A semidefinite programming hierarchy for packing problems in discrete geometry

David de Laat (TU Delft)
Joint work with Frank Vallentin (Universität zu Köln)

Applications of Real Algebraic Geometry
Aalto University - February 28, 2014

Contents

1. Modeling geometric packing problems
2. Convergence to the optimal density
3. Duality theory
4. Harmonic analysis on subset spaces
5. Reduction to semidefinite programs

Packing problems in discrete geometry

Packing problems in discrete geometry

- These problems can be modeled as maximum independent set problems in graphs on infinitely many vertices

Packing problems in discrete geometry

- These problems can be modeled as maximum independent set problems in graphs on infinitely many vertices
Spherical cap packings
What is the maximum number of spherical caps of size t in S^{n-1} such that no two caps intersect in their interiors?

$$
G=(V, E), \quad V=S^{n-1}, \quad E=\{\{x, y\}: x \cdot y \in(t, 1)\}
$$

Packing problems in discrete geometry

- These problems can be modeled as maximum independent set problems in graphs on infinitely many vertices
Spherical cap packings
What is the maximum number of spherical caps of size t in S^{n-1} such that no two caps intersect in their interiors?

$$
G=(V, E), \quad V=S^{n-1}, \quad E=\{\{x, y\}: x \cdot y \in(t, 1)\}
$$

- Independent sets correspond to valid packings

The Lasserre hierarchy for finite graphs

- Maximum independent set problem for a finite graph as a $0 / 1$ polynomial optimization problem:
$\alpha(G)=\max \left\{\sum_{v \in V} x_{v}: x_{v} \in\{0,1\}\right.$ for $v \in V, x_{u}+x_{v} \leq 1$ for $\left.\{u, v\} \in E\right\}$

The Lasserre hierarchy for finite graphs

- Maximum independent set problem for a finite graph as a $0 / 1$ polynomial optimization problem:
$\alpha(G)=\max \left\{\sum_{v \in V} x_{v}: x_{v} \in\{0,1\}\right.$ for $v \in V, x_{u}+x_{v} \leq 1$ for $\left.\{u, v\} \in E\right\}$
- The Lasserre hierarchy for this problem (Laurent, 2003):

$$
\operatorname{las}_{t}(G)=\max \left\{\sum_{x \in V} y_{\{x\}}: y \in \mathbb{R}_{\geq 0}^{I_{\geq 2}}, y_{\emptyset}=1, M_{t}(y) \succeq 0\right\}
$$

The Lasserre hierarchy for finite graphs

- Maximum independent set problem for a finite graph as a $0 / 1$ polynomial optimization problem:
$\alpha(G)=\max \left\{\sum_{v \in V} x_{v}: x_{v} \in\{0,1\}\right.$ for $v \in V, x_{u}+x_{v} \leq 1$ for $\left.\{u, v\} \in E\right\}$
- The Lasserre hierarchy for this problem (Laurent, 2003):

$$
\operatorname{las}_{t}(G)=\max \left\{\sum_{x \in V} y_{\{x\}}: y \in \mathbb{R}_{\geq 0}^{I_{2 t}}, y_{\emptyset}=1, M_{t}(y) \succeq 0\right\}
$$

- $I_{2 t}$ is the set of independent sets of cardinality at most $2 t$

The Lasserre hierarchy for finite graphs

- Maximum independent set problem for a finite graph as a $0 / 1$ polynomial optimization problem:
$\alpha(G)=\max \left\{\sum_{v \in V} x_{v}: x_{v} \in\{0,1\}\right.$ for $v \in V, x_{u}+x_{v} \leq 1$ for $\left.\{u, v\} \in E\right\}$
- The Lasserre hierarchy for this problem (Laurent, 2003):

$$
\operatorname{las}_{t}(G)=\max \left\{\sum_{x \in V} y_{\{x\}}: y \in \mathbb{R}_{\geq 0}^{I_{2 t}}, y_{\emptyset}=1, M_{t}(y) \succeq 0\right\}
$$

- $I_{2 t}$ is the set of independent sets of cardinality at most $2 t$
- $M_{t}(y)$ is the matrix with rows and columns indexed by I_{t} and

$$
M_{t}(y)_{J, J^{\prime}}= \begin{cases}y_{J \cup J^{\prime}} & \text { if } J \cup J^{\prime} \in I_{2 t} \\ 0 & \text { otherwise }\end{cases}
$$

The Lasserre hierarchy for finite graphs

- Maximum independent set problem for a finite graph as a $0 / 1$ polynomial optimization problem:
$\alpha(G)=\max \left\{\sum_{v \in V} x_{v}: x_{v} \in\{0,1\}\right.$ for $v \in V, x_{u}+x_{v} \leq 1$ for $\left.\{u, v\} \in E\right\}$
- The Lasserre hierarchy for this problem (Laurent, 2003):

$$
\operatorname{las}_{t}(G)=\max \left\{\sum_{x \in V} y_{\{x\}}: y \in \mathbb{R}_{\geq 0}^{I_{\geq 2}}, y_{\emptyset}=1, M_{t}(y) \succeq 0\right\}
$$

- $I_{2 t}$ is the set of independent sets of cardinality at most $2 t$
- $M_{t}(y)$ is the matrix with rows and columns indexed by I_{t} and

$$
M_{t}(y)_{J, J^{\prime}}= \begin{cases}y_{J \cup J^{\prime}} & \text { if } J \cup J^{\prime} \in I_{2 t} \\ 0 & \text { otherwise }\end{cases}
$$

- $\vartheta^{\prime}(G)=\operatorname{las}_{1}(G) \geq \operatorname{las}_{2}(G) \geq \ldots \geq \operatorname{las}_{\alpha(G)}(G)=\alpha(G)$

The Lasserre hierarchy for finite graphs

- Maximum independent set problem for a finite graph as a $0 / 1$ polynomial optimization problem:
$\alpha(G)=\max \left\{\sum_{v \in V} x_{v}: x_{v} \in\{0,1\}\right.$ for $v \in V, x_{u}+x_{v} \leq 1$ for $\left.\{u, v\} \in E\right\}$
- The Lasserre hierarchy for this problem (Laurent, 2003):

$$
\operatorname{las}_{t}(G)=\max \left\{\sum_{x \in V} y_{\{x\}}: y \in \mathbb{R}_{\geq 0}^{I_{\geq 2}}, y_{\emptyset}=1, M_{t}(y) \succeq 0\right\}
$$

- $I_{2 t}$ is the set of independent sets of cardinality at most $2 t$
- $M_{t}(y)$ is the matrix with rows and columns indexed by I_{t} and

$$
M_{t}(y)_{J, J^{\prime}}= \begin{cases}y_{J \cup J^{\prime}} & \text { if } J \cup J^{\prime} \in I_{2 t} \\ 0 & \text { otherwise }\end{cases}
$$

- $\vartheta^{\prime}(G)=\operatorname{las}_{1}(G) \geq \operatorname{las}_{2}(G) \geq \ldots \geq \operatorname{las}_{\alpha(G)}(G)=\alpha(G)$
- $\vartheta(G)$ is the Lovász ϑ-number which specializes to the Delsarte LP-bound when G is the binary code graph

Generalization to infinite graphs

- Linear programming bound for spherical cap packings (Delsarte, 1977 / Kabatiansky, Levenshtein, 1978)

Generalization to infinite graphs

- Linear programming bound for spherical cap packings (Delsarte, 1977 / Kabatiansky, Levenshtein, 1978)
- Generalization of the ϑ-number (Bachoc, Nebe, de Oliveira, Vallentin, 2009)

Topological packing graphs

- We consider graphs where
- vertices which are close are adjacent
- adjacent vertices stay adjacent after slight pertubations

Topological packing graphs

- We consider graphs where
- vertices which are close are adjacent
- adjacent vertices stay adjacent after slight pertubations

Definition

A topological packing graph is a graph where

- the vertex set is a Hausdorff topological space
- each finite clique is contained in an open clique

Topological packing graphs

- We consider graphs where
- vertices which are close are adjacent
- adjacent vertices stay adjacent after slight pertubations

Definition

A topological packing graph is a graph where

- the vertex set is a Hausdorff topological space
- each finite clique is contained in an open clique
- We consider compact topological packing graphs

Topological packing graphs

- We consider graphs where
- vertices which are close are adjacent
- adjacent vertices stay adjacent after slight pertubations

Definition

A topological packing graph is a graph where

- the vertex set is a Hausdorff topological space
- each finite clique is contained in an open clique
- We consider compact topological packing graphs
- These graphs have finite independence number

Generalization for compact topological packing graphs

$$
\operatorname{las}_{t}(G)=\sup \{
$$

Generalization for compact topological packing graphs

$$
\operatorname{las}_{t}(G)=\sup \left\{\quad: \lambda \in \mathcal{M}\left(I_{2 t}\right)_{\geq 0}\right.
$$

$$
\}
$$

Generalization for compact topological packing graphs

$$
\operatorname{las}_{t}(G)=\sup \left\{\lambda\left(I_{=1}\right): \lambda \in \mathcal{M}\left(I_{2 t}\right)_{\geq 0}\right.
$$

$$
\}
$$

Generalization for compact topological packing graphs

$$
\operatorname{las}_{t}(G)=\sup \left\{\lambda\left(I_{=1}\right): \lambda \in \mathcal{M}\left(I_{2 t}\right) \geq 0, \lambda(\{\emptyset\})=1,\right.
$$

Generalization for compact topological packing graphs

$$
\begin{gathered}
\operatorname{las}_{t}(G)=\sup \left\{\lambda\left(I_{=1}\right): \lambda \in \mathcal{M}\left(I_{2 t}\right) \geq 0, \lambda(\{\emptyset\})=1,\right. \\
\left.A_{t}^{*} \lambda \in \mathcal{M}\left(V_{t} \times V_{t}\right) \geq 0\right\}
\end{gathered}
$$

Generalization for compact topological packing graphs

$$
\begin{gathered}
\operatorname{las}_{t}(G)=\sup \left\{\lambda\left(I_{=1}\right): \lambda \in \mathcal{M}\left(I_{2 t}\right) \geq 0, \lambda(\{\emptyset\})=1,\right. \\
\left.A_{t}^{*} \lambda \in \mathcal{M}\left(V_{t} \times V_{t}\right) \geq 0\right\}
\end{gathered}
$$

Generalization for compact topological packing graphs

$$
\begin{gathered}
\operatorname{las}_{t}(G)=\sup \left\{\lambda\left(I_{=1}\right): \lambda \in \mathcal{M}\left(I_{2 t}\right) \geq 0, \lambda(\{\emptyset\})=1,\right. \\
\left.A_{t}^{*} \lambda \in \mathcal{M}\left(V_{t} \times V_{t}\right) \geq 0\right\}
\end{gathered}
$$

- V_{t} is the set of subsets of V of cardinality $\leq t$

Generalization for compact topological packing graphs

$$
\begin{aligned}
\operatorname{las}_{t}(G)=\sup \left\{\lambda\left(I_{=1}\right):\right. & \lambda \in \mathcal{M}\left(I_{2 t}\right) \geq 0, \lambda(\{\emptyset\})=1, \\
& \left.A_{t}^{*} \lambda \in \mathcal{M}\left(V_{t} \times V_{t}\right) \succeq 0\right\}
\end{aligned}
$$

- V_{t} is the set of subsets of V of cardinality $\leq t$
- Quotient map:

$$
q: V^{t} \rightarrow V_{t} \backslash\{\emptyset\},\left(v_{1}, \ldots, v_{t}\right) \mapsto\left\{v_{1}, \ldots, v_{t}\right\}
$$

Generalization for compact topological packing graphs

$$
\begin{gathered}
\operatorname{las}_{t}(G)=\sup \left\{\lambda\left(I_{=1}\right):\right. \\
\left.A_{t}^{*} \lambda \in \mathcal{M}\left(I_{2 t}\right)_{\geq 0}, \lambda\left(V_{t} \times V_{t}\right)_{\succeq 0}\right\}
\end{gathered}
$$

- V_{t} is the set of subsets of V of cardinality $\leq t$
- Quotient map:

$$
q: V^{t} \rightarrow V_{t} \backslash\{\emptyset\},\left(v_{1}, \ldots, v_{t}\right) \mapsto\left\{v_{1}, \ldots, v_{t}\right\}
$$

- $V_{t} \backslash\{\emptyset\}$ is equipped with the quotient topology

Generalization for compact topological packing graphs

$$
\begin{gathered}
\operatorname{las}_{t}(G)=\sup \left\{\lambda\left(I_{=1}\right):\right. \\
\left.A_{t}^{*} \lambda \in \mathcal{M}\left(I_{2 t}\right)_{\geq 0}, \lambda\left(V_{t} \times V_{t}\right)_{\succeq 0}\right\}
\end{gathered}
$$

- V_{t} is the set of subsets of V of cardinality $\leq t$
- Quotient map:

$$
q: V^{t} \rightarrow V_{t} \backslash\{\emptyset\},\left(v_{1}, \ldots, v_{t}\right) \mapsto\left\{v_{1}, \ldots, v_{t}\right\}
$$

- $V_{t} \backslash\{\emptyset\}$ is equipped with the quotient topology
- V_{t} is the disjoint union of $V_{t} \backslash\{\emptyset\}$ with $\{\emptyset\}$

Generalization for compact topological packing graphs

$$
\begin{aligned}
\operatorname{las}_{t}(G)=\sup \left\{\lambda\left(I_{=1}\right):\right. & \lambda \in \mathcal{M}\left(I_{2 t}\right) \geq 0, \lambda(\{\emptyset\})=1, \\
& \left.A_{t}^{*} \lambda \in \mathcal{M}\left(V_{t} \times V_{t}\right)_{\succeq 0}\right\}
\end{aligned}
$$

- V_{t} is the set of subsets of V of cardinality $\leq t$
- Quotient map:

$$
q: V^{t} \rightarrow V_{t} \backslash\{\emptyset\},\left(v_{1}, \ldots, v_{t}\right) \mapsto\left\{v_{1}, \ldots, v_{t}\right\}
$$

- $V_{t} \backslash\{\emptyset\}$ is equipped with the quotient topology
- V_{t} is the disjoint union of $V_{t} \backslash\{\emptyset\}$ with $\{\emptyset\}$
- I_{t} gets its topology as a subset of V_{t}

Generalization for compact topological packing graphs

$$
\begin{gathered}
\operatorname{las}_{t}(G)=\sup \left\{\lambda\left(I_{=1}\right): \lambda \in \mathcal{M}\left(I_{2 t}\right) \geq 0, \lambda(\{\emptyset\})=1,\right. \\
\left.A_{t}^{*} \lambda \in \mathcal{M}\left(V_{t} \times V_{t}\right) \geq 0\right\}
\end{gathered}
$$

Generalization for compact topological packing graphs

$$
\begin{aligned}
& \operatorname{las}_{t}(G)=\sup \left\{\lambda\left(I_{=1}\right):\right. \lambda \in \mathcal{M}\left(I_{2 t}\right) \geq 0, \lambda(\{\emptyset\})=1, \\
&\left.A_{t}^{*} \lambda \in \mathcal{M}\left(V_{t} \times V_{t}\right) \geq 0\right\}
\end{aligned}
$$

- A function $K \in \mathcal{C}\left(V_{t} \times V_{t}\right)_{\text {sym }}$ is a positive definite kernel if

$$
\left(K\left(J_{i}, J_{j}\right)\right)_{i, j=1}^{m} \succeq 0 \quad \text { for all } \quad m \in \mathbb{N} \quad \text { and } \quad J_{1}, \ldots, J_{m} \in V_{t}
$$

Generalization for compact topological packing graphs

$$
\begin{gathered}
\operatorname{las}_{t}(G)=\sup \left\{\lambda\left(I_{=1}\right): \lambda \in \mathcal{M}\left(I_{2 t}\right) \geq 0, \lambda(\{\emptyset\})=1,\right. \\
\left.A_{t}^{*} \lambda \in \mathcal{M}\left(V_{t} \times V_{t}\right) \succeq 0\right\}
\end{gathered}
$$

- A function $K \in \mathcal{C}\left(V_{t} \times V_{t}\right)_{\text {sym }}$ is a positive definite kernel if $\left(K\left(J_{i}, J_{j}\right)\right)_{i, j=1}^{m} \succeq 0 \quad$ for all $\quad m \in \mathbb{N} \quad$ and $\quad J_{1}, \ldots, J_{m} \in V_{t}$
- Cone of positive definite kernels: $\mathcal{C}\left(V_{t} \times V_{t}\right)_{\succeq 0}$

Generalization for compact topological packing graphs

$$
\begin{gathered}
\operatorname{las}_{t}(G)=\sup \left\{\lambda\left(I_{=1}\right): \lambda \in \mathcal{M}\left(I_{2 t}\right) \geq 0, \lambda(\{\emptyset\})=1,\right. \\
\left.A_{t}^{*} \lambda \in \mathcal{M}\left(V_{t} \times V_{t}\right) \succeq 0\right\}
\end{gathered}
$$

- A function $K \in \mathcal{C}\left(V_{t} \times V_{t}\right)_{\text {sym }}$ is a positive definite kernel if $\left(K\left(J_{i}, J_{j}\right)\right)_{i, j=1}^{m} \succeq 0 \quad$ for all $\quad m \in \mathbb{N}$ and $J_{1}, \ldots, J_{m} \in V_{t}$
- Cone of positive definite kernels: $\mathcal{C}\left(V_{t} \times V_{t}\right)_{\succeq 0}$
- Cone of positive definite measures:
$\mathcal{M}\left(V_{t} \times V_{t}\right)_{\succeq 0}=\left\{\mu \in \mathcal{M}\left(V_{t} \times V_{t}\right)_{\text {sym }}: \mu(K) \geq 0\right.$ for all $\left.K \in \mathcal{C}\left(V_{t} \times V_{t}\right) \succeq 0\right\}$, where $\mu(K)=\int K\left(J, J^{\prime}\right) d \mu\left(J, J^{\prime}\right)$

Generalization for compact topological packing graphs

$$
\begin{gathered}
\operatorname{las}_{t}(G)=\sup \left\{\lambda\left(I_{=1}\right): \lambda \in \mathcal{M}\left(I_{2 t}\right) \geq 0, \lambda(\{\emptyset\})=1,\right. \\
\left.A_{t}^{*} \lambda \in \mathcal{M}\left(V_{t} \times V_{t}\right) \geq 0\right\}
\end{gathered}
$$

Generalization for compact topological packing graphs

$$
\begin{gathered}
\operatorname{las}_{t}(G)=\sup \left\{\lambda\left(I_{=1}\right): \lambda \in \mathcal{M}\left(I_{2 t}\right) \geq 0, \lambda(\{\emptyset\})=1,\right. \\
\left.A_{t}^{*} \lambda \in \mathcal{M}\left(V_{t} \times V_{t}\right)_{\succeq 0}\right\}
\end{gathered}
$$

- There is an operator A_{t} such that $\left\langle M_{t}(y), X\right\rangle=\left\langle y, A_{t} X\right\rangle$ for all vectors y and matrices X

Generalization for compact topological packing graphs

$$
\begin{gathered}
\operatorname{las}_{t}(G)=\sup \left\{\lambda\left(I_{=1}\right): \lambda \in \mathcal{M}\left(I_{2 t}\right)_{\geq 0}, \lambda(\{\emptyset\})=1,\right. \\
\left.A_{t}^{*} \lambda \in \mathcal{M}\left(V_{t} \times V_{t}\right)_{\succeq 0}\right\}
\end{gathered}
$$

- There is an operator A_{t} such that $\left\langle M_{t}(y), X\right\rangle=\left\langle y, A_{t} X\right\rangle$ for all vectors y and matrices X
- Define the operator $A_{t}: \mathcal{C}\left(V_{t} \times V_{t}\right)_{\text {sym }} \rightarrow \mathcal{C}\left(I_{2 t}\right)$ by

$$
A_{t} f(S)=\sum_{J, J^{\prime} \in I_{t}: J \cup J^{\prime}=S} f\left(J, J^{\prime}\right)
$$

Generalization for compact topological packing graphs

$$
\begin{gathered}
\operatorname{las}_{t}(G)=\sup \left\{\lambda\left(I_{=1}\right): \lambda \in \mathcal{M}\left(I_{2 t}\right)_{\geq 0}, \lambda(\{\emptyset\})=1,\right. \\
\left.A_{t}^{*} \lambda \in \mathcal{M}\left(V_{t} \times V_{t}\right)_{\succeq 0}\right\}
\end{gathered}
$$

- There is an operator A_{t} such that $\left\langle M_{t}(y), X\right\rangle=\left\langle y, A_{t} X\right\rangle$ for all vectors y and matrices X
- Define the operator $A_{t}: \mathcal{C}\left(V_{t} \times V_{t}\right)_{\text {sym }} \rightarrow \mathcal{C}\left(I_{2 t}\right)$ by

$$
A_{t} f(S)=\sum_{J, J^{\prime} \in I_{t}: J \cup J^{\prime}=S} f\left(J, J^{\prime}\right)
$$

- The adjoint: $A_{t}^{*}: \mathcal{M}\left(I_{2 t}\right) \rightarrow \mathcal{M}\left(V_{t} \times V_{t}\right)_{\text {sym }}$

Finite convergence

Theorem
Suppose G is a compact topological packing graph. Then,

$$
\vartheta^{\prime}(G)=\operatorname{las}_{1}(G) \geq \cdots \geq \operatorname{las}_{\alpha(G)}(G)=\alpha(G)
$$

Finite convergence

Theorem

Suppose G is a compact topological packing graph. Then,

$$
\vartheta^{\prime}(G)=\operatorname{las}_{1}(G) \geq \cdots \geq \operatorname{las}_{\alpha(G)}(G)=\alpha(G)
$$

- If S is an independent set, then

$$
\chi_{S}=\sum_{R \subseteq S} \delta_{R}
$$

is feasible for $\operatorname{las}_{\alpha(G)}(G)$

Finite convergence

Theorem

Suppose G is a compact topological packing graph. Then,

$$
\vartheta^{\prime}(G)=\operatorname{las}_{1}(G) \geq \cdots \geq \operatorname{las}_{\alpha(G)}(G)=\alpha(G)
$$

- If S is an independent set, then

$$
\chi_{S}=\sum_{R \subseteq S} \delta_{R}
$$

is feasible for $\operatorname{las}_{\alpha(G)}(G)$

- We show that the measures χ_{S} are precisely the extreme points of the feasible region of $\operatorname{las}_{\alpha(G)}(G)$

Finite convergence

Theorem

Suppose G is a compact topological packing graph. Then,

$$
\vartheta^{\prime}(G)=\operatorname{las}_{1}(G) \geq \cdots \geq \operatorname{las}_{\alpha(G)}(G)=\alpha(G)
$$

- If S is an independent set, then

$$
\chi_{S}=\sum_{R \subseteq S} \delta_{R}
$$

is feasible for $\operatorname{las}_{\alpha(G)}(G)$

- We show that the measures χ_{S} are precisely the extreme points of the feasible region of $\operatorname{las}_{\alpha(G)}(G)$
- Using vector valued notation: $\lambda=\int \chi_{S} d \sigma(S)$ for some probability measure σ on the set of independent sets

Finite convergence

Theorem

Suppose G is a compact topological packing graph. Then,

$$
\vartheta^{\prime}(G)=\operatorname{las}_{1}(G) \geq \cdots \geq \operatorname{las}_{\alpha(G)}(G)=\alpha(G)
$$

- If S is an independent set, then

$$
\chi_{S}=\sum_{R \subseteq S} \delta_{R}
$$

is feasible for $\operatorname{las}_{\alpha(G)}(G)$

- We show that the measures χ_{S} are precisely the extreme points of the feasible region of $\operatorname{las}_{\alpha(G)}(G)$
- Using vector valued notation: $\lambda=\int \chi_{S} d \sigma(S)$ for some probability measure σ on the set of independent sets
- Then, $\lambda\left(I_{=1}\right)=\int \chi_{S}\left(I_{=1}\right) d \sigma(S)=\int|S| d \sigma(S) \leq \alpha(G)$

Duality theory

- A duality theory is important for concrete computations:
- In the maximization problems las $_{t}(G)$ we need optimal solutions to get upper bounds
- In the dual minimization problems any feasible solution provides an upper bound

Duality theory

- A duality theory is important for concrete computations:
- In the maximization problems las $_{t}(G)$ we need optimal solutions to get upper bounds
- In the dual minimization problems any feasible solution provides an upper bound
- We obtain the dual by conic duality:

$$
\begin{aligned}
\operatorname{las}_{t}(G)^{*}=\inf \{K(\emptyset, \emptyset): & K \in \mathcal{C}\left(V_{t} \times V_{t}\right)_{\succeq 0}, \\
& \left.A_{t} K(S) \leq-1_{I_{=1}}(S) \text { for } S \in I_{2 t} \backslash\{\emptyset\}\right\}
\end{aligned}
$$

Duality theory

- A duality theory is important for concrete computations:
- In the maximization problems las $_{t}(G)$ we need optimal solutions to get upper bounds
- In the dual minimization problems any feasible solution provides an upper bound
- We obtain the dual by conic duality:

$$
\begin{aligned}
\operatorname{las}_{t}(G)^{*}=\inf \{K(\emptyset, \emptyset): & K \in \mathcal{C}\left(V_{t} \times V_{t}\right)_{\succeq 0} \\
& \left.A_{t} K(S) \leq-1_{I_{=1}}(S) \text { for } S \in I_{2 t} \backslash\{\emptyset\}\right\}
\end{aligned}
$$

Theorem (Strong duality)
$\operatorname{las}_{t}(G)=\operatorname{las}_{t}(G)^{*}$ and the optimum in $\operatorname{las}_{t}(G)$ is attained

Duality theory

- A duality theory is important for concrete computations:
- In the maximization problems las $_{t}(G)$ we need optimal solutions to get upper bounds
- In the dual minimization problems any feasible solution provides an upper bound
- We obtain the dual by conic duality:

$$
\begin{aligned}
\operatorname{las}_{t}(G)^{*}=\inf \{K(\emptyset, \emptyset): & K \in \mathcal{C}\left(V_{t} \times V_{t}\right)_{\succeq 0} \\
& \left.A_{t} K(S) \leq-1_{I_{=1}}(S) \text { for } S \in I_{2 t} \backslash\{\emptyset\}\right\}
\end{aligned}
$$

Theorem (Strong duality)
$\operatorname{las}_{t}(G)=\operatorname{las}_{t}(G)^{*}$ and the optimum in $\operatorname{las}_{t}(G)$ is attained

- These are infinite dimensional conic programs

Harmonic analysis on V_{2}

- We use harmonic analysis on V_{t} and SOS characterizations to obtain finite dimensional semidefinite programs

Harmonic analysis on V_{2}

- We use harmonic analysis on V_{t} and SOS characterizations to obtain finite dimensional semidefinite programs
- Assume $V=S^{2}$ and $t=2$

Harmonic analysis on V_{2}

- We use harmonic analysis on V_{t} and SOS characterizations to obtain finite dimensional semidefinite programs
- Assume $V=S^{2}$ and $t=2$
- Symmetry: transitive action of $O(3)$ on S^{2}

Harmonic analysis on V_{2}

- We use harmonic analysis on V_{t} and SOS characterizations to obtain finite dimensional semidefinite programs
- Assume $V=S^{2}$ and $t=2$
- Symmetry: transitive action of $O(3)$ on S^{2}
- Induced action on V_{2} by $g \emptyset=\emptyset$ and $g\left\{v_{1}, v_{2}\right\}=\left\{g v_{1}, g v_{2}\right\}$

Harmonic analysis on V_{2}

- We use harmonic analysis on V_{t} and SOS characterizations to obtain finite dimensional semidefinite programs
- Assume $V=S^{2}$ and $t=2$
- Symmetry: transitive action of $O(3)$ on S^{2}
- Induced action on V_{2} by $g \emptyset=\emptyset$ and $g\left\{v_{1}, v_{2}\right\}=\left\{g v_{1}, g v_{2}\right\}$
- Representation: $O(3) \rightarrow \mathcal{L}\left(\mathcal{C}\left(V_{2}\right)\right), g f(x)=f\left(g^{-1} x\right)$

Harmonic analysis on V_{2}

- We use harmonic analysis on V_{t} and SOS characterizations to obtain finite dimensional semidefinite programs
- Assume $V=S^{2}$ and $t=2$
- Symmetry: transitive action of $O(3)$ on S^{2}
- Induced action on V_{2} by $g \emptyset=\emptyset$ and $g\left\{v_{1}, v_{2}\right\}=\left\{g v_{1}, g v_{2}\right\}$
- Representation: $O(3) \rightarrow \mathcal{L}\left(\mathcal{C}\left(V_{2}\right)\right), g f(x)=f\left(g^{-1} x\right)$
- Bochner's theorem: A kernel $K \in \mathcal{C}\left(V_{2} \times V_{2}\right)_{\succeq 0}$ is of the form

$$
K\left(J, J^{\prime}\right)=\sum_{k=0}^{\infty}\left\langle F_{k}, Z_{k}\left(J, J^{\prime}\right)\right\rangle
$$

Harmonic analysis on V_{2}

- We use harmonic analysis on V_{t} and SOS characterizations to obtain finite dimensional semidefinite programs
- Assume $V=S^{2}$ and $t=2$
- Symmetry: transitive action of $O(3)$ on S^{2}
- Induced action on V_{2} by $g \emptyset=\emptyset$ and $g\left\{v_{1}, v_{2}\right\}=\left\{g v_{1}, g v_{2}\right\}$
- Representation: $O(3) \rightarrow \mathcal{L}\left(\mathcal{C}\left(V_{2}\right)\right), g f(x)=f\left(g^{-1} x\right)$
- Bochner's theorem: A kernel $K \in \mathcal{C}\left(V_{2} \times V_{2}\right)_{\succeq 0}$ is of the form

$$
K\left(J, J^{\prime}\right)=\sum_{k=0}^{\infty}\left\langle F_{k}, Z_{k}\left(J, J^{\prime}\right)\right\rangle
$$

- $\langle.,$.$\rangle - trace inner product$

Harmonic analysis on V_{2}

- We use harmonic analysis on V_{t} and SOS characterizations to obtain finite dimensional semidefinite programs
- Assume $V=S^{2}$ and $t=2$
- Symmetry: transitive action of $O(3)$ on S^{2}
- Induced action on V_{2} by $g \emptyset=\emptyset$ and $g\left\{v_{1}, v_{2}\right\}=\left\{g v_{1}, g v_{2}\right\}$
- Representation: $O(3) \rightarrow \mathcal{L}\left(\mathcal{C}\left(V_{2}\right)\right), g f(x)=f\left(g^{-1} x\right)$
- Bochner's theorem: A kernel $K \in \mathcal{C}\left(V_{2} \times V_{2}\right)_{\succeq 0}$ is of the form

$$
K\left(J, J^{\prime}\right)=\sum_{k=0}^{\infty}\left\langle F_{k}, Z_{k}\left(J, J^{\prime}\right)\right\rangle
$$

- $\langle.,$.$\rangle - trace inner product$
- F_{k} - positive semidefinite matrices (Fourier coefficients)

Harmonic analysis on V_{2}

- We use harmonic analysis on V_{t} and SOS characterizations to obtain finite dimensional semidefinite programs
- Assume $V=S^{2}$ and $t=2$
- Symmetry: transitive action of $O(3)$ on S^{2}
- Induced action on V_{2} by $g \emptyset=\emptyset$ and $g\left\{v_{1}, v_{2}\right\}=\left\{g v_{1}, g v_{2}\right\}$
- Representation: $O(3) \rightarrow \mathcal{L}\left(\mathcal{C}\left(V_{2}\right)\right), g f(x)=f\left(g^{-1} x\right)$
- Bochner's theorem: A kernel $K \in \mathcal{C}\left(V_{2} \times V_{2}\right)_{\succeq 0}$ is of the form

$$
K\left(J, J^{\prime}\right)=\sum_{k=0}^{\infty}\left\langle F_{k}, Z_{k}\left(J, J^{\prime}\right)\right\rangle
$$

- $\langle.,$.$\rangle - trace inner product$
- F_{k} - positive semidefinite matrices (Fourier coefficients)
- Z_{k} - zonal matrices corresponding to the above representation

Harmonic analysis V_{2}

- How do we find the zonal matrices Z_{k} ?

Harmonic analysis V_{2}

- How do we find the zonal matrices Z_{k} ?

Definition

Harmonic analysis V_{2}

- How do we find the zonal matrices Z_{k} ?

Definition

- Decomposition: $\mathcal{C}\left(V_{2}\right)=\oplus_{k=0}^{\infty} \oplus_{i=1}^{m_{k}} V_{k, i}$

Harmonic analysis V_{2}

- How do we find the zonal matrices Z_{k} ?

Definition

- Decomposition: $\mathcal{C}\left(V_{2}\right)=\oplus_{k=0}^{\infty} \oplus_{i=1}^{m_{k}} V_{k, i}$
- Where $V_{k, i}$ are irreducible subspaces with $V_{k, i} \sim V_{k, i^{\prime}}$

Harmonic analysis V_{2}

- How do we find the zonal matrices Z_{k} ?

Definition

- Decomposition: $\mathcal{C}\left(V_{2}\right)=\oplus_{k=0}^{\infty} \oplus_{i=1}^{m_{k}} V_{k, i}$
- Where $V_{k, i}$ are irreducible subspaces with $V_{k, i} \sim V_{k, i^{\prime}}$
- Let $e_{k, i, 1}, \ldots, e_{k, i, h_{k}}$ be compatible bases of $V_{k, i}$

Harmonic analysis V_{2}

- How do we find the zonal matrices Z_{k} ?

Definition

- Decomposition: $\mathcal{C}\left(V_{2}\right)=\oplus_{k=0}^{\infty} \oplus_{i=1}^{m_{k}} V_{k, i}$
- Where $V_{k, i}$ are irreducible subspaces with $V_{k, i} \sim V_{k, i^{\prime}}$
- Let $e_{k, i, 1}, \ldots, e_{k, i, h_{k}}$ be compatible bases of $V_{k, i}$
- Then $Z_{k}\left(J, J^{\prime}\right)=E_{k}(J)^{\top} E_{k}\left(J^{\prime}\right)$ with $E_{k}(J)_{j, i}=e_{k, i, j}(J)$

Harmonic analysis V_{2}

- How do we find the zonal matrices Z_{k} ?

Definition

- Decomposition: $\mathcal{C}\left(V_{2}\right)=\oplus_{k=0}^{\infty} \oplus_{i=1}^{m_{k}} V_{k, i}$
- Where $V_{k, i}$ are irreducible subspaces with $V_{k, i} \sim V_{k, i^{\prime}}$
- Let $e_{k, i, 1}, \ldots, e_{k, i, h_{k}}$ be compatible bases of $V_{k, i}$
- Then $Z_{k}\left(J, J^{\prime}\right)=E_{k}(J)^{\top} E_{k}\left(J^{\prime}\right)$ with $E_{k}(J)_{j, i}=e_{k, i, j}(J)$
- $\mathcal{C}\left(V_{2}\right)=\mathcal{C}\left(\{\emptyset\} \cup V_{2} \backslash\{\emptyset\}\right)=\mathbb{R} \oplus \mathcal{C}\left(V_{2} \backslash\{\emptyset\}\right)$

Harmonic analysis V_{2}

- How do we find the zonal matrices Z_{k} ?

Definition

- Decomposition: $\mathcal{C}\left(V_{2}\right)=\oplus_{k=0}^{\infty} \oplus_{i=1}^{m_{k}} V_{k, i}$
- Where $V_{k, i}$ are irreducible subspaces with $V_{k, i} \sim V_{k, i^{\prime}}$
- Let $e_{k, i, 1}, \ldots, e_{k, i, h_{k}}$ be compatible bases of $V_{k, i}$
- Then $Z_{k}\left(J, J^{\prime}\right)=E_{k}(J)^{\top} E_{k}\left(J^{\prime}\right)$ with $E_{k}(J)_{j, i}=e_{k, i, j}(J)$
- $\mathcal{C}\left(V_{2}\right)=\mathcal{C}\left(\{\emptyset\} \cup V_{2} \backslash\{\emptyset\}\right)=\mathbb{R} \oplus \mathcal{C}\left(V_{2} \backslash\{\emptyset\}\right)$
- $\mathcal{C}\left(V_{2} \backslash\{\emptyset\}\right)=\mathcal{C}(V) \odot \mathcal{C}(V)$

Harmonic analysis V_{2}

- How do we find the zonal matrices Z_{k} ?

Definition

- Decomposition: $\mathcal{C}\left(V_{2}\right)=\oplus_{k=0}^{\infty} \oplus_{i=1}^{m_{k}} V_{k, i}$
- Where $V_{k, i}$ are irreducible subspaces with $V_{k, i} \sim V_{k, i^{\prime}}$
- Let $e_{k, i, 1}, \ldots, e_{k, i, h_{k}}$ be compatible bases of $V_{k, i}$
- Then $Z_{k}\left(J, J^{\prime}\right)=E_{k}(J)^{\top} E_{k}\left(J^{\prime}\right)$ with $E_{k}(J)_{j, i}=e_{k, i, j}(J)$
- $\mathcal{C}\left(V_{2}\right)=\mathcal{C}\left(\{\emptyset\} \cup V_{2} \backslash\{\emptyset\}\right)=\mathbb{R} \oplus \mathcal{C}\left(V_{2} \backslash\{\emptyset\}\right)$
- $\mathcal{C}\left(V_{2} \backslash\{\emptyset\}\right)=\mathcal{C}(V) \odot \mathcal{C}(V)$
- $\mathcal{C}(V)=\oplus_{k=0}^{\infty} H_{k}$ where H_{k} are degree k spherical harmonics

Harmonic analysis V_{2}

- How do we find the zonal matrices Z_{k} ?

Definition

- Decomposition: $\mathcal{C}\left(V_{2}\right)=\oplus_{k=0}^{\infty} \oplus_{i=1}^{m_{k}} V_{k, i}$
- Where $V_{k, i}$ are irreducible subspaces with $V_{k, i} \sim V_{k, i^{\prime}}$
- Let $e_{k, i, 1}, \ldots, e_{k, i, h_{k}}$ be compatible bases of $V_{k, i}$
- Then $Z_{k}\left(J, J^{\prime}\right)=E_{k}(J)^{\top} E_{k}\left(J^{\prime}\right)$ with $E_{k}(J)_{j, i}=e_{k, i, j}(J)$
- $\mathcal{C}\left(V_{2}\right)=\mathcal{C}\left(\{\emptyset\} \cup V_{2} \backslash\{\emptyset\}\right)=\mathbb{R} \oplus \mathcal{C}\left(V_{2} \backslash\{\emptyset\}\right)$
- $\mathcal{C}\left(V_{2} \backslash\{\emptyset\}\right)=\mathcal{C}(V) \odot \mathcal{C}(V)$
- $\mathcal{C}(V)=\oplus_{k=0}^{\infty} H_{k}$ where H_{k} are degree k spherical harmonics
- $\mathcal{C}(V) \odot \mathcal{C}(V)=\left(\oplus_{k \geq 0} H_{k} \odot H_{k}\right) \oplus\left(\oplus_{0 \leq k<k^{\prime}} H_{k} \otimes H_{k^{\prime}}\right)$

Harmonic analysis V_{2}

- How do we find the zonal matrices Z_{k} ?

Definition

- Decomposition: $\mathcal{C}\left(V_{2}\right)=\oplus_{k=0}^{\infty} \oplus_{i=1}^{m_{k}} V_{k, i}$
- Where $V_{k, i}$ are irreducible subspaces with $V_{k, i} \sim V_{k, i^{\prime}}$
- Let $e_{k, i, 1}, \ldots, e_{k, i, h_{k}}$ be compatible bases of $V_{k, i}$
- Then $Z_{k}\left(J, J^{\prime}\right)=E_{k}(J)^{\top} E_{k}\left(J^{\prime}\right)$ with $E_{k}(J)_{j, i}=e_{k, i, j}(J)$
- $\mathcal{C}\left(V_{2}\right)=\mathcal{C}\left(\{\emptyset\} \cup V_{2} \backslash\{\emptyset\}\right)=\mathbb{R} \oplus \mathcal{C}\left(V_{2} \backslash\{\emptyset\}\right)$
- $\mathcal{C}\left(V_{2} \backslash\{\emptyset\}\right)=\mathcal{C}(V) \odot \mathcal{C}(V)$
- $\mathcal{C}(V)=\oplus_{k=0}^{\infty} H_{k}$ where H_{k} are degree k spherical harmonics
- $\mathcal{C}(V) \odot \mathcal{C}(V)=\left(\oplus_{k \geq 0} H_{k} \odot H_{k}\right) \oplus\left(\oplus_{0 \leq k<k^{\prime}} H_{k} \otimes H_{k^{\prime}}\right)$
- $H_{k} \odot H_{k} \simeq H_{0} \oplus H_{2} \oplus \cdots \oplus H_{2 k}$

Harmonic analysis V_{2}

- How do we find the zonal matrices Z_{k} ?

Definition

- Decomposition: $\mathcal{C}\left(V_{2}\right)=\oplus_{k=0}^{\infty} \oplus_{i=1}^{m_{k}} V_{k, i}$
- Where $V_{k, i}$ are irreducible subspaces with $V_{k, i} \sim V_{k, i^{\prime}}$
- Let $e_{k, i, 1}, \ldots, e_{k, i, h_{k}}$ be compatible bases of $V_{k, i}$
- Then $Z_{k}\left(J, J^{\prime}\right)=E_{k}(J)^{\top} E_{k}\left(J^{\prime}\right)$ with $E_{k}(J)_{j, i}=e_{k, i, j}(J)$
- $\mathcal{C}\left(V_{2}\right)=\mathcal{C}\left(\{\emptyset\} \cup V_{2} \backslash\{\emptyset\}\right)=\mathbb{R} \oplus \mathcal{C}\left(V_{2} \backslash\{\emptyset\}\right)$
- $\mathcal{C}\left(V_{2} \backslash\{\emptyset\}\right)=\mathcal{C}(V) \odot \mathcal{C}(V)$
- $\mathcal{C}(V)=\oplus_{k=0}^{\infty} H_{k}$ where H_{k} are degree k spherical harmonics
- $\mathcal{C}(V) \odot \mathcal{C}(V)=\left(\oplus_{k \geq 0} H_{k} \odot H_{k}\right) \oplus\left(\oplus_{0 \leq k<k^{\prime}} H_{k} \otimes H_{k^{\prime}}\right)$
- $H_{k} \odot H_{k} \simeq H_{0} \oplus H_{2} \oplus \cdots \oplus H_{2 k}$
- $H_{k} \otimes H_{k^{\prime}} \simeq H_{\left|k-k^{\prime}\right|}^{(-1)^{k+k^{\prime}}} \oplus \cdots \oplus H_{k+k^{\prime}}^{(-1)^{k+k^{\prime}}}$

Harmonic analysis V_{2}

- How do we find the zonal matrices Z_{k} ?

Definition

- Decomposition: $\mathcal{C}\left(V_{2}\right)=\oplus_{k=0}^{\infty} \oplus_{i=1}^{m_{k}} V_{k, i}$
- Where $V_{k, i}$ are irreducible subspaces with $V_{k, i} \sim V_{k, i^{\prime}}$
- Let $e_{k, i, 1}, \ldots, e_{k, i, h_{k}}$ be compatible bases of $V_{k, i}$
- Then $Z_{k}\left(J, J^{\prime}\right)=E_{k}(J)^{\top} E_{k}\left(J^{\prime}\right)$ with $E_{k}(J)_{j, i}=e_{k, i, j}(J)$
- $\mathcal{C}\left(V_{2}\right)=\mathcal{C}\left(\{\emptyset\} \cup V_{2} \backslash\{\emptyset\}\right)=\mathbb{R} \oplus \mathcal{C}\left(V_{2} \backslash\{\emptyset\}\right)$
- $\mathcal{C}\left(V_{2} \backslash\{\emptyset\}\right)=\mathcal{C}(V) \odot \mathcal{C}(V)$
- $\mathcal{C}(V)=\oplus_{k=0}^{\infty} H_{k}$ where H_{k} are degree k spherical harmonics
- $\mathcal{C}(V) \odot \mathcal{C}(V)=\left(\oplus_{k \geq 0} H_{k} \odot H_{k}\right) \oplus\left(\oplus_{0 \leq k<k^{\prime}} H_{k} \otimes H_{k^{\prime}}\right)$
- $H_{k} \odot H_{k} \simeq H_{0} \oplus H_{2} \oplus \cdots \oplus H_{2 k}$
- $H_{k} \otimes H_{k^{\prime}} \simeq H_{\left|k-k^{\prime}\right|}^{\left(-1 k^{k+k^{\prime}}\right.} \oplus \cdots \oplus H_{k+k^{\prime}}^{(-1)^{k+k^{\prime}}}$
- $H_{k}^{(-1)^{k}}=H_{k}$ are the irreducible representations of $S O(3)$

Harmonic analysis V_{2}

- How do we find the zonal matrices Z_{k} ?

Definition

- Decomposition: $\mathcal{C}\left(V_{2}\right)=\oplus_{k=0}^{\infty} \oplus_{i=1}^{m_{k}} V_{k, i}$
- Where $V_{k, i}$ are irreducible subspaces with $V_{k, i} \sim V_{k, i^{\prime}}$
- Let $e_{k, i, 1}, \ldots, e_{k, i, h_{k}}$ be compatible bases of $V_{k, i}$
- Then $Z_{k}\left(J, J^{\prime}\right)=E_{k}(J)^{\top} E_{k}\left(J^{\prime}\right)$ with $E_{k}(J)_{j, i}=e_{k, i, j}(J)$
- $\mathcal{C}\left(V_{2}\right)=\mathcal{C}\left(\{\emptyset\} \cup V_{2} \backslash\{\emptyset\}\right)=\mathbb{R} \oplus \mathcal{C}\left(V_{2} \backslash\{\emptyset\}\right)$
- $\mathcal{C}\left(V_{2} \backslash\{\emptyset\}\right)=\mathcal{C}(V) \odot \mathcal{C}(V)$
- $\mathcal{C}(V)=\oplus_{k=0}^{\infty} H_{k}$ where H_{k} are degree k spherical harmonics
- $\mathcal{C}(V) \odot \mathcal{C}(V)=\left(\oplus_{k \geq 0} H_{k} \odot H_{k}\right) \oplus\left(\oplus_{0 \leq k<k^{\prime}} H_{k} \otimes H_{k^{\prime}}\right)$
- $H_{k} \odot H_{k} \simeq H_{0} \oplus H_{2} \oplus \cdots \oplus H_{2 k}$
- $H_{k} \otimes H_{k^{\prime}} \simeq H_{\left|k-k^{\prime}\right|}^{(-1)^{k+k^{\prime}}} \oplus \cdots \oplus H_{k+k^{\prime}}^{(-1)^{k+k^{\prime}}}$
- $H_{k}^{(-1)^{k}}=H_{k}$ are the irreducible representations of $S O(3)$
- $H_{k}^{(-1)^{k+1}}$ are the remaining irreducible representations of $O(3)$

Sums of squares characterizations

- $Z_{k}\left(g J, g J^{\prime}\right)=Z_{k}\left(J, J^{\prime}\right)$ for all $g \in O(3)$ and $J, J^{\prime} \in V_{2}$

Sums of squares characterizations

- $Z_{k}\left(g J, g J^{\prime}\right)=Z_{k}\left(J, J^{\prime}\right)$ for all $g \in O(3)$ and $J, J^{\prime} \in V_{2}$
- The first fundamental theorem for the orthogonal group implies that the Z_{k} are polynomial matrices in the inner products of the points $J \cup J^{\prime} \subseteq S^{2}$

Sums of squares characterizations

- $Z_{k}\left(g J, g J^{\prime}\right)=Z_{k}\left(J, J^{\prime}\right)$ for all $g \in O(3)$ and $J, J^{\prime} \in V_{2}$
- The first fundamental theorem for the orthogonal group implies that the Z_{k} are polynomial matrices in the inner products of the points $J \cup J^{\prime} \subseteq S^{2}$
- The constraints

$$
A_{t} K(S) \leq-1_{I_{=1}}(S) \text { for } S \in I_{2 t} \backslash\{\emptyset\}
$$

become polynomial inequalities

Sums of squares characterizations

- $Z_{k}\left(g J, g J^{\prime}\right)=Z_{k}\left(J, J^{\prime}\right)$ for all $g \in O(3)$ and $J, J^{\prime} \in V_{2}$
- The first fundamental theorem for the orthogonal group implies that the Z_{k} are polynomial matrices in the inner products of the points $J \cup J^{\prime} \subseteq S^{2}$
- The constraints

$$
A_{t} K(S) \leq-1_{I_{=1}}(S) \text { for } S \in I_{2 t} \backslash\{\emptyset\}
$$

become polynomial inequalities

- Variables: inner products between the points in S

Sums of squares characterizations

- $Z_{k}\left(g J, g J^{\prime}\right)=Z_{k}\left(J, J^{\prime}\right)$ for all $g \in O(3)$ and $J, J^{\prime} \in V_{2}$
- The first fundamental theorem for the orthogonal group implies that the Z_{k} are polynomial matrices in the inner products of the points $J \cup J^{\prime} \subseteq S^{2}$
- The constraints

$$
A_{t} K(S) \leq-1_{I_{=1}}(S) \text { for } S \in I_{2 t} \backslash\{\emptyset\}
$$

become polynomial inequalities

- Variables: inner products between the points in S
- Coefficients: given in terms of the entries of the F_{k}

Sums of squares characterizations

- $Z_{k}\left(g J, g J^{\prime}\right)=Z_{k}\left(J, J^{\prime}\right)$ for all $g \in O(3)$ and $J, J^{\prime} \in V_{2}$
- The first fundamental theorem for the orthogonal group implies that the Z_{k} are polynomial matrices in the inner products of the points $J \cup J^{\prime} \subseteq S^{2}$
- The constraints

$$
A_{t} K(S) \leq-1_{I_{=1}}(S) \text { for } S \in I_{2 t} \backslash\{\emptyset\}
$$

become polynomial inequalities

- Variables: inner products between the points in S
- Coefficients: given in terms of the entries of the F_{k}
- Modeling these constraints using sums of squares characterizations reduces the problems to finite dimensional semidefinite programs

Thank you

D. de Laat, F. Vallentin, A semidefinite programming hierarchy for packing problems in discrete geometry, arXiv:1311.3789 (2013), 21 pages.

Image credit:
http://www.buddenbooks.com/jb/images/150a5.gif
http://en.wikipedia.org/wiki/File:Disk_pack10.svg

W. Zhang, K.E. Thompson, A.H. Reed, L. Beenken, Relationship between packing structure and porosity in fixed beds of equilateral cylindrical particles, Chemical Engineering Science 61 (2006), 8060-8074.

