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Bipartite correlations

- Two parties: Alice and Bob

- Questions: S × T
- Answers: A×B
- Let Γ = A×B × S × T

Deterministic correlations:

- P ∈ [0, 1]Γ of the form P (a, b|s, t) = PA(a|s)PB(b|t) with

PA ∈ {0, 1}A×S , PB ∈ {0, 1}B×T ,
∑
a

PA(a|s) =
∑
b

PB(b|t) = 1

Set of classical correlations:

- Cc(Γ) = convex hull of deterministic correlations

- Here we assume access to shared randomness
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Bipartite quantum correlations

Quantum correlation:

P (a, b|s, t) = ψ∗(Ea
s ⊗ F b

t )ψ

- Unit vector ψ ∈ Cd ⊗ Cd

- POVMs: {Ea
s }a∈A, {F b

t }b∈B ⊆ Cd×d

- Ea
s and F b

t are Hermitian positive semidefinite d× d matrices

-
∑

aE
a
s =

∑
b F

b
t = I for all s, t

- The quantum correlations form a convex set

Cq(Γ) =
⋃
d

Cd
q (Γ)

- Dq(P ) = min
{
d2 : d ∈ N, P ∈ Cd

q (Γ)
}
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More on entanglement dimension

- Cc(Γ) is contained in Cq(Γ)

- Containment is strict for |A|, |B|, |S|, |T | ≥ 2

- If P is deterministic or only uses local randomness, then
Dq(P ) = 1. But other classical correlations (which use shared
randomness) have Dq(P ) > 1

- (But if Dq(P ) > |Γ|+ 1− |S||T |, then P is not classical)

- Computing Dq(P ) is NP-hard (Stark 2015)
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Dimension witnesses

- A d-dimensional dimension witness is a halfspace containing
Cd
q (Γ), but not the full set Cq(Γ) (Brunner, Pironio, Acin,

Gisin, Méthot, Scarani 2008)

- This suggests the parameter min{d : P ∈ conv(Cd
q (Γ))},

which can also be written as

min
{

max
i=1,...,I

Dq(Pi) : I ∈ N, λ ∈ RI
+,

I∑
i=1

λi = 1, P =
I∑

i=1

λiPi, Pi ∈ Cq(Γ)
}

- This parameter is equal to 1 if and only if P is classical
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Average entanglement dimension

Aq(P ) = inf
{ I∑

i=1

λiDq(Pi) : I ∈ N, λ ∈ RI
+,

I∑
i=1

λi = 1, P =

I∑
i=1

λiPi, Pi ∈ Cq(Γ)
}

- We have Aq(P ) ≤ Dq(P )

For P ∈ Cq(Γ) we have Aq(P ) = 1 if and only if P ∈ Cc(Γ)

- Cq(Γ) is not always closed (Slofstra 2016, . . . )

- There are Γ and {Pi} ⊆ Cq(Γ) such that Dq(Pi)→∞

If Cq(Γ) is not closed, such a sequence also exists for Aq(·)
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Commuting model

P (a, b|s, t) = Tr(Xa
s Y

b
t ψψ

∗) = ψ∗(Xa
s Y

b
t )ψ,

- {Xa
s } and {Y b

t } POVMs consisting of bounded operators on a
separable Hilbert space

- [Xa
s , Y

b
t ] = Xa

s Y
b
t − Y b

t X
a
s = 0 for all a, b, s, t

- Sets of commuting correlations Cd
qc(Γ) and Cqc(Γ)

- Dqc(P ) = min
{
d ∈ N ∪ {∞} : P ∈ Cd

qc(Γ)
}
≤ Dq(P )

Aqc(P ) = inf
{ I∑

i=1

λiDqc(Pi) : I ∈ N, λ ∈ RI
+,

I∑
i=1

λi = 1, P =
I∑

i=1
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(Noncommutative) polynomial optimization

- Moment/sum-of-squares hiearchy for lower bounding the
global minimum of a polynomial (Lasserre, Parrilo, ...)

- Noncommutative adaptation with applications in quantum
information (Navascues, Pironio, Aćın, ...)

- Allows for optimizing a linear functional over Cqc(Γ)

- Extended to optimizing over Cd
q (Γ) (Navascués, Feix, Araujo,

Vértesi 2015)
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SDP hierarchy for lower bounding Aqc(P )

Aqc(P ) = inf
{ I∑

i=1

λiDqc(Pi) : I ∈ N, λ ∈ RI
+,

I∑
i=1

λi = 1, P =

I∑
i=1

λiPi, Pi ∈ Cq(Γ)
}

- Suppose (Pi, λi)i is feasible for the above problem

- Assume Pi(a, b|s, t) = Tr
(
Xa

s (i)Y b
t (i)ψiψ

∗
i

)
- R〈xas , ybt , z〉 the noncommutative polynomials in xas , ybt , z

- Define a linear form L on R〈xas , ybt , z〉 by

L(p) =
∑
i

λi Re(Tr(p(X(i), Y (i), ψiψ
∗
i )))

- We have L(1) =
∑

i λiDqc(Pi)

- Idea: minimize L(1) over linear forms L on R〈xas , ybt , z〉 that
satisfy certain computationaly tractable properties of L

- Minimization of L(1) used by [Nie 2017] in the commutative
setting for the nuclear tensor norm
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SDP hierarchy for lower bounding Aqc(P )

- R〈xas , ybt , z〉2r noncommutative polynomials of degree ≤ 2r

- Space of linear functionals: R〈xas , ybt , z〉∗2r
- A functional is tracial if L(pq) = L(qp) for all p, q

ξqr(P ) = min
{
L(1) : L ∈ R〈xas , ybt , z〉∗2r tracial and symmetric,

L(z) = 1, L(xasy
b
tz) = P (a, b|s, t),

L(p∗p) ≥ 0 for all p ∈ R〈xas , ybt , z〉r,

. . .
}

- For each r this is a semidefinite program whose optimal value
lower bounds Aqc(P )

- Why SDP? Because L(p∗p) ≥ 0 is equivalent to M(L) � 0,
where M(L)u,v = L(u∗v) for all monomials u, v
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Convergence of the hierarchy

- For r =∞ we have an infinite dimensional SDP where we use
the full algebra R〈xas , ybt , z〉

- We have ξqr(P )→ ξq∞(P )

- Let ξq∗(P ) be the same as ξq∞(P ) with the additional
constraint rank(M(L)) <∞

We have ξq∗(P ) = Aqc(P )

- Proof uses GNS construction and Artin-Wedderburn theory,
and the linear constraints not shown in the program

- Perhaps counterintuitively, the constraint
L(wzuzvz) = L(wzvzuz) (we get this trick from [Navascués
2012]) to force “z” to be rank-1 is crucial (see proof)

- Under a certain flatness condition we have ξqr(P ) = ξq∗(P )
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Matrix factorization ranks

- cpsd-rank(M) is the smallest d for which there are Hermitian
psd matrices X1, . . . , Xn ∈ Cd×d with Mij = Tr(XiXj)

- Let P be a synchronous correlation

- Combining proofs from [Sikora-Varvitsiotis 2017] and
[Paulsen-Severini-Stahlke-Todorov-Winter 2016] gives

Dq(P ) = cpsd-rank(MP ),

where (MP )(s,a),(t,b) = P (a, b|s, t)
- In an earlier paper we have hierarchies for lower bounding

matrix factorization ranks, and the hierarchy for Aq(P ) is an
adaptation of this for (nonsynchronous) quantum correlations
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Quantum graph parameters

- Using similar techniques we introduce semidefinite
programming hierarchies for the quantum chromatic and
quantum stability numbers

- This unifies some of the existing literature; for example, the
projective packing number, projective rank, and the tracial
rank can be seen as certain steps in the hierarchies
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Thank you!

S. Gribling, D. de Laat, M. Laurent, Bounds on entanglement
dimensions and quantum graph parameters via noncommutative

polynomial optimization, Math. Program., Ser. B (2018), 38 pages


