# Moment methods in energy minimization 

David de Laat<br>Delft University of Technology<br>(Joint with Fernando Oliveira and Frank Vallentin)

László Fejes Tóth Centennial
26 June 2015, Budapest

## Packing and energy minimization



Sphere packing
Kepler conjecture (1611)



Energy minimization
Thomson problem (1904)

## Packing and energy minimization



Sphere packing
Kepler conjecture (1611)


Energy minimization
Thomson problem (1904)

Spherical cap packing<br>Tammes problem (1930)

- Typically difficult to prove optimality of constructions


## Packing and energy minimization



- Typically difficult to prove optimality of constructions
- This talk: Methods to find obstructions


## The maximum independent set problem



Example: the Petersen graph

## The maximum independent set problem



Example: the Petersen graph

## The maximum independent set problem



## Example: the Petersen graph

- In general difficult to solve to optimality (NP-hard)


## The maximum independent set problem



## Example: the Petersen graph

- In general difficult to solve to optimality (NP-hard)
- The Lovász $\vartheta$-number upper bounds the independence number


## The maximum independent set problem



## Example: the Petersen graph

- In general difficult to solve to optimality (NP-hard)
- The Lovász $\vartheta$-number upper bounds the independence number
- Efficiently computable through semidefinite programming


## The maximum independent set problem



Example: the Petersen graph

- In general difficult to solve to optimality (NP-hard)
- The Lovász $\vartheta$-number upper bounds the independence number
- Efficiently computable through semidefinite programming
- Semidefinite program: optimize a linear functional over the intersection of an affine space with the cone of $n \times n$ positive semidefinite matrices


## The maximum independent set problem



Example: the Petersen graph

- In general difficult to solve to optimality (NP-hard)
- The Lovász $\vartheta$-number upper bounds the independence number
- Efficiently computable through semidefinite programming
- Semidefinite program: optimize a linear functional over the intersection of an affine space with the cone of $n \times n$ positive semidefinite matrices
$3 \times 3$ positive semidefinite matrices with unit diagonal:


Model packing problems as independent set problems

## Model packing problems as independent set problems

- Example: the spherical cap packing problem


## Model packing problems as independent set problems

- Example: the spherical cap packing problem
- As vertex set we take the unit sphere


## Model packing problems as independent set problems

- Example: the spherical cap packing problem
- As vertex set we take the unit sphere
- Two distinct vertices $x$ and $y$ are adjacent if the spherical caps centered about $x$ and $y$ intersect in their interiors:



## Model packing problems as independent set problems

- Example: the spherical cap packing problem
- As vertex set we take the unit sphere
- Two distinct vertices $x$ and $y$ are adjacent if the spherical caps centered about $x$ and $y$ intersect in their interiors:

- Optimal density is proportional to the independence number


## Model packing problems as independent set problems

- Example: the spherical cap packing problem
- As vertex set we take the unit sphere
- Two distinct vertices $x$ and $y$ are adjacent if the spherical caps centered about $x$ and $y$ intersect in their interiors:

- Optimal density is proportional to the independence number
- $\vartheta$ generalizes to an infinite dimensional maximization problem


## Model packing problems as independent set problems

- Example: the spherical cap packing problem
- As vertex set we take the unit sphere
- Two distinct vertices $x$ and $y$ are adjacent if the spherical caps centered about $x$ and $y$ intersect in their interiors:

- Optimal density is proportional to the independence number
- $\vartheta$ generalizes to an infinite dimensional maximization problem
- Use optimization duality, harmonic analysis, and real algebraic geometry to approximate $\vartheta$ by a semidefinite program


## Model packing problems as independent set problems

- Example: the spherical cap packing problem
- As vertex set we take the unit sphere
- Two distinct vertices $x$ and $y$ are adjacent if the spherical caps centered about $x$ and $y$ intersect in their interiors:

- Optimal density is proportional to the independence number
- $\vartheta$ generalizes to an infinite dimensional maximization problem
- Use optimization duality, harmonic analysis, and real algebraic geometry to approximate $\vartheta$ by a semidefinite program
- For this problem this reduces to the Delsarte LP bound

New bounds for binary packings


Sodium Chloride

New bounds for binary packings


Density: $79.3 \ldots \%$

Sodium Chloride

## New bounds for binary packings



Density: 79.3... \%
Our upper bound: 81.3... \%

Sodium Chloride

## New bounds for binary packings



Density: 79.3... \%
Our upper bound: 81.3... \%

Sodium Chloride

- Question 1: Can we use this method for optimality proofs?


## New bounds for binary packings



Density: 79.3... \%
Our upper bound: 81.3... \%

Sodium Chloride

- Question 1: Can we use this method for optimality proofs?
- Florian and Heppes prove optimality of the following packing:


## New bounds for binary packings



Density: 79.3... \%
Our upper bound: $81.3 \ldots \%$

Sodium Chloride

- Question 1: Can we use this method for optimality proofs?
- Florian and Heppes prove optimality of the following packing:

- We prove $\vartheta$ is sharp for this problem, which gives a simple optimality proof


## New bounds for binary packings



Density: 79.3... \%
Our upper bound: $81.3 \ldots \%$

Sodium Chloride

- Question 1: Can we use this method for optimality proofs?
- Florian and Heppes prove optimality of the following packing:

- We prove $\vartheta$ is sharp for this problem, which gives a simple optimality proof
- We slightly improve the Cohn-Elkies bound to give the best known bounds for sphere packing in dimensions $4-7$ and 9


## New bounds for binary packings



Density: 79.3... \%
Our upper bound: $81.3 \ldots \%$

Sodium Chloride

- Question 1: Can we use this method for optimality proofs?
- Florian and Heppes prove optimality of the following packing:

- We prove $\vartheta$ is sharp for this problem, which gives a simple optimality proof
- We slightly improve the Cohn-Elkies bound to give the best known bounds for sphere packing in dimensions $4-7$ and 9
- Question 2: Can we obtain arbitrarily good bounds?


## Energy minimization

- Goal: Find the ground state energy of a system of $N$ particles in a compact container $V$ with pair potential $h$


## Energy minimization

- Goal: Find the ground state energy of a system of $N$ particles in a compact container $V$ with pair potential $h$
- Assume $h(\{x, y\}) \rightarrow \infty$ as $x$ and $y$ converge


## Energy minimization

- Goal: Find the ground state energy of a system of $N$ particles in a compact container $V$ with pair potential $h$
- Assume $h(\{x, y\}) \rightarrow \infty$ as $x$ and $y$ converge
- Define a graph with vertex set $V$ where two distinct vertices $x$ and $y$ are adjacent if $h(\{x, y\})$ is large


## Energy minimization

- Goal: Find the ground state energy of a system of $N$ particles in a compact container $V$ with pair potential $h$
- Assume $h(\{x, y\}) \rightarrow \infty$ as $x$ and $y$ converge
- Define a graph with vertex set $V$ where two distinct vertices $x$ and $y$ are adjacent if $h(\{x, y\})$ is large
- Let $I_{t}$ be the set of independent sets with $\leq t$ elements


## Energy minimization

- Goal: Find the ground state energy of a system of $N$ particles in a compact container $V$ with pair potential $h$
- Assume $h(\{x, y\}) \rightarrow \infty$ as $x$ and $y$ converge
- Define a graph with vertex set $V$ where two distinct vertices $x$ and $y$ are adjacent if $h(\{x, y\})$ is large
- Let $I_{t}$ be the set of independent sets with $\leq t$ elements
- Let $I_{=t}$ be the set of independent sets with $t$ elements


## Energy minimization

- Goal: Find the ground state energy of a system of $N$ particles in a compact container $V$ with pair potential $h$
- Assume $h(\{x, y\}) \rightarrow \infty$ as $x$ and $y$ converge
- Define a graph with vertex set $V$ where two distinct vertices $x$ and $y$ are adjacent if $h(\{x, y\})$ is large
- Let $I_{t}$ be the set of independent sets with $\leq t$ elements
- Let $I_{=t}$ be the set of independent sets with $t$ elements
- These sets are compact topological spaces


## Energy minimization

- Goal: Find the ground state energy of a system of $N$ particles in a compact container $V$ with pair potential $h$
- Assume $h(\{x, y\}) \rightarrow \infty$ as $x$ and $y$ converge
- Define a graph with vertex set $V$ where two distinct vertices $x$ and $y$ are adjacent if $h(\{x, y\})$ is large
- Let $I_{t}$ be the set of independent sets with $\leq t$ elements
- Let $I_{=t}$ be the set of independent sets with $t$ elements
- These sets are compact topological spaces
- We can view $h$ as a function in $\mathcal{C}\left(I_{N}\right)$ supported on $I_{=2}$


## Energy minimization

- Goal: Find the ground state energy of a system of $N$ particles in a compact container $V$ with pair potential $h$
- Assume $h(\{x, y\}) \rightarrow \infty$ as $x$ and $y$ converge
- Define a graph with vertex set $V$ where two distinct vertices $x$ and $y$ are adjacent if $h(\{x, y\})$ is large
- Let $I_{t}$ be the set of independent sets with $\leq t$ elements
- Let $I_{=t}$ be the set of independent sets with $t$ elements
- These sets are compact topological spaces
- We can view $h$ as a function in $\mathcal{C}\left(I_{N}\right)$ supported on $I_{=2}$
- Minimal energy:

$$
E=\min _{S \in I_{=N}} \sum_{P \subseteq S} h(P)
$$

## Moment methods in energy minimization

- For $S \in I_{=N}$, define the measure $\chi_{S}=\sum_{R \subseteq S} \delta_{R}$


## Moment methods in energy minimization

- For $S \in I_{=N}$, define the measure $\chi_{S}=\sum_{R \subseteq S} \delta_{R}$
- The energy of $S$ is given by $\chi_{S}(h)$


## Moment methods in energy minimization

- For $S \in I_{=N}$, define the measure $\chi_{S}=\sum_{R \subseteq S} \delta_{R}$
- The energy of $S$ is given by $\chi_{S}(h)$
- This measure
- is positive
- is a moment measure
- satisfies $\lambda\left(I_{=i}\right)=\binom{N}{i}$ for all $i$


## Moment methods in energy minimization

- For $S \in I_{=N}$, define the measure $\chi_{S}=\sum_{R \subseteq S} \delta_{R}$
- The energy of $S$ is given by $\chi_{S}(h)$
- This measure
- is positive
- is a moment measure
- satisfies $\lambda\left(I_{=i}\right)=\binom{N}{i}$ for all $i$
- Relaxations: For $t=1, \ldots, N$,

$$
\begin{gathered}
E_{t}=\min \{\lambda(h): \\
\lambda \in \mathcal{M}\left(I_{2 t}\right) \text { positive moment measure }, \\
\\
\left.\lambda\left(I_{=i}\right)=\binom{N}{i} \text { for all } 0 \leq i \leq 2 t\right\}
\end{gathered}
$$

## Moment methods in energy minimization

- For $S \in I_{=N}$, define the measure $\chi_{S}=\sum_{R \subseteq S} \delta_{R}$
- The energy of $S$ is given by $\chi_{S}(h)$
- This measure
- is positive
- is a moment measure
- satisfies $\lambda\left(I_{=i}\right)=\binom{N}{i}$ for all $i$
- Relaxations: For $t=1, \ldots, N$,

$$
\begin{gathered}
E_{t}=\min \{\lambda(h): \\
\lambda \in \mathcal{M}\left(I_{2 t}\right) \text { positive moment measure, } \\
\\
\left.\lambda\left(I_{=i}\right)=\binom{N}{i} \text { for all } 0 \leq i \leq 2 t\right\}
\end{gathered}
$$

$$
E_{1} \leq E_{2} \leq \cdots \leq E_{N}
$$

## Moment methods in energy minimization

- For $S \in I_{=N}$, define the measure $\chi_{S}=\sum_{R \subseteq S} \delta_{R}$
- The energy of $S$ is given by $\chi_{S}(h)$
- This measure
- is positive
- is a moment measure
- satisfies $\lambda\left(I_{=i}\right)=\binom{N}{i}$ for all $i$
- Relaxations: For $t=1, \ldots, N$,

$$
\begin{gathered}
E_{t}=\min \{\lambda(h): \\
\lambda \in \mathcal{M}\left(I_{2 t}\right) \text { positive moment measure, } \\
\\
\left.\lambda\left(I_{=i}\right)=\binom{N}{i} \text { for all } 0 \leq i \leq 2 t\right\}
\end{gathered}
$$

$$
E_{1} \leq E_{2} \leq \cdots \leq E_{N}=E
$$

## Moment measures

- Operator:

$$
A_{t}: \mathcal{C}\left(I_{t} \times I_{t}\right)_{\mathrm{sym}} \rightarrow \mathcal{C}\left(I_{2 t}\right), A_{t} K(S)=\sum_{J, J^{\prime} \in I_{t}: J \cup J^{\prime}=S} K\left(J, J^{\prime}\right)
$$

## Moment measures

- Operator:

$$
A_{t}: \mathcal{C}\left(I_{t} \times I_{t}\right)_{\mathrm{sym}} \rightarrow \mathcal{C}\left(I_{2 t}\right), A_{t} K(S)=\sum_{J, J^{\prime} \in I_{t}: J \cup J^{\prime}=S} K\left(J, J^{\prime}\right)
$$

- Dual operator

$$
A_{t}^{*}: \mathcal{M}\left(I_{2 t}\right) \rightarrow \mathcal{M}\left(I_{t} \times I_{t}\right)
$$

## Moment measures

- Operator:

$$
A_{t}: \mathcal{C}\left(I_{t} \times I_{t}\right)_{\mathrm{sym}} \rightarrow \mathcal{C}\left(I_{2 t}\right), A_{t} K(S)=\sum_{J, J^{\prime} \in I_{t}: J \cup J^{\prime}=S} K\left(J, J^{\prime}\right)
$$

- Dual operator

$$
A_{t}^{*}: \mathcal{M}\left(I_{2 t}\right) \rightarrow \mathcal{M}\left(I_{t} \times I_{t}\right)
$$

- Cone of positive definite kernels: $\mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}$


## Moment measures

- Operator:

$$
A_{t}: \mathcal{C}\left(I_{t} \times I_{t}\right)_{\mathrm{sym}} \rightarrow \mathcal{C}\left(I_{2 t}\right), A_{t} K(S)=\sum_{J, J^{\prime} \in I_{t}: J \cup J^{\prime}=S} K\left(J, J^{\prime}\right)
$$

- Dual operator

$$
A_{t}^{*}: \mathcal{M}\left(I_{2 t}\right) \rightarrow \mathcal{M}\left(I_{t} \times I_{t}\right)
$$

- Cone of positive definite kernels: $\mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}$
- Dual cone:

$$
\mathcal{M}\left(I_{t} \times I_{t}\right)_{\succeq 0}=\left\{\mu \in \mathcal{M}\left(I_{t} \times I_{t}\right)_{\text {sym }}: \mu(K) \geq 0 \text { for all } K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}\right\}
$$

## Moment measures

- Operator:

$$
A_{t}: \mathcal{C}\left(I_{t} \times I_{t}\right)_{\mathrm{sym}} \rightarrow \mathcal{C}\left(I_{2 t}\right), A_{t} K(S)=\sum_{J, J^{\prime} \in I_{t}: J \cup J^{\prime}=S} K\left(J, J^{\prime}\right)
$$

- Dual operator

$$
A_{t}^{*}: \mathcal{M}\left(I_{2 t}\right) \rightarrow \mathcal{M}\left(I_{t} \times I_{t}\right)
$$

- Cone of positive definite kernels: $\mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}$
- Dual cone:

$$
\mathcal{M}\left(I_{t} \times I_{t}\right)_{\succeq 0}=\left\{\mu \in \mathcal{M}\left(I_{t} \times I_{t}\right)_{\text {sym }}: \mu(K) \geq 0 \text { for all } K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}\right\}
$$

- A measure $\lambda \in \mathcal{M}\left(I_{2 t}\right)$ is a moment measure if

$$
A_{t}^{*} \lambda \in \mathcal{M}\left(I_{t} \times I_{t}\right)_{\succeq 0}
$$

## Flat extensions

- Recall: $E_{1} \leq E_{2} \leq \cdots \leq E_{N}=E$


## Flat extensions

- Recall: $E_{1} \leq E_{2} \leq \cdots \leq E_{N}=E$
- Positive semidefinite form $\langle f, g\rangle=A_{t}^{*} \lambda(f \otimes g)$ on $\mathcal{C}\left(I_{t}\right)$


## Flat extensions

- Recall: $E_{1} \leq E_{2} \leq \cdots \leq E_{N}=E$
- Positive semidefinite form $\langle f, g\rangle=A_{t}^{*} \lambda(f \otimes g)$ on $\mathcal{C}\left(I_{t}\right)$
- Define $\mathcal{N}_{t}(\lambda)=\left\{f \in \mathcal{C}\left(I_{t}\right):\langle f, f\rangle=0\right\}$


## Flat extensions

- Recall: $E_{1} \leq E_{2} \leq \cdots \leq E_{N}=E$
- Positive semidefinite form $\langle f, g\rangle=A_{t}^{*} \lambda(f \otimes g)$ on $\mathcal{C}\left(I_{t}\right)$
- Define $\mathcal{N}_{t}(\lambda)=\left\{f \in \mathcal{C}\left(I_{t}\right):\langle f, f\rangle=0\right\}$


## Flat extensions

- Recall: $E_{1} \leq E_{2} \leq \cdots \leq E_{N}=E$
- Positive semidefinite form $\langle f, g\rangle=A_{t}^{*} \lambda(f \otimes g)$ on $\mathcal{C}\left(I_{t}\right)$
- Define $\mathcal{N}_{t}(\lambda)=\left\{f \in \mathcal{C}\left(I_{t}\right):\langle f, f\rangle=0\right\}$
- If $\lambda \in \mathcal{M}\left(I_{2 t}\right)$ is a moment measure and

$$
\mathcal{C}\left(I_{t}\right)=\mathcal{C}\left(I_{t-1}\right)+\mathcal{N}_{t}(\lambda),
$$

then for every $l \geq t$, we can extend $\lambda$ to a moment measure $\bar{\lambda} \in \mathcal{M}\left(I_{2 l}\right)$

## Flat extensions

- Recall: $E_{1} \leq E_{2} \leq \cdots \leq E_{N}=E$
- Positive semidefinite form $\langle f, g\rangle=A_{t}^{*} \lambda(f \otimes g)$ on $\mathcal{C}\left(I_{t}\right)$
- Define $\mathcal{N}_{t}(\lambda)=\left\{f \in \mathcal{C}\left(I_{t}\right):\langle f, f\rangle=0\right\}$
- If $\lambda \in \mathcal{M}\left(I_{2 t}\right)$ is a moment measure and

$$
\mathcal{C}\left(I_{t}\right)=\mathcal{C}\left(I_{t-1}\right)+\mathcal{N}_{t}(\lambda),
$$

then for every $l \geq t$, we can extend $\lambda$ to a moment measure $\bar{\lambda} \in \mathcal{M}\left(I_{2 l}\right)$

- $\lambda\left(I_{=i}\right)=\binom{N}{i}$ for $0 \leq i \leq 2 t \Rightarrow \bar{\lambda}\left(I_{=i}\right)=\binom{N}{i}$ for $0 \leq i \leq 2 l$


## Flat extensions

- Recall: $E_{1} \leq E_{2} \leq \cdots \leq E_{N}=E$
- Positive semidefinite form $\langle f, g\rangle=A_{t}^{*} \lambda(f \otimes g)$ on $\mathcal{C}\left(I_{t}\right)$
- Define $\mathcal{N}_{t}(\lambda)=\left\{f \in \mathcal{C}\left(I_{t}\right):\langle f, f\rangle=0\right\}$
- If $\lambda \in \mathcal{M}\left(I_{2 t}\right)$ is a moment measure and

$$
\mathcal{C}\left(I_{t}\right)=\mathcal{C}\left(I_{t-1}\right)+\mathcal{N}_{t}(\lambda),
$$

then for every $l \geq t$, we can extend $\lambda$ to a moment measure $\bar{\lambda} \in \mathcal{M}\left(I_{2 l}\right)$

- $\lambda\left(I_{=i}\right)=\binom{N}{i}$ for $0 \leq i \leq 2 t \Rightarrow \bar{\lambda}\left(I_{=i}\right)=\binom{N}{i}$ for $0 \leq i \leq 2 l$

If an optimal solution $\lambda$ of $E_{t}$ satisfies $\mathcal{C}\left(I_{t}\right)=\mathcal{C}\left(I_{t-1}\right)+\mathcal{N}_{t}(\lambda)$, then $E_{t}=E_{N}=E$

## Computations using the dual hierarchy



Strong duality holds: $E_{t}=E_{t}^{*}$

## Computations using the dual hierarchy



Strong duality holds: $E_{t}=E_{t}^{*}$

- In $E_{t}^{*}$ we optimize over kernels $K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}$


## Computations using the dual hierarchy



Strong duality holds: $E_{t}=E_{t}^{*}$

- In $E_{t}^{*}$ we optimize over kernels $K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}$
- Idea: Optimize over truncated Fourier series of $K$


## Harmonic analysis on subset spaces

- A group action of $\Gamma$ on $V$ extends to an action on $I_{t}$ by $\gamma\left\{x_{1}, \ldots, x_{t}\right\}=\left\{\gamma x_{1}, \ldots, \gamma x_{t}\right\}$


## Harmonic analysis on subset spaces

- A group action of $\Gamma$ on $V$ extends to an action on $I_{t}$ by $\gamma\left\{x_{1}, \ldots, x_{t}\right\}=\left\{\gamma x_{1}, \ldots, \gamma x_{t}\right\}$
- Let $\Gamma$ be a group such that $h$ is $\Gamma$-invariant


## Harmonic analysis on subset spaces

- A group action of $\Gamma$ on $V$ extends to an action on $I_{t}$ by $\gamma\left\{x_{1}, \ldots, x_{t}\right\}=\left\{\gamma x_{1}, \ldots, \gamma x_{t}\right\}$
- Let $\Gamma$ be a group such that $h$ is $\Gamma$-invariant
- We may assume $K$ to be $\Gamma$-invariant


## Harmonic analysis on subset spaces

- A group action of $\Gamma$ on $V$ extends to an action on $I_{t}$ by $\gamma\left\{x_{1}, \ldots, x_{t}\right\}=\left\{\gamma x_{1}, \ldots, \gamma x_{t}\right\}$
- Let $\Gamma$ be a group such that $h$ is $\Gamma$-invariant
- We may assume $K$ to be $\Gamma$-invariant
- We have $K(x, y)=\sum_{\pi \in \Gamma}\left\langle\hat{K}(\pi), Z_{\pi}(x, y)\right\rangle$


## Harmonic analysis on subset spaces

- A group action of $\Gamma$ on $V$ extends to an action on $I_{t}$ by $\gamma\left\{x_{1}, \ldots, x_{t}\right\}=\left\{\gamma x_{1}, \ldots, \gamma x_{t}\right\}$
- Let $\Gamma$ be a group such that $h$ is $\Gamma$-invariant
- We may assume $K$ to be $\Gamma$-invariant
- We have $K(x, y)=\sum_{\pi \in \hat{\Gamma}}\left\langle\hat{K}(\pi), Z_{\pi}(x, y)\right\rangle$
- To construct $Z_{\pi}$ we need a symmetry adapted basis of $\mathcal{C}\left(I_{t}\right)$


## Harmonic analysis on subset spaces

- A group action of $\Gamma$ on $V$ extends to an action on $I_{t}$ by $\gamma\left\{x_{1}, \ldots, x_{t}\right\}=\left\{\gamma x_{1}, \ldots, \gamma x_{t}\right\}$
- Let $\Gamma$ be a group such that $h$ is $\Gamma$-invariant
- We may assume $K$ to be $\Gamma$-invariant
- We have $K(x, y)=\sum_{\pi \in \hat{\Gamma}}\left\langle\hat{K}(\pi), Z_{\pi}(x, y)\right\rangle$
- To construct $Z_{\pi}$ we need a symmetry adapted basis of $\mathcal{C}\left(I_{t}\right)$
- We can construct such a basis if we know how to


## Harmonic analysis on subset spaces

- A group action of $\Gamma$ on $V$ extends to an action on $I_{t}$ by $\gamma\left\{x_{1}, \ldots, x_{t}\right\}=\left\{\gamma x_{1}, \ldots, \gamma x_{t}\right\}$
- Let $\Gamma$ be a group such that $h$ is $\Gamma$-invariant
- We may assume $K$ to be $\Gamma$-invariant
- We have $K(x, y)=\sum_{\pi \in \hat{\Gamma}}\left\langle\hat{K}(\pi), Z_{\pi}(x, y)\right\rangle$
- To construct $Z_{\pi}$ we need a symmetry adapted basis of $\mathcal{C}\left(I_{t}\right)$
- We can construct such a basis if we know how to

1. explicitly decompose $\mathcal{C}(V)$ into irreducibles

## Harmonic analysis on subset spaces

- A group action of $\Gamma$ on $V$ extends to an action on $I_{t}$ by $\gamma\left\{x_{1}, \ldots, x_{t}\right\}=\left\{\gamma x_{1}, \ldots, \gamma x_{t}\right\}$
- Let $\Gamma$ be a group such that $h$ is $\Gamma$-invariant
- We may assume $K$ to be $\Gamma$-invariant
- We have $K(x, y)=\sum_{\pi \in \hat{\Gamma}}\left\langle\hat{K}(\pi), Z_{\pi}(x, y)\right\rangle$
- To construct $Z_{\pi}$ we need a symmetry adapted basis of $\mathcal{C}\left(I_{t}\right)$
- We can construct such a basis if we know how to

1. explicitly decompose $\mathcal{C}(V)$ into irreducibles
2. explicitly decompose tensor products of these into irreducibles

## Harmonic analysis on subset spaces

- A group action of $\Gamma$ on $V$ extends to an action on $I_{t}$ by $\gamma\left\{x_{1}, \ldots, x_{t}\right\}=\left\{\gamma x_{1}, \ldots, \gamma x_{t}\right\}$
- Let $\Gamma$ be a group such that $h$ is $\Gamma$-invariant
- We may assume $K$ to be $\Gamma$-invariant
- We have $K(x, y)=\sum_{\pi \in \hat{\Gamma}}\left\langle\hat{K}(\pi), Z_{\pi}(x, y)\right\rangle$
- To construct $Z_{\pi}$ we need a symmetry adapted basis of $\mathcal{C}\left(I_{t}\right)$
- We can construct such a basis if we know how to

1. explicitly decompose $\mathcal{C}(V)$ into irreducibles
2. explicitly decompose tensor products of these into irreducibles

- Let $V=S^{2}, \Gamma=O(3)$, and $t=2$


## Harmonic analysis on subset spaces

- A group action of $\Gamma$ on $V$ extends to an action on $I_{t}$ by $\gamma\left\{x_{1}, \ldots, x_{t}\right\}=\left\{\gamma x_{1}, \ldots, \gamma x_{t}\right\}$
- Let $\Gamma$ be a group such that $h$ is $\Gamma$-invariant
- We may assume $K$ to be $\Gamma$-invariant
- We have $K(x, y)=\sum_{\pi \in \hat{\Gamma}}\left\langle\hat{K}(\pi), Z_{\pi}(x, y)\right\rangle$
- To construct $Z_{\pi}$ we need a symmetry adapted basis of $\mathcal{C}\left(I_{t}\right)$
- We can construct such a basis if we know how to

1. explicitly decompose $\mathcal{C}(V)$ into irreducibles
2. explicitly decompose tensor products of these into irreducibles

- Let $V=S^{2}, \Gamma=O(3)$, and $t=2$
- Decompose $\mathcal{C}\left(S^{2}\right)$ into irreducibles: Spherical harmonics


## Harmonic analysis on subset spaces

- A group action of $\Gamma$ on $V$ extends to an action on $I_{t}$ by $\gamma\left\{x_{1}, \ldots, x_{t}\right\}=\left\{\gamma x_{1}, \ldots, \gamma x_{t}\right\}$
- Let $\Gamma$ be a group such that $h$ is $\Gamma$-invariant
- We may assume $K$ to be $\Gamma$-invariant
- We have $K(x, y)=\sum_{\pi \in \hat{\Gamma}}\left\langle\hat{K}(\pi), Z_{\pi}(x, y)\right\rangle$
- To construct $Z_{\pi}$ we need a symmetry adapted basis of $\mathcal{C}\left(I_{t}\right)$
- We can construct such a basis if we know how to

1. explicitly decompose $\mathcal{C}(V)$ into irreducibles
2. explicitly decompose tensor products of these into irreducibles

- Let $V=S^{2}, \Gamma=O(3)$, and $t=2$
- Decompose $\mathcal{C}\left(S^{2}\right)$ into irreducibles: Spherical harmonics
- Decompose the tensor products: Clebsch-Gordan coefficients


## Invariant theory and real algebraic geometry

- $\ln E_{2}^{*}$ we have the constraints

$$
A_{t} K(S) \geq \ldots \text { for } S \in I_{4}
$$

## Invariant theory and real algebraic geometry

- $\ln E_{2}^{*}$ we have the constraints

$$
A_{t} K(S) \geq \ldots \text { for } S \in I_{4}
$$

- We can view $A_{t} K(S)$ as a polynomial $p: \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ with $p\left(\gamma x_{1}, \ldots, \gamma x_{4}\right)=p\left(x_{1}, \ldots, x_{4}\right)$ for all $\gamma \in O(3)$


## Invariant theory and real algebraic geometry

- $\ln E_{2}^{*}$ we have the constraints

$$
A_{t} K(S) \geq \ldots \text { for } S \in I_{4}
$$

- We can view $A_{t} K(S)$ as a polynomial $p: \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ with $p\left(\gamma x_{1}, \ldots, \gamma x_{4}\right)=p\left(x_{1}, \ldots, x_{4}\right)$ for all $\gamma \in O(3)$
- Invariant theory: we can write $A_{t} K(S)$ as a polynomial in 6 inner products


## Invariant theory and real algebraic geometry

- $\operatorname{In} E_{2}^{*}$ we have the constraints

$$
A_{t} K(S) \geq \ldots \text { for } S \in I_{4}
$$

- We can view $A_{t} K(S)$ as a polynomial $p: \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ with $p\left(\gamma x_{1}, \ldots, \gamma x_{4}\right)=p\left(x_{1}, \ldots, x_{4}\right)$ for all $\gamma \in O(3)$
- Invariant theory: we can write $A_{t} K(S)$ as a polynomial in 6 inner products
- To compute these polynomials we need to solve large sparse linear systems


## Invariant theory and real algebraic geometry

- $\operatorname{In} E_{2}^{*}$ we have the constraints

$$
A_{t} K(S) \geq \ldots \text { for } S \in I_{4}
$$

- We can view $A_{t} K(S)$ as a polynomial
$p: \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ with $p\left(\gamma x_{1}, \ldots, \gamma x_{4}\right)=p\left(x_{1}, \ldots, x_{4}\right)$ for all $\gamma \in O(3)$
- Invariant theory: we can write $A_{t} K(S)$ as a polynomial in 6 inner products
- To compute these polynomials we need to solve large sparse linear systems
- Use sum of squares techniques from real algebraic geometry to model the inequality constraints using semidefinite constraints


## Invariant theory and real algebraic geometry

- $\operatorname{In} E_{2}^{*}$ we have the constraints

$$
A_{t} K(S) \geq \ldots \text { for } S \in I_{4}
$$

- We can view $A_{t} K(S)$ as a polynomial
$p: \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ with $p\left(\gamma x_{1}, \ldots, \gamma x_{4}\right)=p\left(x_{1}, \ldots, x_{4}\right)$ for all $\gamma \in O(3)$
- Invariant theory: we can write $A_{t} K(S)$ as a polynomial in 6 inner products
- To compute these polynomials we need to solve large sparse linear systems
- Use sum of squares techniques from real algebraic geometry to model the inequality constraints using semidefinite constraints
- We give a symmetrized version of Putinar's theorem to exploit the $S_{N}$ symmetry in the particles


## Computational results for the Thomson problem

- In the Thomson problem we take

$$
V=S^{2} \quad \text { and } \quad h(\{x, y\})=\frac{1}{\|x-y\|}
$$

## Computational results for the Thomson problem

- In the Thomson problem we take

$$
V=S^{2} \quad \text { and } \quad h(\{x, y\})=\frac{1}{\|x-y\|}
$$

- The Thomson problem has been solved for: 3 (1912), 4, 6 (1992), 12 (1996), and 5 (2010) particles


## Computational results for the Thomson problem

- In the Thomson problem we take

$$
V=S^{2} \quad \text { and } \quad h(\{x, y\})=\frac{1}{\|x-y\|}
$$

- The Thomson problem has been solved for: 3 (1912), 4, 6 (1992), 12 (1996), and 5 (2010) particles
- $E_{1}^{*}$ is sharp for $3,4,6$, and 12 particles (Yudin's LP bound)


## Computational results for the Thomson problem

- In the Thomson problem we take

$$
V=S^{2} \quad \text { and } \quad h(\{x, y\})=\frac{1}{\|x-y\|}
$$

- The Thomson problem has been solved for: 3 (1912), 4, 6 (1992), 12 (1996), and 5 (2010) particles
- $E_{1}^{*}$ is sharp for $3,4,6$, and 12 particles (Yudin's LP bound)
- Compute $E_{2}^{*}$ numerically using semidefinite programming


## Computational results for the Thomson problem

- In the Thomson problem we take

$$
V=S^{2} \quad \text { and } \quad h(\{x, y\})=\frac{1}{\|x-y\|}
$$

- The Thomson problem has been solved for: 3 (1912), 4, 6 (1992), 12 (1996), and 5 (2010) particles
- $E_{1}^{*}$ is sharp for $3,4,6$, and 12 particles (Yudin's LP bound)
- Compute $E_{2}^{*}$ numerically using semidefinite programming
- $E_{2}^{*}$ appears to be sharp for 5 particles ( 6 digits of precision)



## Thank you!

- D. de Laat, Moment methods in energy minimization, In preparation.
- D. de Laat, F. Vallentin, A semidefinite programming hierarchy for packing problems in discrete geometry, Math. Program., Ser. B 151 (2015), 529-553.
- D. de Laat, F.M. Oliveira, F. Vallentin, Upper bounds for packings of spheres of several radii, Forum Math. Sigma 2 (2014), e23 (42 pages).

Image credits:
Sphere packing: Grek L
Elliptope: Philipp Rostalski
Sodium Chloride: Ben Mills

