Energy minimization via conic programming hierarchies

David de Laat (TU Delft)

IFORS
July 14, 2014, Barcelona

Energy minimization

- What is the minimal potential energy E when we distribute N particles in a container V with pair potential w ?

Energy minimization

- What is the minimal potential energy E when we distribute N particles in a container V with pair potential w ?
- Example: For the Thomson problem we take

$$
V=S^{2} \quad \text { and } \quad w(\{x, y\})=\frac{1}{\|x-y\|}
$$

Energy minimization

- What is the minimal potential energy E when we distribute N particles in a container V with pair potential w ?
- Example: For the Thomson problem we take

$$
V=S^{2} \quad \text { and } \quad w(\{x, y\})=\frac{1}{\|x-y\|}
$$

- Optimization problem:

$$
E=\inf _{S \in\binom{V}{N}} \sum_{P \in\binom{S}{2}} w(P)
$$

Approach

- Configurations provide upper bounds on the optimal energy E

Approach

- Configurations provide upper bounds on the optimal energy E
- To prove a configuration is good (or optimal) we need good lower bounds for E

Approach

- Configurations provide upper bounds on the optimal energy E
- To prove a configuration is good (or optimal) we need good lower bounds for E
- For this we use infinite dimensional moment hierarchies and semidefinite programming

Approach

Approach

Approach

Approach

Approach

Approach

Conic dual:
Infinite dimensional maximization problem

Approach

Conic dual:
Infinite dimensional maximization problem

Approach

Conic dual:
Infinite dimensional maximization problem

Semi-infinite semidefinite program

Finite container

- If $V=\{1, \ldots, n\}$ is a finite set, then E is a polynomial optimization problem:

$$
E=\min \left\{\sum_{\{i, j\} \in\binom{V}{2}} w(\{i, j\}) x_{i} x_{j}: x \in\{0,1\}^{n}, \sum_{i \in V} x_{i}=N\right\}
$$

Finite container

- If $V=\{1, \ldots, n\}$ is a finite set, then E is a polynomial optimization problem:

$$
E=\min \left\{\sum_{\{i, j\} \in\binom{V}{2}} w(\{i, j\}) x_{i} x_{j}: x \in\{0,1\}^{n}, \sum_{i \in V} x_{i}=N\right\}
$$

- The Lasserre hierarchy gives a chain $E_{1} \leq E_{2} \leq \cdots \leq E_{n}$ of lower bounds to the optimal energy E :

Finite container

- If $V=\{1, \ldots, n\}$ is a finite set, then E is a polynomial optimization problem:

$$
E=\min \left\{\sum_{\{i, j\} \in\binom{V}{2}} w(\{i, j\}) x_{i} x_{j}: x \in\{0,1\}^{n}, \sum_{i \in V} x_{i}=N\right\}
$$

- The Lasserre hierarchy gives a chain $E_{1} \leq E_{2} \leq \cdots \leq E_{n}$ of lower bounds to the optimal energy E :

$$
\begin{gathered}
E_{t}=\min \left\{\sum_{S \in\binom{V}{2}} w(S) y(S): y \in \mathbb{R}^{\binom{V}{\leq 2 t}}, y(\emptyset)=1,(y(A \cup B))_{A, B \in\binom{V}{\leq t}} \succeq 0\right. \\
\left.\sum_{x \in V} y(T \cup\{x\})=N y(T) \text { for } T \in\binom{V}{\leq 2 t-1}\right\}
\end{gathered}
$$

Infinite container

- Assume V is a compact Hausdorff space and w continuous

Infinite container

- Assume V is a compact Hausdorff space and w continuous
- $\binom{V}{\leq t} \backslash\{\emptyset\}$ gets its topology as a quotient of V^{t}

Infinite container

- Assume V is a compact Hausdorff space and w continuous
- $\binom{V}{\leq t} \backslash\{\emptyset\}$ gets its topology as a quotient of V^{t}
- Generalization (here $s=\min \{2 t, N\}$):

$$
\begin{gathered}
E_{t}=\min \left\{\lambda(w): \lambda \in \mathcal{M}\left(\binom{V}{\leq s}\right)_{\geq 0}, A_{t}^{*} \lambda \in \mathcal{M}\left(\binom{V}{\leq t} \times\binom{ V}{\leq t}\right)_{\succeq 0},\right. \\
\left.\lambda\left(\binom{V}{i}\right)=\binom{N}{i} \text { for } i=0, \ldots, s\right\}
\end{gathered}
$$

Infinite container

- Assume V is a compact Hausdorff space and w continuous
- $\binom{V}{\leq t} \backslash\{\emptyset\}$ gets its topology as a quotient of V^{t}
- Generalization (here $s=\min \{2 t, N\}$):

$$
\begin{gathered}
E_{t}=\min \left\{\lambda(w): \lambda \in \mathcal{M}\left(\binom{V}{\leq s}\right)_{\geq 0}, A_{t}^{*} \lambda \in \mathcal{M}\left(\binom{V}{\leq t} \times\binom{ V}{\leq t}\right)_{\succeq 0},\right. \\
\left.\lambda\left(\binom{V}{i}\right)=\binom{N}{i} \text { for } i=0, \ldots, s\right\}
\end{gathered}
$$

- λ generalizes the moment vector y

Infinite container

- Assume V is a compact Hausdorff space and w continuous
- $\binom{V}{\leq t} \backslash\{\emptyset\}$ gets its topology as a quotient of V^{t}
- Generalization (here $s=\min \{2 t, N\}$):

$$
\begin{gathered}
E_{t}=\min \left\{\lambda(w): \lambda \in \mathcal{M}\left(\binom{V}{\leq s}\right)_{\geq 0}, A_{t}^{*} \lambda \in \mathcal{M}\left(\binom{V}{\leq t} \times\binom{ V}{\leq t}\right)_{\succeq 0},\right. \\
\left.\lambda\left(\binom{V}{i}\right)=\binom{N}{i} \text { for } i=0, \ldots, s\right\}
\end{gathered}
$$

- λ generalizes the moment vector y
- $\mathcal{M}\left(\binom{V}{\leq t} \times\binom{ V}{\leq t}\right)_{\succeq 0}$ is dual to the cone $\mathcal{C}\left(\binom{V}{\leq t} \times\binom{ V}{\leq t}\right)_{\succeq 0}$ of positive definite kernels

Infinite container

- Assume V is a compact Hausdorff space and w continuous
- $\binom{V}{\leq t} \backslash\{\emptyset\}$ gets its topology as a quotient of V^{t}
- Generalization (here $s=\min \{2 t, N\}$):

$$
\begin{gathered}
E_{t}=\min \left\{\lambda(w): \lambda \in \mathcal{M}\left(\binom{V}{\leq s}\right)_{\geq 0}, A_{t}^{*} \lambda \in \mathcal{M}\left(\binom{V}{\leq t} \times\binom{ V}{\leq t}\right)_{\succeq 0},\right. \\
\left.\lambda\left(\binom{V}{i}\right)=\binom{N}{i} \text { for } i=0, \ldots, s\right\}
\end{gathered}
$$

- λ generalizes the moment vector y
- $\mathcal{M}\left(\binom{V}{\leq t} \times\binom{ V}{\leq t}\right)_{\succeq 0}$ is dual to the cone $\mathcal{C}\left(\binom{V}{\leq t} \times\binom{ V}{\leq t}\right)_{\succeq 0}$ of positive definite kernels
- Relaxation: If S is an N subset of V, then
is feasible for E_{t}

$$
\chi_{S}=\sum_{R \in\left(\begin{array}{c}
S \\
\leq 2 t \\
\hline
\end{array}\right.} \delta_{R}
$$

Infinite container

- Assume V is a compact Hausdorff space and w continuous
- $\binom{V}{\leq t} \backslash\{\emptyset\}$ gets its topology as a quotient of V^{t}
- Generalization (here $s=\min \{2 t, N\}$):

$$
\begin{gathered}
E_{t}=\min \left\{\lambda(w): \lambda \in \mathcal{M}\left(\binom{V}{\leq s}\right)_{\geq 0}, A_{t}^{*} \lambda \in \mathcal{M}\left(\binom{V}{\leq t} \times\binom{ V}{\leq t}\right)_{\succeq 0},\right. \\
\left.\lambda\left(\binom{V}{i}\right)=\binom{N}{i} \text { for } i=0, \ldots, s\right\}
\end{gathered}
$$

- λ generalizes the moment vector y
- $\mathcal{M}\left(\binom{V}{\leq t} \times\binom{ V}{\leq t}\right)_{\succeq 0}$ is dual to the cone $\mathcal{C}\left(\binom{V}{\leq t} \times\binom{ V}{\leq t}\right)_{\succeq 0}$ of positive definite kernels
- Relaxation: If S is an N subset of V, then
is feasible for E_{t}

$$
\chi_{S}=\sum_{R \in\left(\begin{array}{c}
S \\
\leq 2 t \\
\hline
\end{array}\right.} \delta_{R}
$$

- We have $E_{N}=E$

Infinite container

- Assume V is a compact Hausdorff space and w continuous
- $\binom{V}{\leq t} \backslash\{\emptyset\}$ gets its topology as a quotient of V^{t}
- Generalization (here $s=\min \{2 t, N\}$):

$$
\begin{gathered}
E_{t}=\min \left\{\lambda(w): \lambda \in \mathcal{M}\left(\binom{V}{\leq s}\right)_{\geq 0}, A_{t}^{*} \lambda \in \mathcal{M}\left(\binom{V}{\leq t} \times\binom{ V}{\leq t}\right)_{\succeq 0},\right. \\
\left.\lambda\left(\binom{V}{i}\right)=\binom{N}{i} \text { for } i=0, \ldots, s\right\}
\end{gathered}
$$

- λ generalizes the moment vector y
- $\mathcal{M}\left(\binom{V}{\leq t} \times\binom{ V}{\leq t}\right)_{\succeq 0}$ is dual to the cone $\mathcal{C}\left(\binom{V}{\leq t} \times\binom{ V}{\leq t}\right)_{\succeq 0}$ of positive definite kernels
- Relaxation: If S is an N subset of V, then
is feasible for E_{t}

$$
\chi_{S}=\sum_{R \in\left(\begin{array}{c}
S \\
\leq 2 t \\
\hline
\end{array}\right.} \delta_{R}
$$

- We have $E_{N}=E$
- Uses techniques from [de Laat-Vallentin 2013]: hierarchy for packing problems in discrete geometry

Dual hierarchy

- For lower bounds we need feasible solutions of the dual

Dual hierarchy

- For lower bounds we need feasible solutions of the dual
- In the dual hierarchy optimization is over scalars a_{i} and positive definite kernels $K \in \mathcal{C}\left(\binom{V}{\leq t} \times\binom{ V}{\leq t}\right)_{\succeq 0}$:

Dual hierarchy

- For lower bounds we need feasible solutions of the dual
- In the dual hierarchy optimization is over scalars a_{i} and positive definite kernels $K \in \mathcal{C}\left(\binom{V}{\leq t} \times\binom{ V}{\leq t}\right)_{\succeq 0}$:

$$
\begin{aligned}
& E_{t}^{*}=\sup \left\{\sum_{i=0}^{s}\binom{N}{i} a_{i}: a_{0}, \ldots, a_{s} \in \mathbb{R}, K \in \mathcal{C}\left(\binom{V}{\leq t} \times\binom{ V}{\leq t}\right)_{\succeq 0},\right. \\
&\left.a_{i}-A_{t} K \leq w \text { on }\binom{V}{i} \text { for } i=0, \ldots, s\right\}
\end{aligned}
$$

Dual hierarchy

- For lower bounds we need feasible solutions of the dual
- In the dual hierarchy optimization is over scalars a_{i} and positive definite kernels $K \in \mathcal{C}\left(\left(\underset{\substack{V \\ \leq t}}{)} \times\binom{ V}{\leq t}\right)_{\succeq 0}\right.$:

$$
\begin{aligned}
& E_{t}^{*}=\sup \left\{\sum_{i=0}^{s}\binom{N}{i} a_{i}: a_{0}, \ldots, a_{s} \in \mathbb{R}, K \in \mathcal{C}\left(\binom{V}{\leq t} \times\binom{ V}{\leq t}\right)_{\succeq 0}\right. \\
&\left.a_{i}-A_{t} K \leq w \text { on }\binom{V}{i} \text { for } i=0, \ldots, s\right\}
\end{aligned}
$$

- Techniquality: we only put a linear constraint for $S \in\binom{V}{i}$ if the points in S are not too close

Dual hierarchy

- For lower bounds we need feasible solutions of the dual
- In the dual hierarchy optimization is over scalars a_{i} and positive definite kernels $K \in \mathcal{C}\left(\left(\underset{\substack{V \\ \leq t}}{)} \times\binom{ V}{\leq t}\right)_{\succeq 0}\right.$:

$$
\begin{aligned}
& E_{t}^{*}=\sup \left\{\sum_{i=0}^{s}\binom{N}{i} a_{i}: a_{0}, \ldots, a_{s} \in \mathbb{R}, K \in \mathcal{C}\left(\binom{V}{\leq t} \times\binom{ V}{\leq t}\right)_{\succeq 0},\right. \\
&\left.a_{i}-A_{t} K \leq w \text { on }\binom{V}{i} \text { for } i=0, \ldots, s\right\}
\end{aligned}
$$

- Techniquality: we only put a linear constraint for $S \in\binom{V}{i}$ if the points in S are not too close
- Strong duality holds: $E_{t}=E_{t}^{*}$

Dual hierarchy

- For lower bounds we need feasible solutions of the dual
- In the dual hierarchy optimization is over scalars a_{i} and positive definite kernels $K \in \mathcal{C}\left((\underset{\substack{V \\ \leq t}}{ }) \times\binom{ V}{\leq t}\right)_{\succeq 0}$:

$$
\begin{aligned}
& E_{t}^{*}=\sup \left\{\sum_{i=0}^{s}\binom{N}{i} a_{i}: a_{0}, \ldots, a_{s} \in \mathbb{R}, K \in \mathcal{C}\left(\binom{V}{\leq t} \times\binom{ V}{\leq t}\right)_{\succeq 0}^{\Gamma},\right. \\
& a_{i}-A_{t} K \leq w\text { on } \left.\binom{V}{i} \text { for } i=0, \ldots, s\right\}
\end{aligned}
$$

- Techniquality: we only put a linear constraint for $S \in\binom{V}{i}$ if the points in S are not too close
- Strong duality holds: $E_{t}=E_{t}^{*}$
- If Γ acts on V and w is Γ-invariant, then we can restrict to Γ-invariant kernels: $K\left(\gamma J, \gamma J^{\prime}\right)=K\left(J, J^{\prime}\right)$ for all $J, J^{\prime} \in(\underset{\substack{V \\ \leq t}}{V})$ (Here $\gamma\left\{x_{1}, \ldots, x_{t}\right\}=\left\{\gamma x_{1}, \ldots, \gamma x_{t}\right\}$)

Inner approximiations to the cone $\mathcal{C}\left(\binom{V}{\leq t} \times\binom{ V}{\leq t}\right)_{\succeq 0}^{\Gamma}$

- Nested chain of inner approximations:

$$
C_{1} \subseteq C_{2} \subseteq \cdots \subseteq \mathcal{C}\left(\binom{V}{\leq t} \times\binom{ V}{\leq t}\right)_{\succeq 0}^{\Gamma}
$$

Inner approximiations to the cone $\mathcal{C}\left(\binom{V}{\leq t} \times\binom{ V}{\leq t}\right)_{\succeq 0}^{\Gamma}$

- Nested chain of inner approximations:

$$
C_{1} \subseteq C_{2} \subseteq \cdots \subseteq \mathcal{C}\left(\binom{V}{\leq t} \times\binom{ V}{\leq t}\right)_{\succeq 0}^{\Gamma}
$$

- Each cone C_{i} can be parametrized by a finite direct sum of positive semidefinite matrix cones

Inner approximiations to the cone $\mathcal{C}\left(\binom{V}{\leq t} \times\binom{ V}{\leq t}\right)_{\succeq 0}^{\Gamma}$

- Nested chain of inner approximations:

$$
C_{1} \subseteq C_{2} \subseteq \cdots \subseteq \mathcal{C}\left(\binom{V}{\leq t} \times\binom{ V}{\leq t}\right)_{\succeq 0}^{\Gamma}
$$

- Each cone C_{i} can be parametrized by a finite direct sum of positive semidefinite matrix cones
- Bochner: A kernel $\left.K \in \mathcal{C}\left(\binom{V}{\leq t} \times\binom{ V}{\leq t}\right)\right)_{\succeq 0}$ is of the form

$$
K\left(J, J^{\prime}\right)=\sum_{k=0}^{\infty} \operatorname{trace}\left(F_{k} Z_{k}\left(J, J^{\prime}\right)\right)
$$

- F_{k} : (infinite) positive semidefinite matrices (the Fourier coefficients)
- Z_{k} : zonal matrices corresponding to the action of Γ on $\binom{V}{\leq t}$ (generalizes $e^{2 \pi i k x}$ in the Fourier transform on the circle)

Inner approximiations to the cone $\mathcal{C}\left(\binom{V}{\leq t} \times\binom{ V}{\leq t}\right)_{\succeq 0}^{\Gamma}$

- Nested chain of inner approximations:

$$
C_{1} \subseteq C_{2} \subseteq \cdots \subseteq \mathcal{C}\left(\binom{V}{\leq t} \times\binom{ V}{\leq t}\right)_{\succeq 0}^{\Gamma}
$$

- Each cone C_{i} can be parametrized by a finite direct sum of positive semidefinite matrix cones
- Bochner: A kernel $\left.K \in \mathcal{C}\left(\binom{V}{\leq t} \times\binom{ V}{\leq t}\right)\right)_{\succeq 0}$ is of the form

$$
K\left(J, J^{\prime}\right)=\sum_{k=0}^{\infty} \operatorname{trace}\left(F_{k} Z_{k}\left(J, J^{\prime}\right)\right)
$$

- F_{k} : (infinite) positive semidefinite matrices (the Fourier coefficients)
- Z_{k} : zonal matrices corresponding to the action of Γ on $\binom{V}{\leq t}$ (generalizes $e^{2 \pi i k x}$ in the Fourier transform on the circle)
- Define C_{d} by truncating the above series

The semi-infinite semidefinite programs $E_{t, d}^{*}$

- Define $E_{t, d}^{*}$ by replacing the cone $\mathcal{C}\left(\binom{V}{\leq t} \times\binom{ V}{\leq t}\right)_{\succeq 0}^{\Gamma}$ in E_{t}^{*} by the cone C_{d}

The semi-infinite semidefinite programs $E_{t, d}^{*}$

- Define $E_{t, d}^{*}$ by replacing the cone $\mathcal{C}\left(\binom{V}{\leq t} \times\binom{ V}{\leq t}\right)_{\succeq 0}^{\Gamma}$ in E_{t}^{*} by the cone C_{d}
- This is an optimization problem with finitely many variables and infinitely many constraints

The semi-infinite semidefinite programs $E_{t, d}^{*}$

- Define $E_{t, d}^{*}$ by replacing the cone $\mathcal{C}\left(\binom{V}{\leq t} \times\binom{ V}{\leq t}\right)_{\succeq 0}^{\Gamma}$ in E_{t}^{*} by the cone C_{d}
- This is an optimization problem with finitely many variables and infinitely many constraints
- $E_{t, d}^{*} \rightarrow E_{t}^{*}$ as $d \rightarrow \infty$ follows from $\cup_{d=0}^{\infty} C_{d}$ being uniformly dense in $\mathcal{C}\left(\binom{V}{\leq t} \times\binom{ V}{\leq t}\right)_{\succeq 0}^{\Gamma}$

Example: $V=S^{1}$ with $O(2)$-invariant pair potential w

- The linear constraints in $E_{t, d}^{*}$ can be written as the nonnegativity of a trigonometric polynomial in $s-1$ variables

Example: $V=S^{1}$ with $O(2)$-invariant pair potential w

- The linear constraints in $E_{t, d}^{*}$ can be written as the nonnegativity of a trigonometric polynomial in $s-1$ variables
- Use trigonometric SOS characterizations [Dumitrescu 2006]

Example: $V=S^{1}$ with $O(2)$-invariant pair potential w

- The linear constraints in $E_{t, d}^{*}$ can be written as the nonnegativity of a trigonometric polynomial in $s-1$ variables
- Use trigonometric SOS characterizations [Dumitrescu 2006]
- For the Coulomb potential (or other completely monotonic potentials) the regular N-gon is the optimal configuration on the circle [Cohn-Kumar 2006]

Example: $V=S^{1}$ with $O(2)$-invariant pair potential w

- The linear constraints in $E_{t, d}^{*}$ can be written as the nonnegativity of a trigonometric polynomial in $s-1$ variables
- Use trigonometric SOS characterizations [Dumitrescu 2006]
- For the Coulomb potential (or other completely monotonic potentials) the regular N-gon is the optimal configuration on the circle [Cohn-Kumar 2006]
- Uses relaxation based on the 2-point correlation function [Yudin 1992] (This is similar to E_{1})

Example: $V=S^{1}$ with $O(2)$-invariant pair potential w

- The linear constraints in $E_{t, d}^{*}$ can be written as the nonnegativity of a trigonometric polynomial in $s-1$ variables
- Use trigonometric SOS characterizations [Dumitrescu 2006]
- For the Coulomb potential (or other completely monotonic potentials) the regular N-gon is the optimal configuration on the circle [Cohn-Kumar 2006]
- Uses relaxation based on the 2-point correlation function [Yudin 1992] (This is similar to E_{1})
- The bound E_{2}^{*} requires SOS characterizations in 3 variables

Example: $V=S^{1}$ with $O(2)$-invariant pair potential w

- The linear constraints in $E_{t, d}^{*}$ can be written as the nonnegativity of a trigonometric polynomial in $s-1$ variables
- Use trigonometric SOS characterizations [Dumitrescu 2006]
- For the Coulomb potential (or other completely monotonic potentials) the regular N-gon is the optimal configuration on the circle [Cohn-Kumar 2006]
- Uses relaxation based on the 2-point correlation function [Yudin 1992] (This is similar to E_{1})
- The bound E_{2}^{*} requires SOS characterizations in 3 variables
- Lennard-Jones potential: Based on a sampling implementation it appears that for e.g. $N=3$ we have

$$
E_{1}<E_{2}=E
$$

Thank you!

