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> These problems can be modeled as maximum independent set
problems in graphs on infinitely many vertices

Spherical cap packings

What is the maximum number of spherical caps of size ¢ in ™!
such that no two caps intersect in their interiors?
G=(V,E), V=51 E={{z,y}:z-ye 1)}

» Independent sets correspond to valid packings
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The Lasserre hierarchy for finite graphs

» Maximum independent set problem for a finite graph as a 0/1
polynomial optimization problem:

a(G) = max { Z Ty : Ty € {0,1} for v € V, &y +ay, < 1 for {u,v} € E}
veV
» The Lasserre hierarchy for this problem (Laurent, 2003):

lasi(G) = max{ Z Yz} 'Y € RI;@, yp =1, M(y) = 0}
zeV

v

Iy, is the set of independent sets of cardinality at most 2t
M;(y) is the matrix with rows and columns indexed by I; and

L JUT € Iy,
Mt(y)t]w]/ — {yJUJ 2t

v

0 otherwise

v

V'(G) = lasi (G) > lasy(G) > ... > lasy ) (G) = a(G)
Y(G) is the Lovasz ¥-number which specializes to the Delsarte
LP-bound when G is the binary code graph

v
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Generalization to infinite graphs

» Linear programming bound for spherical cap packings
(Delsarte, 1977 / Kabatiansky, Levenshtein, 1978)

» Generalization of the ¥-number
(Bachoc, Nebe, de Oliveira, Vallentin, 2009)
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Topological packing graphs

» We consider graphs where
> vertices which are close are adjacent

» adjacent vertices stay adjacent after slight pertubations
Definition
A topological packing graph is a graph where
- the vertex set is a Hausdorff topological space

- each finite clique is contained in an open clique

» We consider compact topological packing graphs
» These graphs have finite independence number
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Generalization for compact topological packing graphs

las(G) = sup {)\(Izl) S € M(Lo)s0, M{0}) = 1,
APX € M(Vi X Vi)zo}

v

V; is the set of subsets of V' of cardinality <t

v

Quotient map:

g: Vi Vi\ {0}, (v1,...,v0) = {v1,..., 0}

v

Vi \ {0} is equipped with the quotient topology

v

V, is the disjoint union of V; \ {0} with {0}

v

I; gets its topology as a subset of V;
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Generalization for compact topological packing graphs

last(G) = sup {)\(Izl) A E M(Igt)zo, )\({@}) =1,
A;X € M(Vy x Vi)wo )

» A function K € C(V; x V;)sym is a positive definite kernel if

(K(Jiy Jj))i5=1 =0 forall meN and Ji,...,Jm € Vs
» Cone of positive definite kernels: C(V; x V;)=o
» Cone of positive definite measures:

M(VixVi)so = {pp € M(VixVi)sym : p(K) > 0 for all K € C(VixVy)w0},

where p(K) = [ K(J,J") du(J, J")



Generalization for compact topological packing graphs

las;(G) = sup {)\(Izl) i A € M(Iat)>0, A{0}) =1,
AP € M(Vi X Vi)zo )



Generalization for compact topological packing graphs

las;(G) = sup {)\(Izl) L x € M(In)s0, M{0}) =1,
ATA € M(V; x Vt)to}

» There is an operator A; such that (M;(y), X) = (y, A, X) for
all vectors y and matrices X



Generalization for compact topological packing graphs

las;(G) = sup {)\(Izl) L x € M(In)s0, M{0}) =1,
ATA € M(V; x Vt)to}

» There is an operator A; such that (M;(y), X) = (y, A, X) for
all vectors y and matrices X

> Define the operator A¢: C(V; X Vi)sym — C(I2t) by

Af(S) = Y. LT

JJ'el:JuJ'=8S



Generalization for compact topological packing graphs

las(G) = sup {)\(Izl) L x € M(In)s0, M{0}) =1,
ATA € M(V; x Vt)to}

» There is an operator A; such that (M;(y), X) = (y, A, X) for
all vectors y and matrices X

> Define the operator A¢: C(V; X Vi)sym — C(I2t) by

Af(S) = Y LT

JJ'el:JuJ'=8S

» The adjoint: Af: M(I2) = M(Vi X Vi)sym
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Finite convergence

Theorem
Suppose G is a compact topological packing graph. Then,

V'(G) = las1(G) > - - > lasy () (G) = a(G).

v

If S is an independent set, then

Xs =Y 0r

RCS

is feasible for las, ) (G)

v

We show that the measures xg are precisely the extreme
points of the feasible region of las, ) (G)

» Using vector valued notation: A = [ xgdo(S) for some
probability measure o on the set of independent sets

Then, A(I=1) = [ xs(I=1)do(S) = [|S|do(S) < a(G)

v
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Duality theory

» A duality theory is important for concrete computations:

» In the maximization problems las;(G) we need optimal
solutions to get upper bounds

> In the dual minimization problems any feasible solution
provides an upper bound

» We obtain the dual by conic duality:

las;(G)* = inf {K((z),(z)) K € C(Vi x Vi)so,
AK(S) < —1;_,(S) for S € Ing \ {@}}

Theorem (Strong duality)
las;(G) = las;(G)* and the optimum in las;(G) is attained

» These are infinite dimensional conic programs
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» We use harmonic analysis on V; and SOS characterizations to
obtain finite dimensional semidefinite programs

» Assume V = S? and t = 2

» Symmetry: transitive action of O(3) on S?

» Induced action on V5 by gf) = () and g{v1,v2} = {gv1, gv2}

» Representation: O(3) — L(C(V2)), gf(z) = f(g~ ')

» Bochner's theorem: A kernel K € C(V2 x Va)x¢ is of the form

K(J,J) = (Fr, Zi(J,J))
k=0
» (.,.) — trace inner product

» F}. — positive semidefinite matrices (Fourier coefficients)
» 7. — zonal matrices corresponding to the above representation
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» How do we find the zonal matrices Z;,?
Definition
- Decomposition: C(V2) = &2, @4 Vi,
- Where V}, ; are irreducible subspaces with V}, ; ~ V}, ;s
- Let eg1,...,e€k,n, be compatible bases of Vj,;
- Then Zy(J, J") = Ex(J)TEp(J') with Ex(J)j; = ek (J)

C(V2) =C({0}u V2 \ {0}) =ReaC(V2 )\ {0})

C(Va\{0}) =c(V)@c(V)

(V) = @32 Hy, where Hy, are degree k spherical harmonics
C(V)OC(V) = (®r>o0 Hr ® Hy) ® ( Bo<k<r Hi @ Hy)
H,©H,~Hy®Hy®--- D Hyy

k4K’ 1)k+k’

(-1) (=
~Hy o @O Hp

vV V. v v Y
aQ

v
i
&
S



Harmonic analysis V5
» How do we find the zonal matrices Z;,?
Definition
- Decomposition: C(V2) = &2, @4 Vi,
- Where V}, ; are irreducible subspaces with V}, ; ~ V}, ;s
- Let eg1,...,e€k,n, be compatible bases of Vj,;
- Then Zy(J, J") = Ex(J)TEp(J') with Ex(J)j; = ek (J)

C(V2) =C({0}uV2\ {0}) =RaC(V2\ {0})

C(V2\ {0}) =Cc(V)oc(V)

(V) = @32 Hy, where Hy, are degree k spherical harmonics
C(V)OC(V) = (®r>o0 Hr ® Hy) ® ( Bo<k<r Hi @ Hy)
H,©H,~Hy®Hy®--- D Hyy

k4K’ 1)k+k’

(-1) (-
Hy® Hy = Hi )" & @ Hy )

> H]i_l) = Hj, are the irreducible representations of SO(3)

vV V. v v Y
aQ

v



Harmonic analysis V5

>

How do we find the zonal matrices Z;,?

Definition

vV V. v v Y

v

Decomposition: C(V2) = &2, ®i% Vi

Where V}.; are irreducible subspaces with Vj ; ~ V. i

Let exi1,-..,¢€kin, be compatible bases of V; ;

Then Zy,(J,J") = Ep(J) " Ex(J') with Ey(J)ji = exij(J)

C(V2) = C{0} UV \{0}) = Re C(V2\ {0})
C(V2\{0}) =c(V)oC(V)

(V) = @32 Hy, where Hy, are degree k spherical harmonics
C(V)OC(V) = (@rs0 Hy © Hy,) ® ( So<her Hy @ Hy)
Hy © Hy ~ Hy® Hy @ -+ - & Hog

(—1)kH (—1)kH
Hy ® Hy ~ H|k | S B Hp
> H]i_l) = Hj, are the irreducible representations of SO(3)

k41
> H,g D™ are the remaining irreducible representations of O(3)
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» The first fundamental theorem for the orthogonal group
implies that the Zj are polynomial matrices in the inner
products of the points J U J’ C 52

» The constraints
AK(S) < —17_,(S) for S € Iy \ {0}

become polynomial inequalities

» Variables: inner products between the points in S
» Coefficients: given in terms of the entries of the F},



Sums of squares characterizations

> Zi(gJ,gJ") = Zy(J,J") for all g € O(3) and J, J € V;

» The first fundamental theorem for the orthogonal group
implies that the Zj are polynomial matrices in the inner
products of the points J U J’ C 52

» The constraints
AK(S) < —17_,(S) for S € Iy \ {0}

become polynomial inequalities
» Variables: inner products between the points in S
» Coefficients: given in terms of the entries of the F},
» Modeling these constraints using sums of squares
characterizations reduces the problems to finite dimensional
semidefinite programs



Thank you

D. de Laat, F. Vallentin, A semidefinite programming hierarchy for
packing problems in discrete geometry, arXiv:1311.3789 (2013), 21 pages.
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