process yields a tessellation of the
Poincaré disk by non-congruent 4g-gons where 4g polygons meet at each vertex.

Figure 4.3: The Cayley graph of the double torus

In order to turn this skeleton into the Cayley graph of the fundamental group with as
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generating set the canonical curves we have to add labels and orientations to the edges. Note
that since this graph is just the usual Cayley graph, as constructed in chapter 3.3, but with
a different shape, the edges of the polygons still must have, in anticlockwise order, the labels
and orientations: e1, e2, e

−1
1 , e−1

2 , . . . , e2g−1, e2g, e
−1
2g−1, e

−1
2g . Since the polygons are connected,

fixing the label and orientation of one edge results in fixing the labels and orientations of all
the edges in the graph.

Reduction of the curve. Formally, the input of Dehn’s algorithm is a word in the fun-
damental group and since this group consists of homotopy classe we will denote this word
by [c] for some curve c. We will use the relators of the fundamental group to reduce this
word. For this we will trace the word on the embedding of the Cayley graph that we have
just constructed and we will reduce the path that we obtain in this way. When we view this
path as the lift of a curve then we are at the same time contracting a curve.

The algorithm consists of two steps that we execute alternately. The algorithm stops
when the word is reduced to the identity word or when it finds out that the word can not be
reduced further. In the last case the curve is not null-homotopic and the algorithm gives a
shortest word equivalent to [c].

1. Use the trivial relators e1e
−1
1 , e2e

−1
2 , . . . , e2ge

−1
2g to remove the so called ‘spurs’ of this

path. The resulting path does not contain any backtracking. If the word is the identity
word then the algorithm terminates, otherwise continue with step 2.

2. Let n be the largest n such that the path meets Cn. We will replace a part p of the
symbols in [c] by a set of less symbols.

If n = 0 then let p = [c]. If the number of symbols in p is less then or equal to 2g then
c is not contractible and the algorithm terminates. The part p is a word consisting of a
smallest set of symbols equivalent to [c].

If n > 0 then the path enters Cn over a spoke, since this is the largest circle the path
meets and since the path does not contain backtracking anymore it has to start moving
around the circle clockwise or anticlockwise, wee Figure 4.4. The path can leave Cn
over another spoke or it can run around Cn one or more times and then leave through
the same spoke. Either way, it has to consecutively run over at least 4g− 2 consecutive
edges of one of the polygons for which the spoke over which the path enters Cn is an
edge, let p be this part of the path.

Since p runs over at least 4g − 2 consecutive edges of a polygon it is equal to the
product of at least the last 4g − 2 symbols of some cyclic permutation of the rela-
tion e1e2e

−1
1 e−1

2 · · · e2g−1e2ge
−1
2g−1e

−1
2g or its inverse. By adding the inverse of this cyclic

permutation after the last symbol of p in [c] the new word will contain a full relator
e1e2e

−1
1 e−1

2 · · · e2g−1e2ge
−1
2g−1e

−1
2g which we may remove from the word. Now we continue

again with step 1.

The strength of Dehn’s algorithm lies in the fact that, from the way the Cayley graph is
constructed, it is clear that the second step should either terminate or reduce the number of
symbols in the word. From this it is clear that the algorithm always reduces a contractible
word to the identity word in a finite number of steps.
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Relation to the word problem. The word problem is the problem of finding out whether
two words in some group are equivalent. It is an important problem in group theory and in [6]
it is shown that there are groups for which the word problem is unsolvable. Two words w1

and w2 are equivalent if and only if w−1
1 w2 is equivalent to the identity element. This means

that Dehn’s algorithm gives the solution for the word problem for the specific groups that are
isomorphic to the groups generated by 2g elements e1, . . . , e2g and have defining non-trivial
relation e1e2e

−1
1 e−1

2 · · · e2g−1e2ge
−1
2g−1e

−1
2g . This shows how we can use the Cayley graph, which

we found through a topological and geometric approach, to solve an algebraic problem for a
special class of groups.

4.5 An example

To illustrate Dehn’s algorithm we will take some null-homotopic curve c on the double torus
and show how we can use the relations of the fundamental group to reduce the word [c] to
the identity word. Let c be a curve homotopic to the following product of canonical curves:

e1e
−1
2 e−1

4 e1e2e
−1
1 e−1

2 e3e
−1
4 e1e2e

−1
1 e−1

2 e3e4e
−1
3 e4e4e

−1
3 e−1

4 e1e2e
−1
1 e−1

1

Figure 4.4 shows the word [c] traced on the Cayley graph.

Figure 4.4: A curve on the Cayley graph

From the figure we see that the lift is closed, so c is indeed contractible. We will now
apply Dehn’s algorithm step by step to reduce this curve.

1. The curve does not contain spurs so we continue with step 2.

2. The greatest circle entered by the curve is C3. We see that the curve does run around
an entire polygon between C2 and C3 so we can remove the part e−1

4 e1e2e
−1
1 e−1

2 e3e4e
−1
3

which is a cyclic permutation of the non-trivial defining relator e1e2e
−1
1 e−1

2 e3e4e
−1
3 e−1

4 .

1. This step did not introduce backtracking so we can continue with step 2.

2. The greatest circle entered by the lift is C2. There are two polygons between C1 and C2

for which the curve runs over more then half of the edges. We choose the first polygon
so we replace the part e−1

4 e1e2e
−1
1 e−1

2 e3e4 by e3 to obtain e1e
−1
2 e3e4e

−1
3 e−1

4 e1e2e
−1
1 e−1

1 .
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1. This step again did not introduce backtracking so we continue with step 2.

2. The curve now runs entirely over the other polygon between C1 and C2 so we can remove
the part e−1

2 e3e4e
−1
3 e−1

4 e1e2e
−1
1 to obtain e1e

−1
1 .

1. This last step finally did introduce backtracking, which we can remove by using the
relator e1e

−1
1 to obtain the identity word.



Chapter 5

Intersections of Curves

5.1 Self-intersections

A self-intersection of a curve p : [0, 1] → S is an unordered pair {t1, t2} for different t1, t2 ∈
[0, 1] such that p(t1) = p(t2). Such a pair is a self-intersection of a closed curve c if c(t1) = c(t2)
and if it is different from the pair {0, 1}. Let θ(c) denote the number of self-intersection of
the closed curve c, formally we have that

θ(c) = #{{t1, t2} | 0 ≤ t1 < t2 ≤ 1, c(t1) = c(t2)} − 1.

The closed curve in Figure 5.1 for example has four self-intersections: one at point A and the
other three at point B. When a curve or a closed curve contains no self-intersections then it
is a simple curve or a simple closed curve, respectively.

Figure 5.1: A curve with four self-intersections

In this chapter we will look at the problem of determining the minimal number of self-
intersections of a curve c when we are allowed to continuously deform the curve by keeping
the base point fixed. Let Θ(c) be this minimum. Formally we have that

Θ(c) = min
c′∈[c]

θ(c′).

We will first solve the problem for the case where c is null-homotopic.

Lemma 15. A null-homotopic closed curve c on a closed orientable surface S is homotopic
to a simple closed curve.

Proof. Let B be the base point of the closed curve c. In chapter 2.1 we saw that a closed
orientable surface is a geometric surface, so there is an open neighbourhood N of B which is
isometric to an open disk in S2, E2, or H2. Euclid’s third postulate asserts that there exists

33
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a circle C in N through B. Since c is null-homotopic it is homotopic to the constant curve
at the base point B. The neighbourhood N is in particular homeomorphic to an open disk
so it is simply connected. This means that the constant curve at the base point is homotopic
to a curve that has as image the circle C, which clearly is a simple curve.

When c is a curve on a spherical surface then it is contractible, so by the above lemma we
have that c is homotopic to a simple curve and thus Θ(c) = 0. In the next sections we will
find out how to determine Θ(c) if c is a non null-homotopic curve on surface of genus g > 0.
The notion of the shortest curve l in the homotopy class [c] as well as the next lemma will
turn out to be very helpful in solving this problem.

Lemma 16. A pair {t1, t2} 6= {0, 1} with 0 ≤ t1 < t2 ≤ 1 is a self-intersection of a curve c if
and only if for any lift c̃ either c̃(t1) = c̃(t2) or there is another lift c̃′ such that c̃(t1) = c̃′(t2).

Proof. (⇒) If {t1, t2} is a self-intersection of a curve c then c(t1) = c(t2). For any lift c̃ we
have that c = ρ ◦ c̃. Together this gives ρ(c̃(t1)) = c(t2), in other words, c̃(t1) ∈ ρ−1({c(t2)}).
This means that either c̃(t1) = c̃(t2) or there is another lift c̃′ such that c̃(t1) = c̃′(t2).

(⇐) If on the other hand c̃(t1) = c̃(t2) or there is a lift c̃′ such that c̃(t1) = c̃′(t2) then
ρ(c̃(t1)) = ρ(c̃(t2)) or ρ(c̃(t1)) = ρ(c̃′(t2)). Either way we have that c(t1) = c(t2).

5.2 Self-intersections on the torus

Let c be a non null-homotopic (m,n) torus curve with its base point B coinciding with the
base points of the canonical curves e1 and e2. Let ρ : E2 → S be a locally isometric covering
map such that ρ maps the origin Õ of E2 to B. In chapter 2.4 it is shown that this map
always exists. We know that we can lift the closed curve c to a curve c̃ on the covering surface
and that by fixing the origin of this curve to be Õ this lift is unique. Let T̃ = c̃(1) be the
terminus of this curve.

The lifts of the canonical curves e1 and e2 of the torus provide a tessellation – by squares –
of the Euclidean plane. Since the base point of c coincides with the base points of e1 and e2 we
know that Õ and T̃ are vertices in this tessellation. From the fact that c is not null-homotopic
we know that Õ 6= T̃ .

Let l be the shortest (m,n)-torus curve. Since the lift of any curve that is homotopic to
c must go from Õ to T̃ on the covering surface we know that l = ρ ◦ l̃, where l̃ is the path
l̃(t) = tT̃ .

Let s be the number of vertices of the tessellation in the interior of l̃. Now we claim that
Θ(c) = s. We will prove this by showing that both Θ(c) ≤ s and Θ(c) ≥ s.

Lemma 17. Θ(c) ≤ s

Proof. We show that Θ(c) ≤ s by showing that there is a curve c′ ∈ [c] for which θ(c′) ≤ s.
We will consider the two cases s = 0 and s > 0 separately.

For the case where s = 0 let c′ be the shortest curve in [c]. Since s = 0 we know that
the lifts of c′ are straight line segments that connect two vertices of the tessellation in such
a way that they do not intersect other vertices of the tessellation. Since each lift has the
same length and direction (they are translations of each other) we know that the lifts do not
intersect, see Figure 5.2(a). If c contains a self-intersection then by Lemma 16 its lifts should
intersect, which they do not, so c has no self-intersections and θ(c′) = 0 ≤ s.
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(a) Lifts of the shortest (3, 2)-torus curve (s = 0) (b) Lifts of a (3, 3)-torus curve (s = 2)

Figure 5.2: Lifts of torus curves

If s > 0 we can again look at the shortest curve l ∈ [c], but now we have that the interior
of each lift l̃ intersects with at least one vertex of the tessellation. This means that for each
lift of l there is another lift such that these lifts overlap, which by Lemma 16 means that
θ(l) =∞. This means that for the case where s > 0 we need to take another approach.

Let l̃ be some fixed lift of l. We will construct a curve c′ such that θ(c′) ≤ s. Let M̃ be a
point on the perpendicular bisector of l̃ such that d(M̃, l̃) = ε for some ε > 0. Let c̃′ be the
curve that runs in straight line segments from Õ to M̃ and then from M̃ to T̃ .

The curve c′ is simple, so by Lemma 16 we have that a pair {t1, t2} 6= {0, 1} with 0 ≤
t1 < t2 ≤ 1 is a self-intersection of a curve c only if for any lift c̃ there is another lift c̃′ such
that c̃(t1) = c̃′(t2). By choosing ε small enough we have that a lift that does not originate or
terminate in a vertex of the tesselation in the interior of l̃, does not intersect c̃′. Furthermore
we have that the lifts originating and terminating from a vertex in the interior of l̃ both
intersect c̃′, but due to the symmetry this leads to only one intersection pair. Since there are
s vertices in the interior of l̃ and since each vertex is responsible for at most one intersection
pair we have that θ(c′) ≤ s.

The proof of the other inequality Θ(c) ≥ s makes use of the next lemma, which is proven
in [9, page 30].

Lemma 18. If A, B, C, and D are points in cyclic order on the boundary of a polygon
P, and p is a simple curve from A to C which elsewhere lies in the interior of P, then p
separates B from D in P.

Lemma 19. Θ(c) ≥ s

Proof. We prove that Θ(c) ≥ s by proving that for any c′ ∈ [c] we have that θ(c′) ≥ s. Let
c′ be some closed curve in the homotopy class of c and let c̃′ be a lift of c′. We may assume
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Figure 5.3: Illustration of Lemma 18

Figure 5.4: Illustration of the proof of Lemma 19

that the curve c̃′ is simple, for if it contains a self-intersection {t1, t2} 6= {0, 1}, then we can
just remove the part of the curve c′ between t1 and t2. We may do this because removing a
part of the curve can only lower the number of self-intersections so when θ(c′) ≥ s holds for
the new curve it certainly holds for the origional curve.

Since θ(c′) is non-negative we see that θ(c′) ≥ s is certainly true for the case where s = 0.
Now assume that s > 0 and let Ṽ1, Ṽ2, . . . , Ṽs be the vertices of the tessellation that intersect
with the interior of the straight line segment connecting c̃′(0) and c̃′(1).

Let l be an oriented straight line through c̃′(0) and c̃′(1). Define the height y of a point
X ∈ E2 as

y(X) =


0 X lies on l
dE2(X, l) X lies to the left of l
−dE2(X, l) X lies to the right of l

The map y ◦ c̃′ is continuous since it is the composition of two continuous maps, and the set
[0, 1] is compact, so the maximum and minimum heights

y+ = max
t∈[0,1]

y(c(t)) and y− = min
t∈[0,1]

y(c(t))

are well defined.

Let t± ∈ [0, 1] be two numbers such that y(c̃′(t±)) = y± and such that y− < y(c̃′(t)) < y+

for all t between t− and t+. Let l± be lines through c̃′(t±), respectively, that are parallel to l.

Now consider two lifts c̃′1 and c̃′2 of c′ that have the point V1 as its terminus and origin,
respectively. When we translate c̃′ parallel to l over distance d(c̃′(0), V1) then we obtain c̃′2,
and when we do the same over the distance −d(c̃′(1), V1) then we obtain c̃′1. This means that
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the maximum and minimum heights of points in c̃′i([0, 1]) for i = 1, 2 are the same as those
of c̃′ which means that c̃′1 and c̃′2 lie in the strip between the lines l±.

Now take a rectangle P with two of its sides lying on l+ and l−, and the other two sides
chosen such that c̃′, c̃1, and c̃2 lie in P but such that P is as small as possible. Let X1 and
X2 be two points where c̃1 and c̃2 intersect the edges of P which are not contained in l±, see
Figure 5.4. The points c̃′(t−), X1, c̃′(t+), and X2 lie in cyclic order on the boundary of P.
Furthermore we have that c̃′ restricted to [min{t−, t+},max{t−, t+}] is a simple path whose
interior does not intersect the boundary of P. So using Lemma 18 we have that c̃′ must
intersect c̃′1 or c̃′2 and since the lifts clearly do not intersect on an endpoint the interior of two
lifts must intersect.

This leads to an intersection pair {t1, t2}. We can do the same for the other vertices Vi,
and since the distance over which we have to translate c̃′ to obtain c̃′1(0) and c̃′2(0) is different
for each Vi it is clear that each Vi leads to a unique intersection pair. So there are at least s
different intersection pairs and as such we have that θ(c′) ≥ s.

Theorem 20. If c is an (m,n) torus curve then Θ(c) = gcd(m,n)− 1.

Proof. Let l̃ be the lift with origin (0, 0), of the shortest curve in [c]. This means that l̃ is
the straight line segment connecting (0, 0) and (m,n). We have seen that Θ(c) equals the
number of vertices of the tessellation in the interior of l̃.

Let (k, l) be the first vertex we meet by traversing l̃ from its origin (0, 0) to its terminus
(m,n). From the symmetry of the tessellation it follows that for any q ∈ N the point (qk, ql)
is a vertex, and the interior of the line segment with endpoints (qk, ql) and ((q+ 1)k, (q+ 1)l)
contains no vertices. This means that there is a q such that (m,n) = (qk, ql) and the interior
of the line segment with endpoints (0, 0) and (m,n) contains q − 1 vertices.

From the equality (m,n) = (qk, ql) it follows that q is a divisor of both m and n, we will
now show that it is also the greatest common divisor. Assume that there is a r > q such that
r|m and r|n. Then there are k′ and l′ such that (m,n) = (rk′, rl′), but since r > q this means
that k′ < k and l′ < l which is in contradiction with the fact that (k, l) is the vertex on l
closest to the origin. So the number of vertices on l is q − 1 = gcd(m,n)− 1.

5.3 Simple curves on hyperbolic surfaces

In this section we will consider the problem of deciding whether a closed curve c on a surface
S of genus g > 1 is homotopic to a simple curve or not. The lifts of the canonical curves
e1, . . . , e2g provide a tessellation of the covering surface by hyperbolic 4g-gons. To see whether
Θ(c) = 0 we will again look at the shortest curve l ∈ [c]. The lift l̃ of l is a hyperbolic geodesic
segment between two vertices in the tessellation. We can solve the problem in two steps:

1. Prove that c is homotopic to a simple curve if and only if l is simple.

2. Find out whether l is simple.

We will start by briefly describing step 2 after which the remaining part of the section will
be devoted to the proof of the statement of step 1.
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Testing whether l is simple. When we want to use Lemma 16 to test whether l is simple
we would have to draw each of the infinitely many lifts of l, which is not possible. Instead we
take one polygon P and one lift whose origin lies in P. When the lift reaches the boundary
of the polygon then it enters P again at the corresponding edge. Figure 2.1, used to illustrate
the completeness proof in chapter 2.3, shows what this looks like for the double torus. The
curve l does have a self-intersection if and only if two or more of the geodesic segments
intersect each other.

Proving the first statement. The ‘if’ part of 1 is trivial and to prove the ‘only if’ part we
will prove that if l is not simple then c is not homotopic to a simple curve. If l is not simple
then considering Lemma 16 there must be two lifts of l that have an intersection point. For
the torus this meant that the lifts would overlap, in the hyperbolic case, however, there is the
other possibility that two lifts can cross each other.

When two lifts of l overlap then we can use the same method as in the proof of Lemma 19,
to show that the lifts of any curve homotopic to c must intersect at a point other than their
endpoints. Instead of repeating the proof we will state the adjustments that we need to
make for the hyperbolic case. Instead of letting l be an oriented Euclidean line through c̃(0)
and c̃(1) we let it be the oriented hyperbolic geodesic through those points, and instead of
the parallel lines l± we take the hyperbolic equidistants, which are not hyperbolic geodesics.
Finally, we use hyperbolic translation parallel to the geodesic l to obtain the curves c̃1 and
c̃2. Since there is only one hyperbolic translation that maps two different points to two other
points, all lying on the same geodesic, we know that this translation is a covering isometry,
so c̃1 and c̃2 are lifts of c. With these adjustments the proof works for the case of overlapping
lifts in the hyperbolic space, we finish with the case where the two geodesic segments cross
each other:

Figure 5.5: Illustration by Lemma 21

Lemma 21. Let c be a closed curve on a closed orientable surface S of genus g > 1. If there
are lifts c̃1 and c̃2 such that the geodesic l̃1 through c̃1(0) and c̃1(1) intersects the geodesic l̃2
though c̃2(0) and c̃2(1) then c contains a self-intersection.
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Proof. The geodesics l̃i for i = 1, 2 depicted in the Poincaré disk have limit points that lie on
the boundary of this disk. Denote these limit points by A1, B1, A2, and B2, see Figure 5.5.
We take a disk around each of these limit points and let P be the Poincaré disk including
its boundary excluding the interiors of the disks around the four limit points.

In [9, page 193] it is stated that the terminus of the lift of c1 that has origin c̃1(1), also
lies on l̃1. This means that the covering isometry which is the hyperbolic translation with l̃1
as invariant geodesis such that γ1(c̃1(0)) = c̃(1) maps the lift c̃1 to this new lift.

Now we will view the Poincaré disk as a part of the Euclidean plane. When we continue
the process of translation, in both directions along l̃1, the points in the image of a translated
copy of c̃1 will converge to the points A1 and B1, respectively. This means that it is possible
to choose the disks around A2 and B2 small enough such that none of these copies (nor the
original curve c̃1) intersect with either of these two disks. We can do the same for the curves
c̃2, also choosing the disks around A1 and B1 small enough such that none of the translations
of c̃2 intersect with one of these two disks.

After finitely many times translating, forward or backward, the curve c̃1 along l̃1, it will
intersect with the disk around A1 and B1, respectively. This means that the curve that is the
product of all these translated curves, where we follow the last two curves only to the point
where they intersect the disk around the limit point, is a curve that connects two points that
lie on ∂P.

We can remove the loops in the curve to obtain a simple curve, this is allowed since this
operation will not introduce intersections. Since the lines l̃1 and l̃2 cross each other we know
that the limit points A1, A1, B1, and B2 lie in cyclic order on ∂P. This means that we can
use Lemma 16 to deduce that one of the translated copies of the curve c̃1 must intersect one
of the copies of the curve c̃2 which proves the theorem. Note that strictly speaking we cannot
use this lemma since ∂P is not a polygon, but it would be easy to transform P such that
∂P is a polygon, or to use the Jordan curve theorem in order to prove a similar lemma that
also holds for non-polygons.
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Conclusion

The conclusion concerning the contractibility problem is that we have a simple characteriza-
tion of contractible curves on closed orientable surfaces. There also is a concrete algorithm to
decide whether an edge curve is contractible. Finally, we have an algorithm that solves the
word problem for the fundamental groups of the closed orientable surfaces.

The most important conclusion concerning self-intersection of curves on closed orientable
surfaces is that the minimal number of self-intersections of an (m,n)-torus curve is gcd(m,n)−
1. Furthermore we have shown how to use the hyperbolic covering surface to see whether a
curve on a closed orientable surface of genus g > 1 is homotopic to a simple curve.

Concerning the theory that we discussed before considering these two problems we can
conclude that the representation of closed orientable surfaces by the identification spaces of
orientable normal form schemata is useful in proving that each closed orientable surface is,
up to homeomorphism, completely determined by its genus. This representation is also useful
in the geometric realization of the surfaces and thus in the construction of the pencil map.

We can conclude that the covering surface and covering map are very useful in discussing
properties of closed curves on surfaces. Finally, we can conclude that the geometric properties
of the geometric covering surfaces and pencil map are not needed for all results, for instance,
the results about contractibility do not need geometry at all, but can be very useful for other
results, for instance in the proofs about self-intersections.
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