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» Optimization problem:

E = inf Z w(P)

e pegs)



Approach

» Configurations provide upper bounds on the optimal energy E



Approach

» Configurations provide upper bounds on the optimal energy E

» To prove a configuration is good (or optimal) we need good
lower bounds for E



Approach
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» To prove a configuration is good (or optimal) we need good
lower bounds for E

» For this we use infinite dimensional moment hierarchies and
semidefinite programming
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Semi-infinite semidefinite program
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» If V={1,...,n} is a finite set, then E is a polynomial
optimization problem:

E— min{ S w({i i wirg e e (0,1)7,Y 4 = N}
{igye(y) eV
» The Lasserre hierarchy gives a chain B4 < Ey < --- < E,, of
lower bounds to the optimal energy E:

E, = min { sz(;) w(S)y(S) 1y e R y(@) =1, (y(AU B)) s pe( vy =0,

S y(TU{a}) = Ny(T) for T e ()}
xeV
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> Assume V is a compact Hausdorff space and w continuous
> (Xt) \ {0} gets its topology as a quotient of V*
» Generalization (here s = min{2t, N'}):

E, - min{)\( )i xe M((X))s0, Aix € M((X) % (X))s0.
() = (V) fori=0,...5}
» ) generalizes the moment vector y
> M((Xt) X (Xt))io is dual to the cone C((Xt) X (Xt))to of
positive definite kernels Bl -
» Relaxation: If S is an N subset of V, then

Xs = Z OR

Re()

is feasible for E}

» We have Ey = F

» Uses techniques from [de Laat-Vallentin 2013]: hierarchy for
packing problems in discrete geometry
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Dual hierarchy

» For lower bounds we need feasible solutions of the dual

> In the dual hierarchy optimization is over scalars a; and
positive definite kernels K € C((Zt) X (Xt))@:

S

Ef =suwp{ " (Vaitao,....a, € R, K € C((4) x (X))o,
1=0 v .
a; — AyK < w on (l) for Z:O,...,s}

> Techniquality: we only put a linear constraint for S € () if
the points in .S are not too close

» Strong duality holds: E; = Ef

» If I acts on V and w is I'-invariant, then we can restrict to
[-invariant kernels: K(vJ,~vJ') = K(J,J') for all J, J' € (Xt)
(Here 7{x17 s ,.’I}t} = {’Yxla s ,"Y.Tt})
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» Nested chain of inner approximations:
Cre G (&) x (4))zo

» Each cone C; can be parametrized by a finite direct sum of
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» Bochner: A kernel K € C((Zt) X (Xt))go is of the form

K(J,J)) = trace(FpZy(J, J'))
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» [} (infinite) positive semidefinite matrices (the Fourier
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2mikx

(generalizes e in the Fourier transform on the circle)

> Define Cy by truncating the above series
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> Define £, by replacing the cone C((Y,) x ()L, in E} by
the cone Cy - -

» This is an optimization problem with finitely many variables
and infinitely many constraints

» Ef, — Ef as d — oo follows from U2 ,Cy being uniformly

dense in C((gt) X (é))go
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Example: V = S* with O(2)-invariant pair potential w

» The linear constraints in £} ; can be written as the
nonnegativity of a trigonometric polynomial in s — 1 variables

» Use trigonometric SOS characterizations [Dumitrescu 2006]

» For the Coulomb potential (or other completely monotonic
potentials) the regular N-gon is the optimal configuration on
the circle [Cohn-Kumar 2006]

» Uses relaxation based on the 2-point correlation function
[Yudin 1992] (This is similar to E)

» The bound E3 requires SOS characterizations in 3 variables

» Lennard-Jones potential: Based on a sampling implementation
it appears that for e.g. N = 3 we have

Ei<Ey=F



Thank you!



