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Packing problems in discrete geometry

I These problems can be modeled as maximum independent set
problems in graphs on infinitely many vertices

Spherical cap packings

What is the maximum number of spherical caps of size t in Sn−1

such that no two caps intersect in their interiors?
G = (V,E), V = Sn−1, E = {{x, y} : x · y ∈ (t, 1)}

I Independent sets correspond to valid packings
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The Lasserre hierarchy for finite graphs
I Maximum independent set problem for a finite graph as a 0/1

polynomial optimization problem:

α(G) = max
{∑
v∈V

xv : xv ∈ {0, 1} for v ∈ V, xu+xv ≤ 1 for {u, v} ∈ E
}

I The Lasserre hierarchy for this problem (Laurent, 2003):

last(G) = max
{∑
x∈V

y{x} : y ∈ RI2t≥0, y∅ = 1, Mt(y) � 0
}

I I2t is the set of independent sets of cardinality at most 2t
I Mt(y) is the matrix with rows and columns indexed by It and

Mt(y)J,J ′ =

{
yJ∪J ′ if J ∪ J ′ ∈ I2t,
0 otherwise

I ϑ′(G) = las1(G) ≥ las2(G) ≥ . . . ≥ lasα(G)(G) = α(G)
I ϑ(G) is the Lovász ϑ-number which specializes to the Delsarte

LP-bound when G is the binary code graph
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Generalization to infinite graphs

I Linear programming bound for spherical cap packings
(Delsarte, 1977 / Kabatiansky, Levenshtein, 1978)

I Generalization of the ϑ-number
(Bachoc, Nebe, de Oliveira, Vallentin, 2009)
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Topological packing graphs

I We consider graphs where
I vertices which are close are adjacent
I adjacent vertices stay adjacent after slight pertubations

Definition

A topological packing graph is a graph where

- the vertex set is a Hausdorff topological space

- each finite clique is contained in an open clique

I We consider compact topological packing graphs

I These graphs have finite independence number
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Finite convergence

Theorem

Suppose G is a compact topological packing graph. Then,

ϑ′(G) = las1(G) ≥ · · · ≥ lasα(G)(G) = α(G).

I If S is an independent set, then

χS =
∑
R⊆S

δR

is feasible for lasα(G)(G)

I We show that the measures χS are precisely the extreme
points of the feasible region of lasα(G)(G)

I Using vector valued notation: λ =
∫
χS dσ(S) for some

probability measure σ on the set of independent sets

I Then, λ(I=1) =
∫
χS(I=1) dσ(S) =

∫
|S| dσ(S) ≤ α(G)
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Duality theory

I A duality theory is important for concrete computations:
I In the maximization problems last(G) we need optimal

solutions to get upper bounds
I In the dual minimization problems any feasible solution

provides an upper bound

I We obtain the dual by conic duality:

last(G)
∗ = inf

{
K(∅, ∅) : K ∈ C(Vt × Vt)�0,

AtK(S) ≤ −1I=1(S) for S ∈ I2t \ {∅}
}

Theorem (Strong duality)

last(G) = last(G)
∗ and the optimum in last(G) is attained

I These are infinite dimensional conic programs
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Harmonic analysis on V2

I We use harmonic analysis on Vt and SOS characterizations to
obtain finite dimensional semidefinite programs

I Assume V = S2 and t = 2

I Symmetry: transitive action of O(3) on S2

I Induced action on V2 by g∅ = ∅ and g{v1, v2} = {gv1, gv2}
I Representation: O(3)→ L(C(V2)), gf(x) = f(g−1x)

I Bochner’s theorem: A kernel K ∈ C(V2 × V2)�0 is of the form

K(J, J ′) =

∞∑
k=0

〈Fk, Zk(J, J ′)〉

I 〈., .〉 – trace inner product
I Fk – positive semidefinite matrices (Fourier coefficients)
I Zk – zonal matrices corresponding to the above representation
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Harmonic analysis V2

I How do we find the zonal matrices Zk?

Definition

- Decomposition: C(V2) = ⊕∞k=0 ⊕
mk
i=1 Vk,i

- Where Vk,i are irreducible subspaces with Vk,i ∼ Vk,i′
- Let ek,i,1, . . . , ek,i,hk be compatible bases of Vk,i

- Then Zk(J, J
′) = Ek(J)

TEk(J
′) with Ek(J)j,i = ek,i,j(J)

I C(V2) = C({∅} ∪ V2 \ {∅}) = R⊕ C(V2 \ {∅})
I C(V2 \ {∅}) = C(V )� C(V )
I C(V ) = ⊕∞k=0Hk where Hk are degree k spherical harmonics
I C(V )� C(V ) =

(
⊕k≥0 Hk �Hk

)
⊕
(
⊕0≤k<k′ Hk ⊗Hk′

)
I Hk �Hk ' H0 ⊕H2 ⊕ · · · ⊕H2k

I Hk ⊗Hk′ ' H
(−1)k+k′

|k−k′| ⊕ · · · ⊕H(−1)k+k′

k+k′

I H
(−1)k

k = Hk are the irreducible representations of SO(3)

I H
(−1)k+1

k are the remaining irreducible representations of O(3)
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Sums of squares characterizations

I Zk(gJ, gJ
′) = Zk(J, J

′) for all g ∈ O(3) and J, J ′ ∈ V2

I The first fundamental theorem for the orthogonal group
implies that the Zk are polynomial matrices in the inner
products of the points J ∪ J ′ ⊆ S2

I The constraints

AtK(S) ≤ −1I=1(S) for S ∈ I2t \ {∅}

become polynomial inequalities
I Variables: inner products between the points in S
I Coefficients: given in terms of the entries of the Fk

I Modeling these constraints using sums of squares
characterizations reduces the problems to finite dimensional
semidefinite programs
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