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» Typically difficult to prove optimality of constructions
» This talk: Methods to find obstructions
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Example: the Petersen graph

In general difficult to solve to optimality (NP-hard)

The Lovéasz ¥-number upper bounds the independence number
Efficiently computable through semidefinite programming
Semidefinite program: optimize a linear functional over the
intersection of an affine space with the cone of n x n positive
semidefinite matrices

3 x 3 positive semidefinite matrices
with unit diagonal:
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» Example: the spherical cap packing problem
> As vertex set we take the unit sphere
» Two distinct vertices x and y are adjacent if the spherical caps
centered about x and y intersect in their interiors:

v

Optimal density is proportional to the independence number

v

1 generalizes to an infinite dimensional maximization problem

v

Use optimization duality, harmonic analysis, and real algebraic
geometry to approximate 9 by a semidefinite program

v

For this problem this reduces to the Delsarte LP bound
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New bounds for binary packings

Density: 79.3...%
Our upper bound: 81.3...%

Sodium Chloride

v

Question 1: Can we use this method for optimality proofs?

v

Florian and Heppes prove optimality of the following packing:

v

We prove 9 is sharp for this problem, which gives a simple
optimality proof

We slightly improve the Cohn-Elkies bound to give the best
known bounds for sphere packing in dimensions 4 — 7 and 9
» Question 2: Can we obtain arbitrarily good bounds?

v
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» Goal: Find the ground state energy of a system of N particles
in a compact container V' with pair potential h

» Assume h({z,y}) — oo as z and y converge

> Define a graph with vertex set V' where two distinct vertices x
and y are adjacent if h({z,y}) is large

» Let I; be the set of independent sets with < ¢ elements
» Let I_; be the set of independent sets with ¢ elements
» These sets are compact topological spaces

» We can view h as a function in C(Iy) supported on I_o
» Minimal energy:

E = min h(P)
Sel_n
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The energy of S is given by xs(h)
This measure

> is positive

> is a moment measure

> satisfies A(I—;) = () for all i
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E; = min {)\(h) : A € M(I5;) positive moment measure,
A1) = (V) for all 0 <i < 2t}

Ei<BE<---<Ey=F
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Moment measures
» Operator:

A C(It X It)sym — C(I2), AK(S) = > oK)
JJ €l:JuJ' =8

» Dual operator
A:Z M(Igt) — M(It X It)

» Cone of positive definite kernels: C(I; x I})=o

» Dual cone:
M(ItXIt)tO = {,u € M(ItXIt)Sym : ,LL(K) >0 for all K € C(ItXIt)tO}
> A measure \ € M(Iy) is a moment measure if

AZ)\ € M(It X It)to
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Recall: F1 < Ey <.---<Ex=F
Positive semidefinite form (f, g) = AfA(f ® g) on C(I;)
Define Ny (A) = {f € C(Iy) : (f, f) =0}

If X € M(I3) is a moment measure and

v

v

v

C(I;) = C(Ii—1) + Ni(N),

then for every [ > ¢, we can extend A to a moment measure
A€ M(Igl)
M) = (V) foro<i<2t = NIz) = () for0<i <2

v

If an optimal solution X of E satisfies C(I;) = C(I;—1)+Ni(N),
then £, = Eny = F
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Computations using the dual hierarchy

Dual maximization problem

0 E} E E

Strong duality holds: E; = Ef

> In E} we optimize over kernels K € C(I; X I;)»o

> ldea: Optimize over truncated Fourier series of K
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A group action of I on V extends to an action on I; by
Her, o med = {yar, oo yad
Let I' be a group such that A is I'-invariant

We may assume K to be I'-invariant
We have K (z,y) = 3, .+ (K(7), Zx(2,y))

» To construct Z,; we need a symmetry adapted basis of C(1;)

We can construct such a basis if we know how to

1. explicitly decompose C(V') into irreducibles
2. explicitly decompose tensor products of these into irreducibles

Let V=S2T=0(3), and t =2
Decompose C(S?) into irreducibles: Spherical harmonics

Decompose the tensor products: Clebsch-Gordan coefficients
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In E5 we have the constraints
AK(S)> ... for Sely

» We can view A;K(S) as a polynomial
p: R? x R? x R? x R? — R with
p(Yx1, ..., yxe) = p(a1,...,24) for all v € O(3)

» Invariant theory: we can write A;K(S) as a polynomial in 6
inner products

» To compute these polynomials we need to solve large sparse
linear systems

» Use sum of squares techniques from real algebraic geometry to
model the inequality constraints using semidefinite constraints

» We give a symmetrized version of Putinar's theorem to exploit
the Sy symmetry in the particles
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The Thomson problem has been solved for:
3 (1912), 4, 6 (1992), 12 (1996), and 5 (2010) particles

EY is sharp for 3, 4, 6, and 12 particles (Yudin's LP bound)

Compute E3 numerically using semidefinite programming
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v

» EZ appears to be sharp for 5 particles (6 digits of precision)
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