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I Typically difficult to prove optimality of constructions
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The maximum independent set problem

Example: the Petersen graph

I In general difficult to solve to optimality (NP-hard)
I The Lovász ϑ-number upper bounds the independence number
I Efficiently computable through semidefinite programming
I Semidefinite program: optimize a linear functional over the

intersection of an affine space with the cone of n× n positive
semidefinite matrices

3× 3 positive semidefinite matrices

with unit diagonal:
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Model packing problems as independent set problems

I Example: the spherical cap packing problem
I As vertex set we take the unit sphere
I Two distinct vertices x and y are adjacent if the spherical caps

centered about x and y intersect in their interiors:
x

y

I Optimal density is proportional to the independence number

I ϑ generalizes to an infinite dimensional maximization problem

I Use optimization duality, harmonic analysis, and real algebraic
geometry to approximate ϑ by a semidefinite program

I For this problem this reduces to the Delsarte LP bound
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New bounds for binary packings

Sodium Chloride

I Question 1: Can we use this method for optimality proofs?
I Florian and Heppes prove optimality of the following packing:

I We prove ϑ is sharp for this problem, which gives a simple
optimality proof

I We slightly improve the Cohn-Elkies bound to give the best
known bounds for sphere packing in dimensions 4− 7 and 9

I Question 2: Can we obtain arbitrarily good bounds?
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Energy minimization

I Goal: Find the ground state energy of a system of N particles
in a compact container V with pair potential h

I Assume h({x, y})→∞ as x and y converge

I Define a graph with vertex set V where two distinct vertices x
and y are adjacent if h({x, y}) is large

I Let It be the set of independent sets with ≤ t elements

I Let I=t be the set of independent sets with t elements

I These sets are compact topological spaces

I We can view h as a function in C(IN ) supported on I=2

I Minimal energy:

E = min
S∈I=N

∑
P⊆S

h(P )
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Moment methods in energy minimization

I For S ∈ I=N , define the measure χS =
∑

R⊆S δR

I The energy of S is given by χS(h)

I This measure
I is positive
I is a moment measure
I satisfies λ(I=i) =

(
N
i

)
for all i

I Relaxations: For t = 1, . . . , N ,

Et = min
{
λ(h) : λ ∈M(I2t) positive moment measure,

λ(I=i) =
(
N
i

)
for all 0 ≤ i ≤ 2t

}

E1 ≤ E2 ≤ · · · ≤ EN = E
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Moment measures

I Operator:

At : C(It× It)sym → C(I2t), AtK(S) =
∑

J,J ′∈It:J∪J ′=S

K(J, J ′)

I Dual operator

A∗t : M(I2t)→M(It × It)

I Cone of positive definite kernels: C(It × It)�0

I Dual cone:

M(It×It)�0 = {µ ∈M(It×It)sym : µ(K) ≥ 0 for all K ∈ C(It×It)�0}

I A measure λ ∈M(I2t) is a moment measure if

A∗tλ ∈M(It × It)�0
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Flat extensions

I Recall: E1 ≤ E2 ≤ · · · ≤ EN = E

I Positive semidefinite form 〈f, g〉 = A∗tλ(f ⊗ g) on C(It)
I Define Nt(λ) = {f ∈ C(It) : 〈f, f〉 = 0}
I If λ ∈M(I2t) is a moment measure and

C(It) = C(It−1) +Nt(λ),

then for every l ≥ t, we can extend λ to a moment measure
λ̄ ∈M(I2l)

I λ(I=i) =
(
N
i

)
for 0 ≤ i ≤ 2t ⇒ λ̄(I=i) =

(
N
i

)
for 0 ≤ i ≤ 2l

If an optimal solution λ of Et satisfies C(It) = C(It−1)+Nt(λ),
then Et = EN = E
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I Define Nt(λ) = {f ∈ C(It) : 〈f, f〉 = 0}
I If λ ∈M(I2t) is a moment measure and

C(It) = C(It−1) +Nt(λ),

then for every l ≥ t, we can extend λ to a moment measure
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Harmonic analysis on subset spaces

I A group action of Γ on V extends to an action on It by
γ{x1, . . . , xt} = {γx1, . . . , γxt}

I Let Γ be a group such that h is Γ-invariant

I We may assume K to be Γ-invariant

I We have K(x, y) =
∑

π∈Γ̂〈K̂(π), Zπ(x, y)〉
I To construct Zπ we need a symmetry adapted basis of C(It)
I We can construct such a basis if we know how to

1. explicitly decompose C(V ) into irreducibles
2. explicitly decompose tensor products of these into irreducibles

I Let V = S2, Γ = O(3), and t = 2

I Decompose C(S2) into irreducibles: Spherical harmonics

I Decompose the tensor products: Clebsch-Gordan coefficients
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Invariant theory and real algebraic geometry

I In E∗2 we have the constraints

AtK(S) ≥ . . . for S ∈ I4

I We can view AtK(S) as a polynomial
p : R3 × R3 × R3 × R3 → R with
p(γx1, . . . , γx4) = p(x1, . . . , x4) for all γ ∈ O(3)

I Invariant theory: we can write AtK(S) as a polynomial in 6
inner products

I To compute these polynomials we need to solve large sparse
linear systems

I Use sum of squares techniques from real algebraic geometry to
model the inequality constraints using semidefinite constraints

I We give a symmetrized version of Putinar’s theorem to exploit
the SN symmetry in the particles
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Computational results for the Thomson problem

I In the Thomson problem we take

V = S2 and h({x, y}) =
1

‖x− y‖

I The Thomson problem has been solved for:
3 (1912), 4, 6 (1992), 12 (1996), and 5 (2010) particles

I E∗1 is sharp for 3, 4, 6, and 12 particles (Yudin’s LP bound)

I Compute E∗2 numerically using semidefinite programming

I E∗2 appears to be sharp for 5 particles (6 digits of precision)
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Thank you!

I D. de Laat, Moment methods in energy minimization, In preparation.

I D. de Laat, F. Vallentin, A semidefinite programming hierarchy for
packing problems in discrete geometry, Math. Program., Ser. B 151
(2015), 529-553.

I D. de Laat, F.M. Oliveira, F. Vallentin, Upper bounds for packings of
spheres of several radii, Forum Math. Sigma 2 (2014), e23 (42 pages).
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