Using (noncommutative) polynomial optimization to bound matrix factorization ranks

Sander Gribling (CWI/QuSoft)
David de Laat (CWI/QuSoft)
Monique Laurent (CWI/Tilburg/QuSoft)

Diamant symposium, 1 June 2017, Breukelen

CWI

Symmetric matrix factorization ranks

Symmetric matrix factorization ranks

PSD matrices

$A \in \mathbb{R}^{n \times n}$ is PSD if there are $a_{1}, \ldots, a_{n} \in \mathbb{R}^{d}$ with $A_{i j}=a_{i}^{\top} a_{j}$

Symmetric matrix factorization ranks

PSD matrices

$A \in \mathbb{R}^{n \times n}$ is PSD if there are $a_{1}, \ldots, a_{n} \in \mathbb{R}^{d}$ with $A_{i j}=a_{i}^{\top} a_{j}$ $\operatorname{rank}(A)=$ smallest such $d ;$

Symmetric matrix factorization ranks

PSD matrices

$A \in \mathbb{R}^{n \times n}$ is PSD if there are $a_{1}, \ldots, a_{n} \in \mathbb{R}^{d}$ with $A_{i j}=a_{i}^{\top} a_{j}$ $\operatorname{rank}(A)=$ smallest such d; Easy to compute;

Symmetric matrix factorization ranks

PSD matrices

$A \in \mathbb{R}^{n \times n}$ is PSD if there are $a_{1}, \ldots, a_{n} \in \mathbb{R}^{d}$ with $A_{i j}=a_{i}^{\top} a_{j}$ $\operatorname{rank}(A)=$ smallest such d; Easy to compute; $d \leq n$

Symmetric matrix factorization ranks

PSD matrices

$A \in \mathbb{R}^{n \times n}$ is PSD if there are $a_{1}, \ldots, a_{n} \in \mathbb{R}^{d}$ with $A_{i j}=a_{i}^{\top} a_{j}$ $\operatorname{rank}(A)=$ smallest such d; Easy to compute; $d \leq n$

CP matrices

$A \in \mathbb{R}^{n \times n}$ is CP if there are $a_{1}, \ldots, a_{n} \in \mathbb{R}_{+}^{d}$ with $A_{i j}=a_{i}^{\top} a_{j}$

Symmetric matrix factorization ranks

PSD matrices

$A \in \mathbb{R}^{n \times n}$ is PSD if there are $a_{1}, \ldots, a_{n} \in \mathbb{R}^{d}$ with $A_{i j}=a_{i}^{\top} a_{j}$ $\operatorname{rank}(A)=$ smallest such d; Easy to compute; $d \leq n$

CP matrices

$A \in \mathbb{R}^{n \times n}$ is CP if there are $a_{1}, \ldots, a_{n} \in \mathbb{R}_{+}^{d}$ with $A_{i j}=a_{i}^{\top} a_{j}$ $\operatorname{cp-rank}(A)=$ smallest such d;

Symmetric matrix factorization ranks

PSD matrices

$A \in \mathbb{R}^{n \times n}$ is PSD if there are $a_{1}, \ldots, a_{n} \in \mathbb{R}^{d}$ with $A_{i j}=a_{i}^{\top} a_{j}$ $\operatorname{rank}(A)=$ smallest such d; Easy to compute; $d \leq n$

CP matrices

$A \in \mathbb{R}^{n \times n}$ is CP if there are $a_{1}, \ldots, a_{n} \in \mathbb{R}_{+}^{d}$ with $A_{i j}=a_{i}^{\top} a_{j}$ $\operatorname{cp}-\operatorname{rank}(A)=$ smallest such d; Hard to compute;

Symmetric matrix factorization ranks

PSD matrices

$A \in \mathbb{R}^{n \times n}$ is PSD if there are $a_{1}, \ldots, a_{n} \in \mathbb{R}^{d}$ with $A_{i j}=a_{i}^{\top} a_{j}$ $\operatorname{rank}(A)=$ smallest such d; Easy to compute; $d \leq n$

CP matrices

$A \in \mathbb{R}^{n \times n}$ is CP if there are $a_{1}, \ldots, a_{n} \in \mathbb{R}_{+}^{d}$ with $A_{i j}=a_{i}^{\top} a_{j}$ $\operatorname{cp}-\operatorname{rank}(A)=$ smallest such d; Hard to compute; $d \leq\binom{ n+1}{2}+1$

Symmetric matrix factorization ranks

PSD matrices

$A \in \mathbb{R}^{n \times n}$ is PSD if there are $a_{1}, \ldots, a_{n} \in \mathbb{R}^{d}$ with $A_{i j}=a_{i}^{\top} a_{j}$ $\operatorname{rank}(A)=$ smallest such d; Easy to compute; $d \leq n$

CP matrices

$A \in \mathbb{R}^{n \times n}$ is $C P$ if there are $a_{1}, \ldots, a_{n} \in \mathbb{R}_{+}^{d}$ with $A_{i j}=a_{i}^{\top} a_{j}$ $\operatorname{cp-rank}(A)=$ smallest such d; Hard to compute; $d \leq\binom{ n+1}{2}+1$

CPSD matrices

$A \in \mathbb{R}^{n \times n}$ is CPSD if there are are Hermitian PSD matrices

$$
X_{1}, \ldots, X_{n} \in \mathbb{C}^{d \times d} \text { with } A_{i j}=\operatorname{Tr}\left(X_{i} X_{j}\right)
$$

Symmetric matrix factorization ranks

PSD matrices

$A \in \mathbb{R}^{n \times n}$ is PSD if there are $a_{1}, \ldots, a_{n} \in \mathbb{R}^{d}$ with $A_{i j}=a_{i}^{\top} a_{j}$ $\operatorname{rank}(A)=$ smallest such d; Easy to compute; $d \leq n$

CP matrices

$A \in \mathbb{R}^{n \times n}$ is $C P$ if there are $a_{1}, \ldots, a_{n} \in \mathbb{R}_{+}^{d}$ with $A_{i j}=a_{i}^{\top} a_{j}$ $\operatorname{cp-rank}(A)=$ smallest such d; Hard to compute; $d \leq\binom{ n+1}{2}+1$

CPSD matrices

$A \in \mathbb{R}^{n \times n}$ is CPSD if there are are Hermitian PSD matrices

$$
X_{1}, \ldots, X_{n} \in \mathbb{C}^{d \times d} \text { with } A_{i j}=\operatorname{Tr}\left(X_{i} X_{j}\right)
$$

$\operatorname{cpsd}-\operatorname{rank}(A)=$ smallest such d;

Symmetric matrix factorization ranks

PSD matrices

$A \in \mathbb{R}^{n \times n}$ is PSD if there are $a_{1}, \ldots, a_{n} \in \mathbb{R}^{d}$ with $A_{i j}=a_{i}^{\top} a_{j}$ $\operatorname{rank}(A)=$ smallest such d; Easy to compute; $d \leq n$

CP matrices

$A \in \mathbb{R}^{n \times n}$ is $C P$ if there are $a_{1}, \ldots, a_{n} \in \mathbb{R}_{+}^{d}$ with $A_{i j}=a_{i}^{\top} a_{j}$ $\operatorname{cp-rank}(A)=$ smallest such d; Hard to compute; $d \leq\binom{ n+1}{2}+1$

CPSD matrices

$A \in \mathbb{R}^{n \times n}$ is CPSD if there are are Hermitian PSD matrices

$$
X_{1}, \ldots, X_{n} \in \mathbb{C}^{d \times d} \text { with } A_{i j}=\operatorname{Tr}\left(X_{i} X_{j}\right)
$$

$\operatorname{cpsd}-\operatorname{rank}(A)=$ smallest such d; Hard to compute;

Symmetric matrix factorization ranks

PSD matrices

$A \in \mathbb{R}^{n \times n}$ is PSD if there are $a_{1}, \ldots, a_{n} \in \mathbb{R}^{d}$ with $A_{i j}=a_{i}^{\top} a_{j}$ $\operatorname{rank}(A)=$ smallest such d; Easy to compute; $d \leq n$

CP matrices

$A \in \mathbb{R}^{n \times n}$ is $C P$ if there are $a_{1}, \ldots, a_{n} \in \mathbb{R}_{+}^{d}$ with $A_{i j}=a_{i}^{\top} a_{j}$ $\operatorname{cp-rank}(A)=$ smallest such d; Hard to compute; $d \leq\binom{ n+1}{2}+1$

CPSD matrices

$A \in \mathbb{R}^{n \times n}$ is CPSD if there are are Hermitian PSD matrices

$$
X_{1}, \ldots, X_{n} \in \mathbb{C}^{d \times d} \text { with } A_{i j}=\operatorname{Tr}\left(X_{i} X_{j}\right)
$$

$\operatorname{cpsd}-\operatorname{rank}(A)=$ smallest such d; Hard to compute;
There is no upper bound on d depending only on n [Slofstra, 2017]

Symmetric matrix factorization ranks

PSD matrices

$A \in \mathbb{R}^{n \times n}$ is PSD if there are $a_{1}, \ldots, a_{n} \in \mathbb{R}^{d}$ with $A_{i j}=a_{i}^{\top} a_{j}$ $\operatorname{rank}(A)=$ smallest such d; Easy to compute; $d \leq n$

CP matrices

$A \in \mathbb{R}^{n \times n}$ is $C P$ if there are $a_{1}, \ldots, a_{n} \in \mathbb{R}_{+}^{d}$ with $A_{i j}=a_{i}^{\top} a_{j}$ $\operatorname{cp-rank}(A)=$ smallest such d; Hard to compute; $d \leq\binom{ n+1}{2}+1$

CPSD matrices

$A \in \mathbb{R}^{n \times n}$ is CPSD if there are are Hermitian PSD matrices

$$
X_{1}, \ldots, X_{n} \in \mathbb{C}^{d \times d} \text { with } A_{i j}=\operatorname{Tr}\left(X_{i} X_{j}\right)
$$

$\operatorname{cpsd}-\operatorname{rank}(A)=$ smallest such d; Hard to compute;
There is no upper bound on d depending only on n [Slofstra, 2017]

Symmetric matrix factorization ranks

PSD matrices

$A \in \mathbb{R}^{n \times n}$ is PSD if there are $a_{1}, \ldots, a_{n} \in \mathbb{R}^{d}$ with $A_{i j}=a_{i}^{\top} a_{j}$ $\operatorname{rank}(A)=$ smallest such d; Easy to compute; $d \leq n$

CP matrices

$A \in \mathbb{R}^{n \times n}$ is $C P$ if there are $a_{1}, \ldots, a_{n} \in \mathbb{R}_{+}^{d}$ with $A_{i j}=a_{i}^{\top} a_{j}$ $\operatorname{cp-rank}(A)=$ smallest such d; Hard to compute; $d \leq\binom{ n+1}{2}+1$

CPSD matrices

$A \in \mathbb{R}^{n \times n}$ is CPSD if there are are Hermitian PSD matrices

$$
X_{1}, \ldots, X_{n} \in \mathbb{C}^{d \times d} \text { with } A_{i j}=\operatorname{Tr}\left(X_{i} X_{j}\right)
$$

$\operatorname{cpsd}-\operatorname{rank}(A)=$ smallest such d; Hard to compute;
There is no upper bound on d depending only on n [Slofstra, 2017]
$\mathbf{C P}$ matrices $\subseteq \mathbf{C P S D}$ matrices \subseteq PSD matrices

Symmetric matrix factorization ranks

PSD matrices

$A \in \mathbb{R}^{n \times n}$ is PSD if there are $a_{1}, \ldots, a_{n} \in \mathbb{R}^{d}$ with $A_{i j}=a_{i}^{\top} a_{j}$ $\operatorname{rank}(A)=$ smallest such d; Easy to compute; $d \leq n$

CP matrices

$A \in \mathbb{R}^{n \times n}$ is CP if there are $a_{1}, \ldots, a_{n} \in \mathbb{R}_{+}^{d}$ with $A_{i j}=a_{i}^{\top} a_{j}$ $\operatorname{cp-rank}(A)=$ smallest such d; Hard to compute; $d \leq\binom{ n+1}{2}+1$

CPSD matrices

$A \in \mathbb{R}^{n \times n}$ is CPSD if there are are Hermitian PSD matrices

$$
X_{1}, \ldots, X_{n} \in \mathbb{C}^{d \times d} \text { with } A_{i j}=\operatorname{Tr}\left(X_{i} X_{j}\right)
$$

$\operatorname{cpsd}-\operatorname{rank}(A)=$ smallest such d; Hard to compute;
There is no upper bound on d depending only on n [Slofstra, 2017]
$\mathbf{C P}$ matrices $\subseteq \mathbf{C P S D}$ matrices \subseteq PSD matrices

Goal: Find lower bounds for matrix factorization ranks

Connection to quantum information theory

- CPSD cone was studied by Piovesan and Laurent in relation to quantum graph parameters

Connection to quantum information theory

- CPSD cone was studied by Piovesan and Laurent in relation to quantum graph parameters
- Connections to entanglement dimensions of bipartite quantum correlations $p(a, b \mid s, t)$ [Sikora-Varvitsiotis 2015], [Mančinska-Roberson 2014]

Connection to quantum information theory

- CPSD cone was studied by Piovesan and Laurent in relation to quantum graph parameters
- Connections to entanglement dimensions of bipartite quantum correlations $p(a, b \mid s, t)$ [Sikora-Varvitsiotis 2015], [Mančinska-Roberson 2014]
- Corresponding matrix $\left(A_{p}\right)_{(s, a),(t, b)}=p(a, b \mid s, t)$

Connection to quantum information theory

- CPSD cone was studied by Piovesan and Laurent in relation to quantum graph parameters
- Connections to entanglement dimensions of bipartite quantum correlations $p(a, b \mid s, t)$ [Sikora-Varvitsiotis 2015], [Mančinska-Roberson 2014]
- Corresponding matrix $\left(A_{p}\right)_{(s, a),(t, b)}=p(a, b \mid s, t)$
- If p is a "synchronous quantum correlation", then A_{p} is CPSD

Connection to quantum information theory

- CPSD cone was studied by Piovesan and Laurent in relation to quantum graph parameters
- Connections to entanglement dimensions of bipartite quantum correlations $p(a, b \mid s, t)$ [Sikora-Varvitsiotis 2015], [Mančinska-Roberson 2014]
- Corresponding matrix $\left(A_{p}\right)_{(s, a),(t, b)}=p(a, b \mid s, t)$
- If p is a "synchronous quantum correlation", then A_{p} is CPSD
- The smallest dimension to realize it is $\operatorname{cpsd}-\operatorname{rank}\left(A_{p}\right)$

Connection to quantum information theory

- CPSD cone was studied by Piovesan and Laurent in relation to quantum graph parameters
- Connections to entanglement dimensions of bipartite quantum correlations $p(a, b \mid s, t)$ [Sikora-Varvitsiotis 2015], [Mančinska-Roberson 2014]
- Corresponding matrix $\left(A_{p}\right)_{(s, a),(t, b)}=p(a, b \mid s, t)$
- If p is a "synchronous quantum correlation", then A_{p} is CPSD
- The smallest dimension to realize it is $\operatorname{cpsd}-\operatorname{rank}\left(A_{p}\right)$
- Combine proofs from above refs and [Paulsen-Severini-Stahlke-Todorov-Winter 2016]

Polynomial optimization

Commutative polynomial optimization (Lasserre, Parrilo, ...):

Polynomial optimization

Commutative polynomial optimization (Lasserre, Parrilo, ...):

- Let $S \cup\{f\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$

Polynomial optimization

Commutative polynomial optimization (Lasserre, Parrilo, ...):

- Let $S \cup\{f\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
- $\inf \left\{f(x): x \in \mathbb{R}^{n}, g(x) \geq 0\right.$ for $\left.g \in S\right\}$

Polynomial optimization

Commutative polynomial optimization (Lasserre, Parrilo, ...):

- Let $S \cup\{f\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
- $\inf \left\{f(x): x \in \mathbb{R}^{n}, g(x) \geq 0\right.$ for $\left.g \in S\right\}$
- Hierarchy of semidefinite programming lower bounds based on moments (primal) and sums of squares (dual)

Polynomial optimization

Commutative polynomial optimization (Lasserre, Parrilo, ...):

- Let $S \cup\{f\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
- $\inf \left\{f(x): x \in \mathbb{R}^{n}, g(x) \geq 0\right.$ for $\left.g \in S\right\}$
- Hierarchy of semidefinite programming lower bounds based on moments (primal) and sums of squares (dual)
- Asymptotic convergence under technical condition

Polynomial optimization

Commutative polynomial optimization (Lasserre, Parrilo, ...):

- Let $S \cup\{f\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
- $\inf \left\{f(x): x \in \mathbb{R}^{n}, g(x) \geq 0\right.$ for $\left.g \in S\right\}$
- Hierarchy of semidefinite programming lower bounds based on moments (primal) and sums of squares (dual)
- Asymptotic convergence under technical condition

Eigenvalue optimization (Acín, Navascues, Pironio, ...) and tracial optimization (Burgdorf, Cafuta, Klep, Povh, Schweighofer, ...):

Polynomial optimization

Commutative polynomial optimization (Lasserre, Parrilo, ...):

- Let $S \cup\{f\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
- $\inf \left\{f(x): x \in \mathbb{R}^{n}, g(x) \geq 0\right.$ for $\left.g \in S\right\}$
- Hierarchy of semidefinite programming lower bounds based on moments (primal) and sums of squares (dual)
- Asymptotic convergence under technical condition

Eigenvalue optimization (Acín, Navascues, Pironio, ...) and tracial optimization (Burgdorf, Cafuta, Klep, Povh, Schweighofer, ...):

- Let $S \cup\{f\} \subseteq \mathbb{R}\left\langle x_{1}, \ldots, x_{n}\right\rangle$

Polynomial optimization

Commutative polynomial optimization (Lasserre, Parrilo, ...):

- Let $S \cup\{f\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
- $\inf \left\{f(x): x \in \mathbb{R}^{n}, g(x) \geq 0\right.$ for $\left.g \in S\right\}$
- Hierarchy of semidefinite programming lower bounds based on moments (primal) and sums of squares (dual)
- Asymptotic convergence under technical condition

Eigenvalue optimization (Acín, Navascues, Pironio, ...) and tracial optimization (Burgdorf, Cafuta, Klep, Povh, Schweighofer, ...):

- Let $S \cup\{f\} \subseteq \mathbb{R}\left\langle x_{1}, \ldots, x_{n}\right\rangle$
- We can evaluate a noncommutative polynomial at a tuple $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ of matrices

Polynomial optimization

Commutative polynomial optimization (Lasserre, Parrilo, ...):

- Let $S \cup\{f\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
- $\inf \left\{f(x): x \in \mathbb{R}^{n}, g(x) \geq 0\right.$ for $\left.g \in S\right\}$
- Hierarchy of semidefinite programming lower bounds based on moments (primal) and sums of squares (dual)
- Asymptotic convergence under technical condition

Eigenvalue optimization (Acín, Navascues, Pironio, ...) and tracial optimization (Burgdorf, Cafuta, Klep, Povh, Schweighofer, ...):

- Let $S \cup\{f\} \subseteq \mathbb{R}\left\langle x_{1}, \ldots, x_{n}\right\rangle$
- We can evaluate a noncommutative polynomial at a tuple $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ of matrices
- $\inf \left\{\operatorname{tr}(f(\mathbf{X})): d \in \mathbb{N}, X_{1}, \ldots, X_{n} \in H^{d}, g(\mathbf{X}) \succeq 0\right.$ for $\left.g \in S\right\}$

Polynomial optimization

Commutative polynomial optimization (Lasserre, Parrilo, ...):

- Let $S \cup\{f\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
- $\inf \left\{f(x): x \in \mathbb{R}^{n}, g(x) \geq 0\right.$ for $\left.g \in S\right\}$
- Hierarchy of semidefinite programming lower bounds based on moments (primal) and sums of squares (dual)
- Asymptotic convergence under technical condition

Eigenvalue optimization (Acín, Navascues, Pironio, ...) and tracial optimization (Burgdorf, Cafuta, Klep, Povh, Schweighofer, ...):

- Let $S \cup\{f\} \subseteq \mathbb{R}\left\langle x_{1}, \ldots, x_{n}\right\rangle$
- We can evaluate a noncommutative polynomial at a tuple $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ of matrices
- $\inf \left\{\operatorname{tr}(f(\mathbf{X})): d \in \mathbb{N}, X_{1}, \ldots, X_{n} \in H^{d}, g(\mathbf{X}) \succeq 0\right.$ for $\left.g \in S\right\}$

Commutative polynomial optimization is used by Nie for testing membership in the CP cone and computing tensor nuclear norms

Lower bounding the cpsd-rank using tracial optimization

Let $A \in \mathbb{R}^{n \times n}$ be a CPSD matrix and set $d=\operatorname{cpsd}-\operatorname{rank}(A)$

Lower bounding the cpsd-rank using tracial optimization

Let $A \in \mathbb{R}^{n \times n}$ be a CPSD matrix and set $d=\operatorname{cpsd}-\operatorname{rank}(A)$
$X_{1}, \ldots, X_{n} \in \mathbb{C}^{d \times d}$ Hermitian PSD matrices with $A_{i j}=\operatorname{Tr}\left(X_{i} X_{j}\right)$

Lower bounding the cpsd-rank using tracial optimization

Let $A \in \mathbb{R}^{n \times n}$ be a CPSD matrix and set $d=\operatorname{cpsd}-\operatorname{rank}(A)$
$X_{1}, \ldots, X_{n} \in \mathbb{C}^{d \times d}$ Hermitian PSD matrices with $A_{i j}=\operatorname{Tr}\left(X_{i} X_{j}\right)$
$\mathbb{R}\left\langle x_{1}, \ldots, x_{n}\right\rangle$: $*$-algebra of noncommutative polynomials in n vars

Lower bounding the cpsd-rank using tracial optimization

Let $A \in \mathbb{R}^{n \times n}$ be a CPSD matrix and set $d=\operatorname{cpsd}-\operatorname{rank}(A)$
$X_{1}, \ldots, X_{n} \in \mathbb{C}^{d \times d}$ Hermitian PSD matrices with $A_{i j}=\operatorname{Tr}\left(X_{i} X_{j}\right)$
$\mathbb{R}\left\langle x_{1}, \ldots, x_{n}\right\rangle$: $*$-algebra of noncommutative polynomials in n vars
Define a linear form $L_{X} \in \mathbb{R}\left\langle x_{1}, \ldots, x_{n}\right\rangle^{*}$ by

$$
L_{X}(p)=\operatorname{Re}\left(\operatorname{Tr}\left(p\left(X_{1}, \ldots, X_{n}\right)\right)\right)
$$

Lower bounding the cpsd-rank using tracial optimization

Let $A \in \mathbb{R}^{n \times n}$ be a CPSD matrix and set $d=\operatorname{cpsd}-\operatorname{rank}(A)$
$X_{1}, \ldots, X_{n} \in \mathbb{C}^{d \times d}$ Hermitian PSD matrices with $A_{i j}=\operatorname{Tr}\left(X_{i} X_{j}\right)$
$\mathbb{R}\left\langle x_{1}, \ldots, x_{n}\right\rangle: *$-algebra of noncommutative polynomials in n vars
Define a linear form $L_{X} \in \mathbb{R}\left\langle x_{1}, \ldots, x_{n}\right\rangle^{*}$ by

$$
L_{X}(p)=\operatorname{Re}\left(\operatorname{Tr}\left(p\left(X_{1}, \ldots, X_{n}\right)\right)\right)
$$

We have $L_{X}(1)=\operatorname{Re}\left(\operatorname{Tr}\left(I_{d}\right)\right)=d=\operatorname{cpsd}-\operatorname{rank}(A)$

Lower bounding the cpsd-rank using tracial optimization

Let $A \in \mathbb{R}^{n \times n}$ be a CPSD matrix and set $d=\operatorname{cpsd}-\operatorname{rank}(A)$
$X_{1}, \ldots, X_{n} \in \mathbb{C}^{d \times d}$ Hermitian PSD matrices with $A_{i j}=\operatorname{Tr}\left(X_{i} X_{j}\right)$
$\mathbb{R}\left\langle x_{1}, \ldots, x_{n}\right\rangle: *$-algebra of noncommutative polynomials in n vars
Define a linear form $L_{X} \in \mathbb{R}\left\langle x_{1}, \ldots, x_{n}\right\rangle^{*}$ by

$$
L_{X}(p)=\operatorname{Re}\left(\operatorname{Tr}\left(p\left(X_{1}, \ldots, X_{n}\right)\right)\right)
$$

We have $L_{X}(1)=\operatorname{Re}\left(\operatorname{Tr}\left(I_{d}\right)\right)=d=\operatorname{cpsd}-\operatorname{rank}(A)$
We obtain a relaxation by minimizing $L(1)$ over all linear forms L that satisfy some computationally tractable properties of L_{X}

Lower bounding the cpsd-rank using tracial optimization

Let $A \in \mathbb{R}^{n \times n}$ be a CPSD matrix and set $d=\operatorname{cpsd}-\operatorname{rank}(A)$
$X_{1}, \ldots, X_{n} \in \mathbb{C}^{d \times d}$ Hermitian PSD matrices with $A_{i j}=\operatorname{Tr}\left(X_{i} X_{j}\right)$
$\mathbb{R}\left\langle x_{1}, \ldots, x_{n}\right\rangle$: *-algebra of noncommutative polynomials in n vars
Define a linear form $L_{X} \in \mathbb{R}\left\langle x_{1}, \ldots, x_{n}\right\rangle^{*}$ by

$$
L_{X}(p)=\operatorname{Re}\left(\operatorname{Tr}\left(p\left(X_{1}, \ldots, X_{n}\right)\right)\right)
$$

We have $L_{X}(1)=\operatorname{Re}\left(\operatorname{Tr}\left(I_{d}\right)\right)=d=\operatorname{cpsd}-\operatorname{rank}(A)$
We obtain a relaxation by minimizing $L(1)$ over all linear forms L that satisfy some computationally tractable properties of L_{X}

Symmetric and tracial: $L_{X}\left(p^{*}\right)=L_{X}(p)$ and $L_{X}(p q)=L_{X}(q p)$

Lower bounding the cpsd-rank using tracial optimization

Let $A \in \mathbb{R}^{n \times n}$ be a CPSD matrix and set $d=\operatorname{cpsd}-\operatorname{rank}(A)$
$X_{1}, \ldots, X_{n} \in \mathbb{C}^{d \times d}$ Hermitian PSD matrices with $A_{i j}=\operatorname{Tr}\left(X_{i} X_{j}\right)$
$\mathbb{R}\left\langle x_{1}, \ldots, x_{n}\right\rangle$: *-algebra of noncommutative polynomials in n vars
Define a linear form $L_{X} \in \mathbb{R}\left\langle x_{1}, \ldots, x_{n}\right\rangle^{*}$ by

$$
L_{X}(p)=\operatorname{Re}\left(\operatorname{Tr}\left(p\left(X_{1}, \ldots, X_{n}\right)\right)\right)
$$

We have $L_{X}(1)=\operatorname{Re}\left(\operatorname{Tr}\left(I_{d}\right)\right)=d=\operatorname{cpsd}-\operatorname{rank}(A)$
We obtain a relaxation by minimizing $L(1)$ over all linear forms L that satisfy some computationally tractable properties of L_{X}

Symmetric and tracial: $L_{X}\left(p^{*}\right)=L_{X}(p)$ and $L_{X}(p q)=L_{X}(q p)$
Positive: $L_{X}\left(p^{*} p\right) \geq 0$

Lower bounding the cpsd-rank using tracial optimization

Let $A \in \mathbb{R}^{n \times n}$ be a CPSD matrix and set $d=\operatorname{cpsd}-\operatorname{rank}(A)$
$X_{1}, \ldots, X_{n} \in \mathbb{C}^{d \times d}$ Hermitian PSD matrices with $A_{i j}=\operatorname{Tr}\left(X_{i} X_{j}\right)$
$\mathbb{R}\left\langle x_{1}, \ldots, x_{n}\right\rangle$: $*$-algebra of noncommutative polynomials in n vars
Define a linear form $L_{X} \in \mathbb{R}\left\langle x_{1}, \ldots, x_{n}\right\rangle^{*}$ by

$$
L_{X}(p)=\operatorname{Re}\left(\operatorname{Tr}\left(p\left(X_{1}, \ldots, X_{n}\right)\right)\right)
$$

We have $L_{X}(1)=\operatorname{Re}\left(\operatorname{Tr}\left(I_{d}\right)\right)=d=\operatorname{cpsd}-\operatorname{rank}(A)$
We obtain a relaxation by minimizing $L(1)$ over all linear forms L that satisfy some computationally tractable properties of L_{X}

Symmetric and tracial: $L_{X}\left(p^{*}\right)=L_{X}(p)$ and $L_{X}(p q)=L_{X}(q p)$
Positive: $L_{X}\left(p^{*} p\right) \geq 0$
Linear conditions: $L_{X}\left(x_{i} x_{j}\right)=A_{i j}$

Lower bounding the cpsd-rank using tracial optimization

Let $A \in \mathbb{R}^{n \times n}$ be a CPSD matrix and set $d=\operatorname{cpsd}-\operatorname{rank}(A)$
$X_{1}, \ldots, X_{n} \in \mathbb{C}^{d \times d}$ Hermitian PSD matrices with $A_{i j}=\operatorname{Tr}\left(X_{i} X_{j}\right)$
$\mathbb{R}\left\langle x_{1}, \ldots, x_{n}\right\rangle$: $*$-algebra of noncommutative polynomials in n vars
Define a linear form $L_{X} \in \mathbb{R}\left\langle x_{1}, \ldots, x_{n}\right\rangle^{*}$ by

$$
L_{X}(p)=\operatorname{Re}\left(\operatorname{Tr}\left(p\left(X_{1}, \ldots, X_{n}\right)\right)\right)
$$

We have $L_{X}(1)=\operatorname{Re}\left(\operatorname{Tr}\left(I_{d}\right)\right)=d=\operatorname{cpsd}-\operatorname{rank}(A)$
We obtain a relaxation by minimizing $L(1)$ over all linear forms L that satisfy some computationally tractable properties of L_{X}

Symmetric and tracial: $L_{X}\left(p^{*}\right)=L_{X}(p)$ and $L_{X}(p q)=L_{X}(q p)$
Positive: $L_{X}\left(p^{*} p\right) \geq 0$
Linear conditions: $L_{X}\left(x_{i} x_{j}\right)=A_{i j}$
Localizing conditions: $L_{X}\left(p^{*}\left(\sqrt{A_{i i}} x_{i}-x_{i}^{2}\right) p\right) \geq 0$

Truncate to obtain a semidefinite programming hierarchy

$\mathbb{R}\left\langle x_{1}, \ldots, x_{n}\right\rangle_{2 t}$ noncommututative polynomials with deg $\leq 2 t$

Truncate to obtain a semidefinite programming hierarchy

$\mathbb{R}\left\langle x_{1}, \ldots, x_{n}\right\rangle_{2 t}$ noncommututative polynomials with deg $\leq 2 t$ Let $S \subseteq \mathbb{R}\langle\mathbf{x}\rangle=\mathbb{R}\left\langle x_{1}, \ldots, x_{n}\right\rangle$

Truncate to obtain a semidefinite programming hierarchy

$\mathbb{R}\left\langle x_{1}, \ldots, x_{n}\right\rangle_{2 t}$ noncommututative polynomials with $\operatorname{deg} \leq 2 t$
Let $S \subseteq \mathbb{R}\langle\mathbf{x}\rangle=\mathbb{R}\left\langle x_{1}, \ldots, x_{n}\right\rangle$
Quadratic module: $\mathcal{M}(S)=\operatorname{cone}\left\{p^{*} g p: g \in S \cup\{1\}, p \in \mathbb{R}\langle\mathbf{x}\rangle\right\}$

Truncate to obtain a semidefinite programming hierarchy

$\mathbb{R}\left\langle x_{1}, \ldots, x_{n}\right\rangle_{2 t}$ noncommututative polynomials with deg $\leq 2 t$
Let $S \subseteq \mathbb{R}\langle\mathbf{x}\rangle=\mathbb{R}\left\langle x_{1}, \ldots, x_{n}\right\rangle$
Quadratic module: $\mathcal{M}(S)=$ cone $\left\{p^{*} g p: g \in S \cup\{1\}, p \in \mathbb{R}\langle\mathbf{x}\rangle\right\}$
Truncated quadratic module:

$$
\mathcal{M}_{2 t}(S)=\operatorname{cone}\left\{p^{*} g p: g \in S \cup\{1\}, p \in \mathbb{R}\langle\mathbf{x}\rangle, \operatorname{deg}\left(p^{*} g p\right) \leq 2 t\right\}
$$

Truncate to obtain a semidefinite programming hierarchy

$\mathbb{R}\left\langle x_{1}, \ldots, x_{n}\right\rangle_{2 t}$ noncommututative polynomials with $\operatorname{deg} \leq 2 t$
Let $S \subseteq \mathbb{R}\langle\mathbf{x}\rangle=\mathbb{R}\left\langle x_{1}, \ldots, x_{n}\right\rangle$
Quadratic module: $\mathcal{M}(S)=\operatorname{cone}\left\{p^{*} g p: g \in S \cup\{1\}, p \in \mathbb{R}\langle\mathbf{x}\rangle\right\}$
Truncated quadratic module:

$$
\mathcal{M}_{2 t}(S)=\operatorname{cone}\left\{p^{*} g p: g \in S \cup\{1\}, p \in \mathbb{R}\langle\mathbf{x}\rangle, \operatorname{deg}\left(p^{*} g p\right) \leq 2 t\right\}
$$

$$
\begin{aligned}
\xi_{t}^{\mathrm{cpsd}}(A)=\min \{L(1): & L \in \mathbb{R}\left\langle x_{1}, \ldots, x_{n}\right\rangle_{2 t}^{*} \text { tracial and symmetric } \\
& \left(L\left(x_{i} x_{j}\right)\right)=A, \\
& \left.L \geq 0 \text { on } \mathcal{M}_{2 t}\left(\left\{\sqrt{A_{i i}} x_{i}-x_{i}^{2}: i \in[n]\right\}\right)\right\}
\end{aligned}
$$

Truncate to obtain a semidefinite programming hierarchy

$\mathbb{R}\left\langle x_{1}, \ldots, x_{n}\right\rangle_{2 t}$ noncommututative polynomials with $\operatorname{deg} \leq 2 t$
Let $S \subseteq \mathbb{R}\langle\mathbf{x}\rangle=\mathbb{R}\left\langle x_{1}, \ldots, x_{n}\right\rangle$
Quadratic module: $\mathcal{M}(S)=\operatorname{cone}\left\{p^{*} g p: g \in S \cup\{1\}, p \in \mathbb{R}\langle\mathbf{x}\rangle\right\}$
Truncated quadratic module:

$$
\mathcal{M}_{2 t}(S)=\operatorname{cone}\left\{p^{*} g p: g \in S \cup\{1\}, p \in \mathbb{R}\langle\mathbf{x}\rangle, \operatorname{deg}\left(p^{*} g p\right) \leq 2 t\right\}
$$

$$
\begin{aligned}
\xi_{t}^{\mathrm{cpsd}}(A)=\min \{L(1): & L \in \mathbb{R}\left\langle x_{1}, \ldots, x_{n}\right\rangle_{2 t}^{*} \text { tracial and symmetric } \\
& \left(L\left(x_{i} x_{j}\right)\right)=A \\
& \left.L \geq 0 \text { on } \mathcal{M}_{2 t}\left(\left\{\sqrt{A_{i i}} x_{i}-x_{i}^{2}: i \in[n]\right\}\right)\right\}
\end{aligned}
$$

$$
\xi_{1}^{\mathrm{cpsd}}(A) \leq \ldots \leq \xi_{\infty}^{\mathrm{cpsd}}(A) \leq \xi_{*}^{\mathrm{cpsd}}(A) \leq \operatorname{cpsd}-\operatorname{rank}(A)
$$

Truncate to obtain a semidefinite programming hierarchy

$\mathbb{R}\left\langle x_{1}, \ldots, x_{n}\right\rangle_{2 t}$ noncommututative polynomials with $\operatorname{deg} \leq 2 t$
Let $S \subseteq \mathbb{R}\langle\mathbf{x}\rangle=\mathbb{R}\left\langle x_{1}, \ldots, x_{n}\right\rangle$
Quadratic module: $\mathcal{M}(S)=\operatorname{cone}\left\{p^{*} g p: g \in S \cup\{1\}, p \in \mathbb{R}\langle\mathbf{x}\rangle\right\}$
Truncated quadratic module:

$$
\mathcal{M}_{2 t}(S)=\operatorname{cone}\left\{p^{*} g p: g \in S \cup\{1\}, p \in \mathbb{R}\langle\mathbf{x}\rangle, \operatorname{deg}\left(p^{*} g p\right) \leq 2 t\right\}
$$

$$
\begin{aligned}
\xi_{t}^{\mathrm{cpsd}}(A)=\min \{L(1): & L \in \mathbb{R}\left\langle x_{1}, \ldots, x_{n}\right\rangle_{2 t}^{*} \text { tracial and symmetric } \\
& \left(L\left(x_{i} x_{j}\right)\right)=A, \\
& \left.L \geq 0 \text { on } \mathcal{M}_{2 t}\left(\left\{\sqrt{A_{i i}} x_{i}-x_{i}^{2}: i \in[n]\right\}\right)\right\}
\end{aligned}
$$

$$
\xi_{1}^{\mathrm{cpsd}}(A) \leq \ldots \leq \xi_{\infty}^{\mathrm{cpsd}}(A) \leq \xi_{*}^{\mathrm{cpsd}}(A) \leq \operatorname{cpsd}-\operatorname{rank}(A)
$$

$\xi_{*}^{\mathrm{cpsd}}(A)$ is $\xi_{\infty}^{\mathrm{cpsd}}(A)$ with the extra constraint $\operatorname{rank}(M(L))<\infty$

$\xi_{\infty}^{\mathrm{cpsd}}(A)$ and $\xi_{*}^{\mathrm{cpsd}}(A)$

- We have $\xi_{t}^{\mathrm{cpsd}}(A) \rightarrow \xi_{\infty}^{\mathrm{cpsd}}(A)$, and if $\xi_{t}^{\mathrm{cpsd}}(A)$ admits a flat optimal solution, then $\xi_{t}^{\mathrm{cpsd}}(A)=\xi_{*}^{\mathrm{cpsd}}(A)$

$\xi_{\infty}^{\mathrm{cpsd}}(A)$ and $\xi_{*}^{\mathrm{cpsd}}(A)$

- We have $\xi_{t}^{\mathrm{cpsd}}(A) \rightarrow \xi_{\infty}^{\mathrm{cpsd}}(A)$, and if $\xi_{t}^{\mathrm{cpsd}}(A)$ admits a flat optimal solution, then $\xi_{t}^{\mathrm{cpsd}}(A)=\xi_{*}^{\mathrm{cpsd}}(A)$
- $\xi_{*}^{\mathrm{cpsd}}(A)$ is the minimum of $L(1)$ over all conic combinations L of trace evaluations at elements of the matrix positivity domain of $\left\{\sqrt{A_{i i}} x_{i}-x_{i}^{2}: i \in[n]\right\}$ such that $A=\left(L\left(x_{i} x_{j}\right)\right)$

$\xi_{\infty}^{\mathrm{cpsd}}(A)$ and $\xi_{*}^{\mathrm{cpsd}}(A)$

- We have $\xi_{t}^{\mathrm{cpsd}}(A) \rightarrow \xi_{\infty}^{\mathrm{cpsd}}(A)$, and if $\xi_{t}^{\mathrm{cpsd}}(A)$ admits a flat optimal solution, then $\xi_{t}^{\mathrm{cpsd}}(A)=\xi_{*}^{\mathrm{cpsd}}(A)$
- $\xi_{*}^{\mathrm{cpsd}}(A)$ is the minimum of $L(1)$ over all conic combinations L of trace evaluations at elements of the matrix positivity domain of $\left\{\sqrt{A_{i i}} x_{i}-x_{i}^{2}: i \in[n]\right\}$ such that $A=\left(L\left(x_{i} x_{j}\right)\right)$

$$
\begin{gathered}
\xi_{*}^{\mathrm{cpsd}}(A)=\inf \left\{\sum_{m=1}^{M} d_{m} \cdot \max _{i \in[n]} \frac{\left\|X_{i}^{m}\right\|^{2}}{A_{i i}}: M \in \mathbb{N}, d_{1}, \ldots, d_{M} \in \mathbb{N},\right. \\
X_{i}^{m} \in \mathcal{H}_{+}^{d_{m}} \text { for } i \in[n], m \in[M], \\
\left.A=\operatorname{Gram}\left(\bigoplus_{m=1}^{M} X_{1}^{m}, \ldots, \bigoplus_{m=1}^{M} X_{n}^{m}\right)\right\} .
\end{gathered}
$$

Lower bound [Prakash-Sikora-Varvitsiotis-Wei 2016]:

$$
\frac{\left(\sum_{i=1}^{n} \sqrt{A_{i i}}\right)^{2}}{\sum_{i, j=1}^{n} A_{i j}} \leq \operatorname{cpsd}-\operatorname{rank}(A)
$$

Lower bound [Prakash-Sikora-Varvitsiotis-Wei 2016]:

$$
\frac{\left(\sum_{i=1}^{n} \sqrt{A_{i i}}\right)^{2}}{\sum_{i, j=1}^{n} A_{i j}} \leq \operatorname{cpsd}-\operatorname{rank}(A)
$$

We have

$$
\xi_{1}^{\mathrm{cpsd}}(A) \geq \frac{\left(\sum_{i=1}^{n} \sqrt{A_{i j}}\right)^{2}}{\sum_{i, j=1}^{n} A_{i j}}
$$

Lower bound [Prakash-Sikora-Varvitsiotis-Wei 2016]:

$$
\frac{\left(\sum_{i=1}^{n} \sqrt{A_{i i}}\right)^{2}}{\sum_{i, j=1}^{n} A_{i j}} \leq \operatorname{cpsd}-\operatorname{rank}(A)
$$

We have

$$
\xi_{1}^{\mathrm{cpsd}}(A) \geq \frac{\left(\sum_{i=1}^{n} \sqrt{A_{i i}}\right)^{2}}{\sum_{i, j=1}^{n} A_{i j}}
$$

Sharp for the matrix $A \in \mathbb{R}^{5 \times 5}$ given by $A_{i j}=\cos (4 \pi / 5(i-j))^{2}$

Extra constraints to go beyond $\xi_{*}^{\mathrm{cpsd}}(A)$
Let X_{1}, \ldots, X_{n} be Hermitian PSD matrices s.t. $A_{i j}=\operatorname{Tr}\left(X_{i} X_{j}\right)$

Extra constraints to go beyond $\xi_{*}^{\mathrm{cpsd}}(A)$
Let X_{1}, \ldots, X_{n} be Hermitian PSD matrices s.t. $A_{i j}=\operatorname{Tr}\left(X_{i} X_{j}\right)$
For each $v \in \mathbb{R}^{n}$, the following matrix is psd:

$$
v^{\top} A v I-\left(\sum_{i=1}^{n} v_{i} X_{i}\right)^{2}
$$

Extra constraints to go beyond $\xi_{*}^{\mathrm{cpsd}}(A)$

Let X_{1}, \ldots, X_{n} be Hermitian PSD matrices s.t. $A_{i j}=\operatorname{Tr}\left(X_{i} X_{j}\right)$
For each $v \in \mathbb{R}^{n}$, the following matrix is psd:

$$
v^{\top} A v l-\left(\sum_{i=1}^{n} v_{i} X_{i}\right)^{2}
$$

We can use this to add additional constraints to $\xi_{t}^{\mathrm{cpsd}}(A)$ by extending the quadratic module

Extra constraints to go beyond $\xi_{*}^{\mathrm{cpsd}}(A)$

Let X_{1}, \ldots, X_{n} be Hermitian PSD matrices s.t. $A_{i j}=\operatorname{Tr}\left(X_{i} X_{j}\right)$
For each $v \in \mathbb{R}^{n}$, the following matrix is psd:

$$
v^{\top} A v l-\left(\sum_{i=1}^{n} v_{i} X_{i}\right)^{2}
$$

We can use this to add additional constraints to $\xi_{t}^{\mathrm{cpsd}}(A)$ by extending the quadratic module
For a subset $V \subseteq S^{n-1}$ we have the stronger bound $\xi_{t, V}^{\mathrm{cpsd}}(A)$

Extra constraints to go beyond $\xi_{*}^{\mathrm{cpsd}}(A)$

Let X_{1}, \ldots, X_{n} be Hermitian PSD matrices s.t. $A_{i j}=\operatorname{Tr}\left(X_{i} X_{j}\right)$
For each $v \in \mathbb{R}^{n}$, the following matrix is psd:

$$
v^{\top} A v l-\left(\sum_{i=1}^{n} v_{i} X_{i}\right)^{2}
$$

We can use this to add additional constraints to $\xi_{t}^{\mathrm{cpsd}}(A)$ by extending the quadratic module
For a subset $V \subseteq S^{n-1}$ we have the stronger bound $\xi_{t, V}^{\text {cpsd }}(A)$
Example:

$$
A=\left(\begin{array}{ccccc}
1 & 1 / 2 & 0 & 0 & 1 / 2 \\
1 / 2 & 1 & 1 / 2 & 0 & 0 \\
0 & 1 / 2 & 1 & 1 / 2 & 0 \\
0 & 0 & 1 / 2 & 1 & 1 / 2 \\
1 / 2 & 0 & 0 & 1 / 2 & 1
\end{array}\right)
$$

$\xi_{1}^{\mathrm{cpsd}}(A)=\xi_{*}^{\mathrm{cpsd}}(A)=\frac{5}{2}$

Extra constraints to go beyond $\xi_{*}^{\mathrm{cpsd}}(A)$

Let X_{1}, \ldots, X_{n} be Hermitian PSD matrices s.t. $A_{i j}=\operatorname{Tr}\left(X_{i} X_{j}\right)$
For each $v \in \mathbb{R}^{n}$, the following matrix is psd:

$$
v^{\top} A v l-\left(\sum_{i=1}^{n} v_{i} X_{i}\right)^{2}
$$

We can use this to add additional constraints to $\xi_{t}^{\mathrm{cpsd}}(A)$ by extending the quadratic module
For a subset $V \subseteq S^{n-1}$ we have the stronger bound $\xi_{t, V}^{\text {cpsd }}(A)$
Example:

$$
A=\left(\begin{array}{ccccc}
1 & 1 / 2 & 0 & 0 & 1 / 2 \\
1 / 2 & 1 & 1 / 2 & 0 & 0 \\
0 & 1 / 2 & 1 & 1 / 2 & 0 \\
0 & 0 & 1 / 2 & 1 & 1 / 2 \\
1 / 2 & 0 & 0 & 1 / 2 & 1
\end{array}\right)
$$

$\xi_{1}^{\mathrm{cpsd}}(A)=\xi_{*}^{\mathrm{cpsd}}(A)=\frac{5}{2}, \quad V=\left\{\frac{e_{i}+e_{j}}{\sqrt{2}}: i, j \in[5]\right\}$

Extra constraints to go beyond $\xi_{*}^{\mathrm{cpsd}}(A)$

Let X_{1}, \ldots, X_{n} be Hermitian PSD matrices s.t. $A_{i j}=\operatorname{Tr}\left(X_{i} X_{j}\right)$
For each $v \in \mathbb{R}^{n}$, the following matrix is psd:

$$
v^{\top} A v l-\left(\sum_{i=1}^{n} v_{i} X_{i}\right)^{2}
$$

We can use this to add additional constraints to $\xi_{t}^{\mathrm{cpsd}}(A)$ by extending the quadratic module
For a subset $V \subseteq S^{n-1}$ we have the stronger bound $\xi_{t, V}^{\mathrm{cpsd}}(A)$
Example:

$$
A=\left(\begin{array}{ccccc}
1 & 1 / 2 & 0 & 0 & 1 / 2 \\
1 / 2 & 1 & 1 / 2 & 0 & 0 \\
0 & 1 / 2 & 1 & 1 / 2 & 0 \\
0 & 0 & 1 / 2 & 1 & 1 / 2 \\
1 / 2 & 0 & 0 & 1 / 2 & 1
\end{array}\right)
$$

$$
\xi_{1}^{\mathrm{cpsd}}(A)=\xi_{*}^{\mathrm{cpsd}}(A)=\frac{5}{2}, \quad V=\left\{\frac{e_{i}+e_{j}}{\sqrt{2}}: i, j \in[5]\right\}, \xi_{2, V}^{\mathrm{cpsd}}(A)=\frac{10}{3}
$$

The completely positive rank (cp-rank)

Fawzi and Parrilo (2014) give this SDP to lower bound cp-rank (A) :

$$
\begin{aligned}
& \tau_{\mathrm{cp}}^{\mathrm{sos}}(A)=\inf \left\{\alpha: \alpha \in \mathbb{R}, X \in \mathbb{R}^{n^{2} \times n^{2}},\right. \\
& \\
& \left(\begin{array}{cc}
\alpha \quad \operatorname{vec}(A)^{\mathrm{T}} \\
\operatorname{vec}(A) & X
\end{array}\right) \succeq 0, \\
& X_{(i, j),(i, j)} \leq A_{i j}^{2} \quad \text { for } \quad 1 \leq i, j \leq n, \\
& \\
& X_{(i, j),(k, l)}=X_{(i, l),(k, j)} \quad \text { for } \quad 1 \leq i<k \leq n, 1 \leq j<I \leq n, \\
& \\
& X \preceq A \otimes A\} .
\end{aligned}
$$

The completely positive rank (cp-rank)

Fawzi and Parrilo (2014) give this SDP to lower bound cp-rank(A):

$$
\begin{aligned}
& \tau_{\mathrm{cp}}^{\mathrm{sos}}(A)=\inf \left\{\alpha: \alpha \in \mathbb{R}, X \in \mathbb{R}^{n^{2} \times n^{2}},\right. \\
& \\
& \left(\begin{array}{cc}
\alpha \quad \operatorname{vec}(A)^{\mathrm{T}} \\
\operatorname{vec}(A) & X
\end{array}\right) \succeq 0, \\
& X_{(i, j),(i, j)} \leq A_{i j}^{2} \quad \text { for } \quad 1 \leq i, j \leq n, \\
& \\
& X_{(i, j),(k, l)}=X_{(i, l),(k, j)} \quad \text { for } \quad 1 \leq i<k \leq n, 1 \leq j<I \leq n, \\
& \\
& X \preceq A \otimes A\} .
\end{aligned}
$$

They derive $\tau_{\mathrm{cp}}^{\mathrm{sos}}(A)$ as an SDP relaxation of
$\tau_{\mathrm{cp}}(A)=\min \left\{\alpha: \alpha>0, \frac{1}{\alpha} A \in \operatorname{conv}\left\{R \in \mathcal{S}^{n}: 0 \leq R \leq A, R \preceq A, \operatorname{rank}(R) \leq 1\right\}\right\}$

The completely positive rank (cp-rank)

Fawzi and Parrilo (2014) give this SDP to lower bound cp-rank (A) :

$$
\begin{aligned}
& \tau_{\mathrm{cp}}^{\mathrm{sos}}(A)=\inf \left\{\alpha: \alpha \in \mathbb{R}, X \in \mathbb{R}^{n^{2} \times n^{2}},\right. \\
& \binom{\alpha \quad \operatorname{vec}(A)^{\mathrm{T}}}{\operatorname{vec}(A) \quad X} \succeq 0, \\
& X_{(i, j),(i, j)} \leq A_{i j}^{2} \quad \text { for } \quad 1 \leq i, j \leq n, \\
& \\
& X_{(i, j),(k, l)}=X_{(i, l),(k, j)} \quad \text { for } \quad 1 \leq i<k \leq n, 1 \leq j<I \leq n, \\
& \\
& X \preceq A \otimes A\} .
\end{aligned}
$$

They derive $\tau_{\mathrm{cp}}^{\mathrm{sos}}(A)$ as an SDP relaxation of
$\tau_{\mathrm{cp}}(A)=\min \left\{\alpha: \alpha>0, \frac{1}{\alpha} A \in \operatorname{conv}\left\{R \in \mathcal{S}^{n}: 0 \leq R \leq A, R \preceq A, \operatorname{rank}(R) \leq 1\right\}\right\}$
$\tau_{\mathrm{cp}}(A)$ is at least the rank of A and the fractional edge-clique cover number of the support graph of A

Adapting our hierarchy for the cp-rank

$$
\text { Suppose } A_{i j}=v_{i}^{\top} v_{j} \text { for } v_{1}, \ldots, v_{n} \in \mathbb{R}_{+}^{d}
$$

Adapting our hierarchy for the cp-rank

$$
\text { Suppose } A_{i j}=v_{i}^{\top} v_{j} \text { for } v_{1}, \ldots, v_{n} \in \mathbb{R}_{+}^{d}
$$

Then, $A_{i j}=\operatorname{Tr}\left(X_{i} X_{j}\right)$ for diagonal PSD matrices $X_{i}=\operatorname{Diag}\left(v_{i}\right)$

Adapting our hierarchy for the cp-rank

$$
\text { Suppose } A_{i j}=v_{i}^{\top} v_{j} \text { for } v_{1}, \ldots, v_{n} \in \mathbb{R}_{+}^{d}
$$

Then, $A_{i j}=\operatorname{Tr}\left(X_{i} X_{j}\right)$ for diagonal PSD matrices $X_{i}=\operatorname{Diag}\left(v_{i}\right)$
Use ideas for cpsd-rank to derive a hierarchy for cp-rank

Adapting our hierarchy for the cp-rank

$$
\text { Suppose } A_{i j}=v_{i}^{\top} v_{j} \text { for } v_{1}, \ldots, v_{n} \in \mathbb{R}_{+}^{d}
$$

Then, $A_{i j}=\operatorname{Tr}\left(X_{i} X_{j}\right)$ for diagonal PSD matrices $X_{i}=\operatorname{Diag}\left(v_{i}\right)$
Use ideas for cpsd-rank to derive a hierarchy for cp-rank

$$
\mathcal{M}_{2 t}(S)=\operatorname{cone}\left\{g p^{2}: g \in S \cup\{1\}, p \in \mathbb{R}[\mathbf{x}], \operatorname{deg}\left(g p^{2}\right) \leq 2 t\right\}
$$

Adapting our hierarchy for the cp-rank

$$
\text { Suppose } A_{i j}=v_{i}^{\top} v_{j} \text { for } v_{1}, \ldots, v_{n} \in \mathbb{R}_{+}^{d}
$$

Then, $A_{i j}=\operatorname{Tr}\left(X_{i} X_{j}\right)$ for diagonal PSD matrices $X_{i}=\operatorname{Diag}\left(v_{i}\right)$
Use ideas for cpsd-rank to derive a hierarchy for cp-rank

$$
\begin{gathered}
\mathcal{M}_{2 t}(S)=\operatorname{cone}\left\{g p^{2}: g \in S \cup\{1\}, p \in \mathbb{R}[\mathbf{x}], \operatorname{deg}\left(g p^{2}\right) \leq 2 t\right\} \\
S=\left\{\sqrt{A_{i i}} x_{i}-x_{i}^{2}\right\} \cup\left\{A_{i j}-x_{i} x_{j}: 1 \leq i<j \leq n\right\}
\end{gathered}
$$

Adapting our hierarchy for the cp-rank

$$
\text { Suppose } A_{i j}=v_{i}^{\top} v_{j} \text { for } v_{1}, \ldots, v_{n} \in \mathbb{R}_{+}^{d}
$$

Then, $A_{i j}=\operatorname{Tr}\left(X_{i} X_{j}\right)$ for diagonal PSD matrices $X_{i}=\operatorname{Diag}\left(v_{i}\right)$
Use ideas for cpsd-rank to derive a hierarchy for cp-rank

$$
\begin{gathered}
\mathcal{M}_{2 t}(S)=\operatorname{cone}\left\{g p^{2}: g \in S \cup\{1\}, p \in \mathbb{R}[\mathbf{x}], \operatorname{deg}\left(g p^{2}\right) \leq 2 t\right\} \\
S=\left\{\sqrt{A_{i i}} x_{i}-x_{i}^{2}\right\} \cup\left\{A_{i j}-x_{i} x_{j}: 1 \leq i<j \leq n\right\}
\end{gathered}
$$

$$
\xi_{t}^{\mathrm{cp}}(A)=\min \left\{L(1): L \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{2 t}^{*}\right.
$$

$$
\left(L\left(x_{i} x_{j}\right)\right)=A,
$$

$$
\left.L \geq 0 \quad \text { on } \quad \mathcal{M}_{2 t}(S)\right\}
$$

Adapting our hierarchy for the cp-rank

$$
\text { Suppose } A_{i j}=v_{i}^{\top} v_{j} \text { for } v_{1}, \ldots, v_{n} \in \mathbb{R}_{+}^{d}
$$

Then, $A_{i j}=\operatorname{Tr}\left(X_{i} X_{j}\right)$ for diagonal PSD matrices $X_{i}=\operatorname{Diag}\left(v_{i}\right)$
Use ideas for cpsd-rank to derive a hierarchy for cp-rank

$$
\begin{gathered}
\mathcal{M}_{2 t}(S)=\operatorname{cone}\left\{g p^{2}: g \in S \cup\{1\}, p \in \mathbb{R}[\mathbf{x}], \operatorname{deg}\left(g p^{2}\right) \leq 2 t\right\} \\
S=\left\{\sqrt{A_{i i} x_{i}}-x_{i}^{2}\right\} \cup\left\{A_{i j}-x_{i} x_{j}: 1 \leq i<j \leq n\right\}
\end{gathered}
$$

$$
\begin{aligned}
\xi_{t}^{\mathrm{cp}}(A)=\min \{L(1): & L \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{2 t}^{*}, \\
& \left(L\left(x_{i} x_{j}\right)\right)=A, \\
& \left.L \geq 0 \text { on } \mathcal{M}_{2 t}(S)\right\}
\end{aligned}
$$

$$
\xi_{1}^{\mathrm{cp}}(A) \leq \ldots \leq \xi_{\infty}^{\mathrm{cp}}(A)=\xi_{*}^{\mathrm{cp}}(A) \leq \operatorname{cp}-\operatorname{rank}(A)
$$

Extra constraints for the cp-rank

As in the cpsd-rank case we can add extra constraints for a set $V \subseteq S^{n-1}$ giving the stronger bound $\xi_{t, V}^{\mathrm{cp}}(A)$

Extra constraints for the cp-rank

As in the cpsd-rank case we can add extra constraints for a set $V \subseteq S^{n-1}$ giving the stronger bound $\xi_{t, V}^{\mathrm{cp}}(A)$

$$
\text { We have } \xi_{*, S^{n-1}}^{\mathrm{cp}}(A)=\tau_{\mathrm{cp}}(A)
$$

Extra constraints for the cp-rank

As in the cpsd-rank case we can add extra constraints for a set $V \subseteq S^{n-1}$ giving the stronger bound $\xi_{t, V}^{\mathrm{cp}}(A)$

$$
\text { We have } \xi_{*, S^{n-1}}^{\mathrm{cp}}(A)=\tau_{\mathrm{cp}}(A)
$$

Let $V_{1} \subseteq V_{2} \subseteq \ldots \subseteq S^{n-1}$ be finite subsets such that $\bigcup_{k} V_{k}$ is dense in S^{n-1}

If A is invertible, then $\xi_{*, V_{k}}^{\mathrm{cp}}(A) \rightarrow \xi_{*, S^{n-1}}^{\mathrm{cp}}(A)$ as $k \rightarrow \infty$

Extra constraints for the cp-rank

As in the cpsd-rank case we can add extra constraints for a set $V \subseteq S^{n-1}$ giving the stronger bound $\xi_{t, V}^{\mathrm{cp}}(A)$

$$
\text { We have } \xi_{*, S^{n-1}}^{\mathrm{cp}}(A)=\tau_{\mathrm{cp}}(A)
$$

Let $V_{1} \subseteq V_{2} \subseteq \ldots \subseteq S^{n-1}$ be finite subsets such that $\bigcup_{k} V_{k}$ is dense in S^{n-1}

If A is invertible, then $\xi_{*, V_{k}}^{\mathrm{cp}}(A) \rightarrow \xi_{*, S^{n-1}}^{\mathrm{cp}}(A)$ as $k \rightarrow \infty$

This gives a (doubly indexed) sequence of finite semidefinite programs converging asymptotically to $\tau_{\mathrm{cp}}(A)$

More efficient tensor constraints

Let $\xi_{t,+}^{\mathrm{cp}}(A)$ be the following strengthening of $\xi_{t}^{\mathrm{cp}}(A)$:

More efficient tensor constraints

Let $\xi_{t,+}^{\mathrm{cp}}(A)$ be the following strengthening of $\xi_{t}^{\mathrm{cp}}(A)$:

- Add entrywise nonnegativity constraints

More efficient tensor constraints

Let $\xi_{t,+}^{\mathrm{cp}}(A)$ be the following strengthening of $\xi_{t}^{\mathrm{cp}}(A)$:

- Add entrywise nonnegativity constraints
- Add the tensor constraint $X \preceq A \otimes A$ from $\tau_{\mathrm{cp}}^{\mathrm{sos}}(A)$:

$$
\left(L\left(w w^{\prime}\right)\right)_{w, w^{\prime} \in\langle\mathbf{x}\rangle=1} \preceq A^{\otimes I} \quad \text { for } \quad 2 \leq I \leq t
$$

More efficient tensor constraints

Let $\xi_{t,+}^{\mathrm{cp}}(A)$ be the following strengthening of $\xi_{t}^{\mathrm{cp}}(A)$:

- Add entrywise nonnegativity constraints
- Add the tensor constraint $X \preceq A \otimes A$ from $\tau_{\mathrm{cp}}^{\mathrm{sos}}(A)$:

$$
\left(L\left(w w^{\prime}\right)\right)_{w, w^{\prime} \in\langle\mathbf{x}\rangle=1} \preceq A^{\otimes I} \quad \text { for } \quad 2 \leq I \leq t
$$

- Implement this constraint more efficiently by exploiting symmetry:

$$
\left(L\left(m m^{\prime}\right)\right)_{m, m^{\prime} \in[x]=1} \preceq Q_{I} A^{\otimes I} Q_{l}^{\top} \quad \text { for } \quad 2 \leq I \leq t
$$

More efficient tensor constraints

Let $\xi_{t,+}^{\mathrm{cp}}(A)$ be the following strengthening of $\xi_{t}^{\mathrm{cp}}(A)$:

- Add entrywise nonnegativity constraints
- Add the tensor constraint $X \preceq A \otimes A$ from $\tau_{\text {cp }}^{\mathrm{sos}}(A)$:

$$
\left(L\left(w w^{\prime}\right)\right)_{w, w^{\prime} \in\langle\mathbf{x}\rangle=1} \preceq A^{\otimes I} \quad \text { for } \quad 2 \leq I \leq t
$$

- Implement this constraint more efficiently by exploiting symmetry:

$$
\left(L\left(m m^{\prime}\right)\right)_{m, m^{\prime} \in[\mathrm{x}]_{=1}} \preceq Q_{I} A^{\otimes I} Q_{I}^{\top} \quad \text { for } \quad 2 \leq I \leq t
$$

Then $\xi_{2,+}^{\mathrm{cp}}(A)$ is a more efficient strengthening of $\tau_{\mathrm{cp}}^{\mathrm{sos}}(A)$

The nonnegative rank

The nonnegative rank $\operatorname{rank}_{+}(A)$ is the smallest d for which there are vectors $u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n} \in \mathbb{R}_{+}^{d}$ such that $A_{i j}=u_{i}^{\top} v_{j}$

The nonnegative rank

The nonnegative rank $\operatorname{rank}_{+}(A)$ is the smallest d for which there are vectors $u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n} \in \mathbb{R}_{+}^{d}$ such that $A_{i j}=u_{i}^{\top} v_{j}$
The nonnegative rank of the slack matrix of a polytope gives the extension complexity of the polytope [Yannakakis 1991]

The nonnegative rank

The nonnegative rank $\operatorname{rank}_{+}(A)$ is the smallest d for which there are vectors $u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n} \in \mathbb{R}_{+}^{d}$ such that $A_{i j}=u_{i}^{\top} v_{j}$

The nonnegative rank of the slack matrix of a polytope gives the extension complexity of the polytope [Yannakakis 1991]

Fawzi and Parrilo (2014) define relaxations
$\tau_{+}^{\mathrm{sos}}(A) \leq \tau_{+}(A) \leq \operatorname{rank}_{+}(A)$

The nonnegative rank

The nonnegative rank $\operatorname{rank}_{+}(A)$ is the smallest d for which there are vectors $u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n} \in \mathbb{R}_{+}^{d}$ such that $A_{i j}=u_{i}^{\top} v_{j}$

The nonnegative rank of the slack matrix of a polytope gives the extension complexity of the polytope [Yannakakis 1991]

Fawzi and Parrilo (2014) define relaxations
$\tau_{+}^{\mathrm{sos}}(A) \leq \tau_{+}(A) \leq \operatorname{rank}_{+}(A)$
For $A \in \mathbb{R}_{+}^{m \times n}$ there are positive semidefinite diagonal matrices X_{1}, \ldots, X_{m+n} with $A_{i j}=\operatorname{Tr}\left(X_{i} X_{m+j}\right)$ and $\lambda_{\max }\left(X_{i}\right)^{2} \leq \max _{i, j} A_{i j}$

The nonnegative rank

The nonnegative rank $\operatorname{rank}_{+}(A)$ is the smallest d for which there are vectors $u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n} \in \mathbb{R}_{+}^{d}$ such that $A_{i j}=u_{i}^{\top} v_{j}$
The nonnegative rank of the slack matrix of a polytope gives the extension complexity of the polytope [Yannakakis 1991]

Fawzi and Parrilo (2014) define relaxations
$\tau_{+}^{\mathrm{sos}}(A) \leq \tau_{+}(A) \leq \operatorname{rank}_{+}(A)$
For $A \in \mathbb{R}_{+}^{m \times n}$ there are positive semidefinite diagonal matrices X_{1}, \ldots, X_{m+n} with $A_{i j}=\operatorname{Tr}\left(X_{i} X_{m+j}\right)$ and $\lambda_{\max }\left(X_{i}\right)^{2} \leq \max _{i, j} A_{i j}$
We can use this to adapt the above techniques to give a hiearchy

$$
\xi_{1}^{+}(A) \leq \ldots \leq \xi_{\infty}^{+}(A)=\xi_{*}^{+}(A)=\tau_{+}(A) \leq \operatorname{rank}_{+}(A)
$$

The nonnegative rank

The nonnegative rank $\operatorname{rank}_{+}(A)$ is the smallest d for which there are vectors $u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n} \in \mathbb{R}_{+}^{d}$ such that $A_{i j}=u_{i}^{\top} v_{j}$
The nonnegative rank of the slack matrix of a polytope gives the extension complexity of the polytope [Yannakakis 1991]

Fawzi and Parrilo (2014) define relaxations
$\tau_{+}^{\mathrm{sos}}(A) \leq \tau_{+}(A) \leq \operatorname{rank}_{+}(A)$
For $A \in \mathbb{R}_{+}^{m \times n}$ there are positive semidefinite diagonal matrices X_{1}, \ldots, X_{m+n} with $A_{i j}=\operatorname{Tr}\left(X_{i} X_{m+j}\right)$ and $\lambda_{\max }\left(X_{i}\right)^{2} \leq \max _{i, j} A_{i j}$
We can use this to adapt the above techniques to give a hiearchy

$$
\xi_{1}^{+}(A) \leq \ldots \leq \xi_{\infty}^{+}(A)=\xi_{*}^{+}(A)=\tau_{+}(A) \leq \operatorname{rank}_{+}(A)
$$

Going back to tracial optimization we can adapt this to the psd-rank - still work in progress

Nested rectangle problem [Fawzi-Parrilo, 2016]:

Nested rectangle problem [Fawzi-Parrilo, 2016]:

Such a triangle exists if and only if

$$
\operatorname{rank}_{+}\left(\left(\begin{array}{llll}
1-a & 1+a & 1+a & 1-a \\
1+a & 1-a & 1-a & 1+a \\
1-b & 1-b & 1+b & 1+b \\
1+b & 1+b & 1-b & 1-b
\end{array}\right)\right) \leq 3
$$

Nested rectangle problem [Fawzi-Parrilo, 2016]:

Such a triangle exists if and only if

$$
\operatorname{rank}_{+}\left(\left(\begin{array}{llll}
1-a & 1+a & 1+a & 1-a \\
1+a & 1-a & 1-a & 1+a \\
1-b & 1-b & 1+b & 1+b \\
1+b & 1+b & 1-b & 1-b
\end{array}\right)\right) \leq 3
$$

In fact, such a triangle exists if and only if $(1+a)(1+b) \leq 2$

Nested rectangle problem [Fawzi-Parrilo, 2016]:

Thank you!

