
Energy minimization via
conic programming hierarchies

David de Laat (TU Delft)

IFORS
July 14, 2014, Barcelona

http://www.daviddelaat.nl


Energy minimization

I What is the minimal potential energy E when we distribute N
particles in a container V with pair potential w?

I Example: For the Thomson problem we take

V = S2 and w({x, y}) =
1

‖x− y‖

I Optimization problem:

E = inf
S∈(V

N)

∑
P∈(S2)

w(P )
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Approach

I Configurations provide upper bounds on the optimal energy E

I To prove a configuration is good (or optimal) we need good
lower bounds for E

I For this we use infinite dimensional moment hierarchies and
semidefinite programming
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Finite container

I If V = {1, . . . , n} is a finite set, then E is a polynomial
optimization problem:

E = min
{ ∑
{i,j}∈(V2)

w({i, j})xixj : x ∈ {0, 1}n,
∑
i∈V

xi = N
}

I The Lasserre hierarchy gives a chain E1 ≤ E2 ≤ · · · ≤ En of
lower bounds to the optimal energy E:

Et = min
{ ∑

S∈(V2)

w(S)y(S) : y ∈ R( V
≤2t), y(∅) = 1,

(
y(A ∪B)

)
A,B∈( V

≤t)
� 0,

∑
x∈V

y(T ∪ {x}) = Ny(T ) for T ∈
(

V
≤2t−1

)}
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Infinite container
I Assume V is a compact Hausdorff space and w continuous

I
(
V
≤t
)
\ {∅} gets its topology as a quotient of V t

I Generalization (here s = min{2t,N}):

Et = min
{
λ(w) : λ ∈M(

(
V
≤s
)
)≥0, A

∗
tλ ∈M(

(
V
≤t
)
×
(
V
≤t
)
)�0,

λ(
(
V
i

)
) =

(
N
i

)
for i = 0, . . . , s

}
I λ generalizes the moment vector y
I M(

(
V
≤t
)
×
(
V
≤t
)
)�0 is dual to the cone C(

(
V
≤t
)
×
(
V
≤t
)
)�0 of

positive definite kernels
I Relaxation: If S is an N subset of V , then

χS =
∑

R∈( S
≤2t)

δR

is feasible for Et

I We have EN = E
I Uses techniques from [de Laat-Vallentin 2013]: hierarchy for

packing problems in discrete geometry
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Dual hierarchy

I For lower bounds we need feasible solutions of the dual

I In the dual hierarchy optimization is over scalars ai and
positive definite kernels K ∈ C(

(
V
≤t
)
×
(
V
≤t
)
)�0:

E∗t = sup
{ s∑

i=0

(
N
i

)
ai : a0, . . . , as ∈ R, K ∈ C(

(
V
≤t
)
×
(
V
≤t
)
)

Γ

�0,

ai −AtK ≤ w on
(
V
i

)
for i = 0, . . . , s

}

I Techniquality: we only put a linear constraint for S ∈
(
V
i

)
if

the points in S are not too close

I Strong duality holds: Et = E∗t
I If Γ acts on V and w is Γ-invariant, then we can restrict to

Γ-invariant kernels: K(γJ, γJ ′) = K(J, J ′) for all J, J ′ ∈
(
V
≤t
)

(Here γ{x1, . . . , xt} = {γx1, . . . , γxt})
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Inner approximiations to the cone C(
(
V
≤t
)
×
(
V
≤t
)
)Γ
�0

I Nested chain of inner approximations:

C1 ⊆ C2 ⊆ · · · ⊆ C(
(
V
≤t
)
×
(
V
≤t
)
)Γ
�0

I Each cone Ci can be parametrized by a finite direct sum of
positive semidefinite matrix cones

I Bochner: A kernel K ∈ C(
(
V
≤t
)
×
(
V
≤t
)
)Γ
�0 is of the form

K(J, J ′) =
∞∑
k=0

trace(FkZk(J, J ′))

I Fk: (infinite) positive semidefinite matrices (the Fourier
coefficients)

I Zk: zonal matrices corresponding to the action of Γ on
(
V
≤t
)

(generalizes e2πikx in the Fourier transform on the circle)

I Define Cd by truncating the above series
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The semi-infinite semidefinite programs E∗t,d

I Define E∗t,d by replacing the cone C(
(
V
≤t
)
×
(
V
≤t
)
)Γ
�0 in E∗t by

the cone Cd

I This is an optimization problem with finitely many variables
and infinitely many constraints

I E∗t,d → E∗t as d→∞ follows from ∪∞d=0Cd being uniformly

dense in C(
(
V
≤t
)
×
(
V
≤t
)
)Γ
�0
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Example: V = S1 with O(2)-invariant pair potential w

I The linear constraints in E∗t,d can be written as the
nonnegativity of a trigonometric polynomial in s− 1 variables

I Use trigonometric SOS characterizations [Dumitrescu 2006]

I For the Coulomb potential (or other completely monotonic
potentials) the regular N -gon is the optimal configuration on
the circle [Cohn-Kumar 2006]

I Uses relaxation based on the 2-point correlation function
[Yudin 1992] (This is similar to E1)

I The bound E∗2 requires SOS characterizations in 3 variables

I Lennard-Jones potential: Based on a sampling implementation
it appears that for e.g. N = 3 we have

E1 < E2 = E
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Thank you!


