Entanglement dimension and noncommutative polynomial optimization

Sander Gribling (CWI/QuSoft)
David de Laat (MIT)
Monique Laurent (CWI/QuSoft/Tilburg University)

AMS Sectional Meeting, 29 September 2018
University of Delaware

Bipartite correlations

Bipartite correlations

- Two parties: Alice and Bob

Bipartite correlations

- Two parties: Alice and Bob
- Questions: $S \times T$

Bipartite correlations

- Two parties: Alice and Bob
- Questions: $S \times T$
- Answers: $A \times B$

Bipartite correlations

- Two parties: Alice and Bob
- Questions: $S \times T$
- Answers: $A \times B$
- Let $\Gamma=A \times B \times S \times T$

Bipartite correlations

- Two parties: Alice and Bob
- Questions: $S \times T$
- Answers: $A \times B$
- Let $\Gamma=A \times B \times S \times T$

Deterministic correlations:

- $P \in[0,1]^{\Gamma}$ of the form $P(a, b \mid s, t)=P_{\mathcal{A}}(a \mid s) P_{\mathcal{B}}(b \mid t)$ with

$$
P_{\mathcal{A}} \in\{0,1\}^{A \times S}, P_{\mathcal{B}} \in\{0,1\}^{B \times T}, \sum_{a} P_{\mathcal{A}}(a \mid s)=\sum_{b} P_{\mathcal{B}}(b \mid t)=1
$$

Bipartite correlations

- Two parties: Alice and Bob
- Questions: $S \times T$
- Answers: $A \times B$
- Let $\Gamma=A \times B \times S \times T$

Deterministic correlations:

- $P \in[0,1]^{\Gamma}$ of the form $P(a, b \mid s, t)=P_{\mathcal{A}}(a \mid s) P_{\mathcal{B}}(b \mid t)$ with

$$
P_{\mathcal{A}} \in\{0,1\}^{A \times S}, P_{\mathcal{B}} \in\{0,1\}^{B \times T}, \sum_{a} P_{\mathcal{A}}(a \mid s)=\sum_{b} P_{\mathcal{B}}(b \mid t)=1
$$

Set of classical correlations:

- $C_{c}(\Gamma)=$ convex hull of deterministic correlations
- Here we assume access to shared randomness

Bipartite quantum correlations

Quantum correlation:

$$
P(a, b \mid s, t)=\psi^{*}\left(E_{s}^{a} \otimes F_{t}^{b}\right) \psi
$$

Bipartite quantum correlations

Quantum correlation:

$$
P(a, b \mid s, t)=\psi^{*}\left(E_{s}^{a} \otimes F_{t}^{b}\right) \psi
$$

- Unit vector $\psi \in \mathbb{C}^{d} \otimes \mathbb{C}^{d}$

Bipartite quantum correlations

Quantum correlation:

$$
P(a, b \mid s, t)=\psi^{*}\left(E_{s}^{a} \otimes F_{t}^{b}\right) \psi
$$

- Unit vector $\psi \in \mathbb{C}^{d} \otimes \mathbb{C}^{d}$
- POVMs: $\left\{E_{s}^{a}\right\}_{a \in A},\left\{F_{t}^{b}\right\}_{b \in B} \subseteq \mathbb{C}^{d \times d}$

Bipartite quantum correlations

Quantum correlation:

$$
P(a, b \mid s, t)=\psi^{*}\left(E_{s}^{a} \otimes F_{t}^{b}\right) \psi
$$

- Unit vector $\psi \in \mathbb{C}^{d} \otimes \mathbb{C}^{d}$
- POVMs: $\left\{E_{s}^{a}\right\}_{a \in A},\left\{F_{t}^{b}\right\}_{b \in B} \subseteq \mathbb{C}^{d \times d}$
- E_{s}^{a} and F_{t}^{b} are Hermitian positive semidefinite $d \times d$ matrices

Bipartite quantum correlations

Quantum correlation:

$$
P(a, b \mid s, t)=\psi^{*}\left(E_{s}^{a} \otimes F_{t}^{b}\right) \psi
$$

- Unit vector $\psi \in \mathbb{C}^{d} \otimes \mathbb{C}^{d}$
- POVMs: $\left\{E_{s}^{a}\right\}_{a \in A},\left\{F_{t}^{b}\right\}_{b \in B} \subseteq \mathbb{C}^{d \times d}$
- E_{s}^{a} and F_{t}^{b} are Hermitian positive semidefinite $d \times d$ matrices
- $\sum_{a} E_{s}^{a}=\sum_{b} F_{t}^{b}=I$ for all s, t

Bipartite quantum correlations

Quantum correlation:

$$
P(a, b \mid s, t)=\psi^{*}\left(E_{s}^{a} \otimes F_{t}^{b}\right) \psi
$$

- Unit vector $\psi \in \mathbb{C}^{d} \otimes \mathbb{C}^{d}$
- POVMs: $\left\{E_{s}^{a}\right\}_{a \in A},\left\{F_{t}^{b}\right\}_{b \in B} \subseteq \mathbb{C}^{d \times d}$
- E_{s}^{a} and F_{t}^{b} are Hermitian positive semidefinite $d \times d$ matrices
- $\sum_{a} E_{s}^{a}=\sum_{b} F_{t}^{b}=I$ for all s, t
- The quantum correlations form a convex set

$$
C_{q}(\Gamma)=\bigcup_{d} C_{q}^{d}(\Gamma)
$$

Bipartite quantum correlations

Quantum correlation:

$$
P(a, b \mid s, t)=\psi^{*}\left(E_{s}^{a} \otimes F_{t}^{b}\right) \psi
$$

- Unit vector $\psi \in \mathbb{C}^{d} \otimes \mathbb{C}^{d}$
- POVMs: $\left\{E_{s}^{a}\right\}_{a \in A},\left\{F_{t}^{b}\right\}_{b \in B} \subseteq \mathbb{C}^{d \times d}$
- E_{s}^{a} and F_{t}^{b} are Hermitian positive semidefinite $d \times d$ matrices
- $\sum_{a} E_{s}^{a}=\sum_{b} F_{t}^{b}=I$ for all s, t
- The quantum correlations form a convex set

$$
C_{q}(\Gamma)=\bigcup_{d} C_{q}^{d}(\Gamma)
$$

- $D_{q}(P)=\min \left\{d^{2}: d \in \mathbb{N}, P \in C_{q}^{d}(\Gamma)\right\}$

More on entanglement dimension

- $C_{c}(\Gamma)$ is contained in $C_{q}(\Gamma)$

More on entanglement dimension

- $C_{c}(\Gamma)$ is contained in $C_{q}(\Gamma)$
- Containment is strict for $|A|,|B|,|S|,|T| \geq 2$

More on entanglement dimension

- $C_{c}(\Gamma)$ is contained in $C_{q}(\Gamma)$
- Containment is strict for $|A|,|B|,|S|,|T| \geq 2$
- If P is deterministic or only uses local randomness, then $D_{q}(P)=1$. But other classical correlations (which use shared randomness) have $D_{q}(P)>1$

More on entanglement dimension

- $C_{c}(\Gamma)$ is contained in $C_{q}(\Gamma)$
- Containment is strict for $|A|,|B|,|S|,|T| \geq 2$
- If P is deterministic or only uses local randomness, then $D_{q}(P)=1$. But other classical correlations (which use shared randomness) have $D_{q}(P)>1$
- (But if $D_{q}(P)>|\Gamma|+1-|S||T|$, then P is not classical)

More on entanglement dimension

- $C_{c}(\Gamma)$ is contained in $C_{q}(\Gamma)$
- Containment is strict for $|A|,|B|,|S|,|T| \geq 2$
- If P is deterministic or only uses local randomness, then $D_{q}(P)=1$. But other classical correlations (which use shared randomness) have $D_{q}(P)>1$
- (But if $D_{q}(P)>|\Gamma|+1-|S||T|$, then P is not classical)
- Computing $D_{q}(P)$ is NP-hard (Stark 2015)

Dimension witnesses

- A d-dimensional dimension witness is a halfspace containing $C_{q}^{d}(\Gamma)$, but not the full set $C_{q}(\Gamma)$ (Brunner, Pironio, Acin, Gisin, Méthot, Scarani 2008)

Dimension witnesses

- A d-dimensional dimension witness is a halfspace containing $C_{q}^{d}(\Gamma)$, but not the full set $C_{q}(\Gamma)$ (Brunner, Pironio, Acin, Gisin, Méthot, Scarani 2008)
- This suggests the parameter $\min \left\{d: P \in \operatorname{conv}\left(C_{q}^{d}(\Gamma)\right)\right\}$, which can also be written as

$$
\begin{aligned}
& \min \left\{\max _{i=1, \ldots, I} D_{q}\left(P_{i}\right): I \in \mathbb{N}, \lambda \in \mathbb{R}_{+}^{I},\right. \\
& \left.\qquad \sum_{i=1}^{I} \lambda_{i}=1, P=\sum_{i=1}^{I} \lambda_{i} P_{i}, P_{i} \in C_{q}(\Gamma)\right\}
\end{aligned}
$$

Dimension witnesses

- A d-dimensional dimension witness is a halfspace containing $C_{q}^{d}(\Gamma)$, but not the full set $C_{q}(\Gamma)$ (Brunner, Pironio, Acin, Gisin, Méthot, Scarani 2008)
- This suggests the parameter $\min \left\{d: P \in \operatorname{conv}\left(C_{q}^{d}(\Gamma)\right)\right\}$, which can also be written as

$$
\begin{aligned}
& \min \left\{\max _{i=1, \ldots, I} D_{q}\left(P_{i}\right): I \in \mathbb{N}, \lambda \in \mathbb{R}_{+}^{I},\right. \\
& \left.\qquad \sum_{i=1}^{I} \lambda_{i}=1, P=\sum_{i=1}^{I} \lambda_{i} P_{i}, P_{i} \in C_{q}(\Gamma)\right\}
\end{aligned}
$$

- This parameter is equal to 1 if and only if P is classical

Average entanglement dimension

$$
\begin{aligned}
& A_{q}(P)=\inf \left\{\sum_{i=1}^{I} \lambda_{i} D_{q}\left(P_{i}\right): I \in \mathbb{N}, \lambda \in \mathbb{R}_{+}^{I}\right. \\
&\left.\sum_{i=1}^{I} \lambda_{i}=1, P=\sum_{i=1}^{I} \lambda_{i} P_{i}, P_{i} \in C_{q}(\Gamma)\right\}
\end{aligned}
$$

Average entanglement dimension

$$
\begin{aligned}
& A_{q}(P)=\inf \left\{\sum_{i=1}^{I} \lambda_{i} D_{q}\left(P_{i}\right): I \in \mathbb{N}, \lambda \in \mathbb{R}_{+}^{I}\right. \\
&\left.\sum_{i=1}^{I} \lambda_{i}=1, P=\sum_{i=1}^{I} \lambda_{i} P_{i}, P_{i} \in C_{q}(\Gamma)\right\}
\end{aligned}
$$

- We have $A_{q}(P) \leq D_{q}(P)$

Average entanglement dimension

$$
\begin{aligned}
& A_{q}(P)=\inf \left\{\sum_{i=1}^{I} \lambda_{i} D_{q}\left(P_{i}\right): I \in \mathbb{N}, \lambda \in \mathbb{R}_{+}^{I}\right. \\
&\left.\sum_{i=1}^{I} \lambda_{i}=1, P=\sum_{i=1}^{I} \lambda_{i} P_{i}, P_{i} \in C_{q}(\Gamma)\right\}
\end{aligned}
$$

- We have $A_{q}(P) \leq D_{q}(P)$

For $P \in C_{q}(\Gamma)$ we have $A_{q}(P)=1$ if and only if $P \in C_{c}(\Gamma)$

Average entanglement dimension

$$
\begin{aligned}
& A_{q}(P)=\inf \left\{\sum_{i=1}^{I} \lambda_{i} D_{q}\left(P_{i}\right): I \in \mathbb{N}, \lambda \in \mathbb{R}_{+}^{I},\right. \\
&\left.\sum_{i=1}^{I} \lambda_{i}=1, P=\sum_{i=1}^{I} \lambda_{i} P_{i}, P_{i} \in C_{q}(\Gamma)\right\}
\end{aligned}
$$

- We have $A_{q}(P) \leq D_{q}(P)$

For $P \in C_{q}(\Gamma)$ we have $A_{q}(P)=1$ if and only if $P \in C_{c}(\Gamma)$

- $C_{q}(\Gamma)$ is not always closed (Slofstra 2016, ...)

Average entanglement dimension

$$
\begin{aligned}
& A_{q}(P)=\inf \left\{\sum_{i=1}^{I} \lambda_{i} D_{q}\left(P_{i}\right): I \in \mathbb{N}, \lambda \in \mathbb{R}_{+}^{I},\right. \\
&\left.\sum_{i=1}^{I} \lambda_{i}=1, P=\sum_{i=1}^{I} \lambda_{i} P_{i}, P_{i} \in C_{q}(\Gamma)\right\}
\end{aligned}
$$

- We have $A_{q}(P) \leq D_{q}(P)$

For $P \in C_{q}(\Gamma)$ we have $A_{q}(P)=1$ if and only if $P \in C_{c}(\Gamma)$

- $C_{q}(\Gamma)$ is not always closed (Slofstra 2016, ...)
- There are Γ and $\left\{P_{i}\right\} \subseteq C_{q}(\Gamma)$ such that $D_{q}\left(P_{i}\right) \rightarrow \infty$

Average entanglement dimension

$$
\begin{aligned}
A_{q}(P) & =\inf \left\{\sum_{i=1}^{I} \lambda_{i} D_{q}\left(P_{i}\right): I \in \mathbb{N}, \lambda \in \mathbb{R}_{+}^{I},\right. \\
& \left.\sum_{i=1}^{I} \lambda_{i}=1, P=\sum_{i=1}^{I} \lambda_{i} P_{i}, P_{i} \in C_{q}(\Gamma)\right\}
\end{aligned}
$$

- We have $A_{q}(P) \leq D_{q}(P)$

For $P \in C_{q}(\Gamma)$ we have $A_{q}(P)=1$ if and only if $P \in C_{c}(\Gamma)$

- $C_{q}(\Gamma)$ is not always closed (Slofstra 2016, ...)
- There are Γ and $\left\{P_{i}\right\} \subseteq C_{q}(\Gamma)$ such that $D_{q}\left(P_{i}\right) \rightarrow \infty$

If $C_{q}(\Gamma)$ is not closed, such a sequence also exists for $A_{q}(\cdot)$

Commuting model

$$
P(a, b \mid s, t)=\operatorname{Tr}\left(X_{s}^{a} Y_{t}^{b} \psi \psi^{*}\right)=\psi^{*}\left(X_{s}^{a} Y_{t}^{b}\right) \psi
$$

Commuting model

$$
P(a, b \mid s, t)=\operatorname{Tr}\left(X_{s}^{a} Y_{t}^{b} \psi \psi^{*}\right)=\psi^{*}\left(X_{s}^{a} Y_{t}^{b}\right) \psi
$$

- $\left\{X_{s}^{a}\right\}$ and $\left\{Y_{t}^{b}\right\}$ POVMs consisting of bounded operators on a separable Hilbert space

Commuting model

$$
P(a, b \mid s, t)=\operatorname{Tr}\left(X_{s}^{a} Y_{t}^{b} \psi \psi^{*}\right)=\psi^{*}\left(X_{s}^{a} Y_{t}^{b}\right) \psi
$$

- $\left\{X_{s}^{a}\right\}$ and $\left\{Y_{t}^{b}\right\}$ POVMs consisting of bounded operators on a separable Hilbert space
- $\left[X_{s}^{a}, Y_{t}^{b}\right]=X_{s}^{a} Y_{t}^{b}-Y_{t}^{b} X_{s}^{a}=0$ for all a, b, s, t

Commuting model

$$
P(a, b \mid s, t)=\operatorname{Tr}\left(X_{s}^{a} Y_{t}^{b} \psi \psi^{*}\right)=\psi^{*}\left(X_{s}^{a} Y_{t}^{b}\right) \psi
$$

- $\left\{X_{s}^{a}\right\}$ and $\left\{Y_{t}^{b}\right\}$ POVMs consisting of bounded operators on a separable Hilbert space
- $\left[X_{s}^{a}, Y_{t}^{b}\right]=X_{s}^{a} Y_{t}^{b}-Y_{t}^{b} X_{s}^{a}=0$ for all a, b, s, t
- Sets of commuting correlations $C_{q c}^{d}(\Gamma)$ and $C_{q c}(\Gamma)$

Commuting model

$$
P(a, b \mid s, t)=\operatorname{Tr}\left(X_{s}^{a} Y_{t}^{b} \psi \psi^{*}\right)=\psi^{*}\left(X_{s}^{a} Y_{t}^{b}\right) \psi
$$

- $\left\{X_{s}^{a}\right\}$ and $\left\{Y_{t}^{b}\right\}$ POVMs consisting of bounded operators on a separable Hilbert space
- $\left[X_{s}^{a}, Y_{t}^{b}\right]=X_{s}^{a} Y_{t}^{b}-Y_{t}^{b} X_{s}^{a}=0$ for all a, b, s, t
- Sets of commuting correlations $C_{q c}^{d}(\Gamma)$ and $C_{q c}(\Gamma)$
- $D_{q c}(P)=\min \left\{d \in \mathbb{N} \cup\{\infty\}: P \in C_{\mathrm{qc}}^{d}(\Gamma)\right\}$

Commuting model

$$
P(a, b \mid s, t)=\operatorname{Tr}\left(X_{s}^{a} Y_{t}^{b} \psi \psi^{*}\right)=\psi^{*}\left(X_{s}^{a} Y_{t}^{b}\right) \psi
$$

- $\left\{X_{s}^{a}\right\}$ and $\left\{Y_{t}^{b}\right\}$ POVMs consisting of bounded operators on a separable Hilbert space
- $\left[X_{s}^{a}, Y_{t}^{b}\right]=X_{s}^{a} Y_{t}^{b}-Y_{t}^{b} X_{s}^{a}=0$ for all a, b, s, t
- Sets of commuting correlations $C_{q c}^{d}(\Gamma)$ and $C_{q c}(\Gamma)$
- $D_{q c}(P)=\min \left\{d \in \mathbb{N} \cup\{\infty\}: P \in C_{\mathrm{qc}}^{d}(\Gamma)\right\} \leq D_{q}(P)$

Commuting model

$$
P(a, b \mid s, t)=\operatorname{Tr}\left(X_{s}^{a} Y_{t}^{b} \psi \psi^{*}\right)=\psi^{*}\left(X_{s}^{a} Y_{t}^{b}\right) \psi
$$

- $\left\{X_{s}^{a}\right\}$ and $\left\{Y_{t}^{b}\right\}$ POVMs consisting of bounded operators on a separable Hilbert space
- $\left[X_{s}^{a}, Y_{t}^{b}\right]=X_{s}^{a} Y_{t}^{b}-Y_{t}^{b} X_{s}^{a}=0$ for all a, b, s, t
- Sets of commuting correlations $C_{q c}^{d}(\Gamma)$ and $C_{q c}(\Gamma)$
- $D_{q c}(P)=\min \left\{d \in \mathbb{N} \cup\{\infty\}: P \in C_{\mathrm{qc}}^{d}(\Gamma)\right\} \leq D_{q}(P)$

$$
\begin{aligned}
& A_{q c}(P)=\inf \left\{\sum_{i=1}^{I} \lambda_{i} D_{q c}\left(P_{i}\right): I \in \mathbb{N}, \lambda \in \mathbb{R}_{+}^{I},\right. \\
& \left.\sum_{i=1}^{I} \lambda_{i}=1, P=\sum_{i=1}^{I} \lambda_{i} P_{i}, P_{i} \in C_{q}(\Gamma)\right\}
\end{aligned}
$$

Commuting model

$$
P(a, b \mid s, t)=\operatorname{Tr}\left(X_{s}^{a} Y_{t}^{b} \psi \psi^{*}\right)=\psi^{*}\left(X_{s}^{a} Y_{t}^{b}\right) \psi
$$

- $\left\{X_{s}^{a}\right\}$ and $\left\{Y_{t}^{b}\right\}$ POVMs consisting of bounded operators on a separable Hilbert space
- $\left[X_{s}^{a}, Y_{t}^{b}\right]=X_{s}^{a} Y_{t}^{b}-Y_{t}^{b} X_{s}^{a}=0$ for all a, b, s, t
- Sets of commuting correlations $C_{q c}^{d}(\Gamma)$ and $C_{q c}(\Gamma)$
- $D_{q c}(P)=\min \left\{d \in \mathbb{N} \cup\{\infty\}: P \in C_{\mathrm{qc}}^{d}(\Gamma)\right\} \leq D_{q}(P)$

$$
\begin{aligned}
& A_{q c}(P)=\inf \left\{\sum_{i=1}^{I} \lambda_{i} D_{q c}\left(P_{i}\right): I \in \mathbb{N}, \lambda \in \mathbb{R}_{+}^{I},\right. \\
& \\
& \left.\qquad \sum_{i=1}^{I} \lambda_{i}=1, P=\sum_{i=1}^{I} \lambda_{i} P_{i}, P_{i} \in C_{q}(\Gamma)\right\}
\end{aligned}
$$

We have $A_{q}(P)=A_{\mathrm{qc}}(P)$

(Noncommutative) polynomial optimization

- Moment/sum-of-squares hiearchy for lower bounding the global minimum of a polynomial (Lasserre, Parrilo, ...)

(Noncommutative) polynomial optimization

- Moment/sum-of-squares hiearchy for lower bounding the global minimum of a polynomial (Lasserre, Parrilo, ...)
- Noncommutative adaptation with applications in quantum information (Navascues, Pironio, Acín, ...)

(Noncommutative) polynomial optimization

- Moment/sum-of-squares hiearchy for lower bounding the global minimum of a polynomial (Lasserre, Parrilo, ...)
- Noncommutative adaptation with applications in quantum information (Navascues, Pironio, Acín, ...)
- Allows for optimizing a linear functional over $C_{q c}(\Gamma)$

(Noncommutative) polynomial optimization

- Moment/sum-of-squares hiearchy for lower bounding the global minimum of a polynomial (Lasserre, Parrilo, ...)
- Noncommutative adaptation with applications in quantum information (Navascues, Pironio, Acín, ...)
- Allows for optimizing a linear functional over $C_{q c}(\Gamma)$
- Extended to optimizing over $C_{q}^{d}(\Gamma)$ (Navascués, Feix, Araujo, Vértesi 2015)

Tracial optimization

- Extension to tracial optimization (Burgdorf, Cafuta, Klep, Povh, Schweighofer, ...)

Tracial optimization

- Extension to tracial optimization (Burgdorf, Cafuta, Klep, Povh, Schweighofer, ...)

Tracial optimization

$$
\begin{aligned}
\inf \{\operatorname{tr}(f(\mathbf{X})): & d \in \mathbb{N}, \\
& X_{1}, \ldots, X_{n} \in \mathbb{C}^{d \times d} \text { Hermitian, } \\
& \left.g_{1}(\mathbf{X}), \ldots, g_{m}(\mathbf{X}) \succeq 0\right\}
\end{aligned}
$$

Tracial optimization

- Extension to tracial optimization (Burgdorf, Cafuta, Klep, Povh, Schweighofer, ...)

Tracial optimization

$$
\begin{aligned}
\inf \{\operatorname{tr}(f(\mathbf{X})): & d \in \mathbb{N}, \\
& X_{1}, \ldots, X_{n} \in \mathbb{C}^{d \times d} \text { Hermitian, } \\
& \left.g_{1}(\mathbf{X}), \ldots, g_{m}(\mathbf{X}) \succeq 0\right\}
\end{aligned}
$$

- Tracial optimization gives a hierarchy of semidefinite programming lower bounds

Tracial optimization

- Extension to tracial optimization (Burgdorf, Cafuta, Klep, Povh, Schweighofer, ...)

Tracial optimization

$$
\begin{aligned}
\inf \{\operatorname{tr}(f(\mathbf{X})): & d \in \mathbb{N}, \\
& X_{1}, \ldots, X_{n} \in \mathbb{C}^{d \times d} \text { Hermitian, } \\
& \left.g_{1}(\mathbf{X}), \ldots, g_{m}(\mathbf{X}) \succeq 0\right\}
\end{aligned}
$$

- Tracial optimization gives a hierarchy of semidefinite programming lower bounds
- Note the dimension independence

Tracial optimization

- Extension to tracial optimization (Burgdorf, Cafuta, Klep, Povh, Schweighofer, ...)

Tracial optimization

$$
\begin{aligned}
\inf \{\operatorname{tr}(f(\mathbf{X})): & d \in \mathbb{N}, \\
& X_{1}, \ldots, X_{n} \in \mathbb{C}^{d \times d} \text { Hermitian, } \\
& \left.g_{1}(\mathbf{X}), \ldots, g_{m}(\mathbf{X}) \succeq 0\right\}
\end{aligned}
$$

- Tracial optimization gives a hierarchy of semidefinite programming lower bounds
- Note the dimension independence
- Our hierarchy is a variant on tracial optimization

SDP hierarchy for lower bounding $A_{q c}(P)$

$$
\begin{aligned}
& A_{q c}(P)=\inf \left\{\sum_{i=1}^{I} \lambda_{i} D_{q c}\left(P_{i}\right): I \in \mathbb{N}, \lambda \in \mathbb{R}_{+}^{I},\right. \\
& \left.\sum_{i=1}^{I} \lambda_{i}=1, P=\sum_{i=1}^{I} \lambda_{i} P_{i}, P_{i} \in C_{q}(\Gamma)\right\}
\end{aligned}
$$

SDP hierarchy for lower bounding $A_{q c}(P)$

$$
\begin{aligned}
A_{q c}(P) & =\inf \left\{\sum_{i=1}^{I} \lambda_{i} D_{q c}\left(P_{i}\right): I \in \mathbb{N}, \lambda \in \mathbb{R}_{+}^{I},\right. \\
& \left.\sum_{i=1}^{I} \lambda_{i}=1, P=\sum_{i=1}^{I} \lambda_{i} P_{i}, P_{i} \in C_{q}(\Gamma)\right\}
\end{aligned}
$$

- Suppose $\left(P_{i}, \lambda_{i}\right)_{i}$ is feasible for the above problem

SDP hierarchy for lower bounding $A_{q c}(P)$

$$
\begin{aligned}
A_{q c}(P) & =\inf \left\{\sum_{i=1}^{I} \lambda_{i} D_{q c}\left(P_{i}\right): I \in \mathbb{N}, \lambda \in \mathbb{R}_{+}^{I},\right. \\
& \left.\sum_{i=1}^{I} \lambda_{i}=1, P=\sum_{i=1}^{I} \lambda_{i} P_{i}, P_{i} \in C_{q}(\Gamma)\right\}
\end{aligned}
$$

- Suppose $\left(P_{i}, \lambda_{i}\right)_{i}$ is feasible for the above problem
- Assume $P_{i}(a, b \mid s, t)=\operatorname{Tr}\left(X_{s}^{a}(i) Y_{t}^{b}(i) \psi_{i} \psi_{i}^{*}\right)$

SDP hierarchy for lower bounding $A_{q c}(P)$

$$
\begin{aligned}
A_{q c}(P) & =\inf \left\{\sum_{i=1}^{I} \lambda_{i} D_{q c}\left(P_{i}\right): I \in \mathbb{N}, \lambda \in \mathbb{R}_{+}^{I},\right. \\
& \left.\sum_{i=1}^{I} \lambda_{i}=1, P=\sum_{i=1}^{I} \lambda_{i} P_{i}, P_{i} \in C_{q}(\Gamma)\right\}
\end{aligned}
$$

- Suppose $\left(P_{i}, \lambda_{i}\right)_{i}$ is feasible for the above problem
- Assume $P_{i}(a, b \mid s, t)=\operatorname{Tr}\left(X_{s}^{a}(i) Y_{t}^{b}(i) \psi_{i} \psi_{i}^{*}\right)$
- $\mathbb{R}\left\langle x_{s}^{a}, y_{t}^{b}, z\right\rangle$ the noncommutative polynomials in x_{s}^{a}, y_{t}^{b}, z

SDP hierarchy for lower bounding $A_{q c}(P)$

$$
\begin{aligned}
& A_{q c}(P)=\inf \left\{\sum_{i=1}^{I} \lambda_{i} D_{q c}\left(P_{i}\right): I \in \mathbb{N}, \lambda \in \mathbb{R}_{+}^{I}\right. \\
&\left.\sum_{i=1}^{I} \lambda_{i}=1, P=\sum_{i=1}^{I} \lambda_{i} P_{i}, P_{i} \in C_{q}(\Gamma)\right\}
\end{aligned}
$$

- Suppose $\left(P_{i}, \lambda_{i}\right)_{i}$ is feasible for the above problem
- Assume $P_{i}(a, b \mid s, t)=\operatorname{Tr}\left(X_{s}^{a}(i) Y_{t}^{b}(i) \psi_{i} \psi_{i}^{*}\right)$
- $\mathbb{R}\left\langle x_{s}^{a}, y_{t}^{b}, z\right\rangle$ the noncommutative polynomials in x_{s}^{a}, y_{t}^{b}, z
- Define a linear form \mathcal{L} on $\mathbb{R}\left\langle x_{s}^{a}, y_{t}^{b}, z\right\rangle$ by

$$
\mathcal{L}(p)=\sum_{i} \lambda_{i} \operatorname{Re}\left(\operatorname{Tr}\left(p\left(X(i), Y(i), \psi_{i} \psi_{i}^{*}\right)\right)\right)
$$

SDP hierarchy for lower bounding $A_{q c}(P)$

$$
\begin{aligned}
& A_{q c}(P)=\inf \left\{\sum_{i=1}^{I} \lambda_{i} D_{q c}\left(P_{i}\right): I \in \mathbb{N}, \lambda \in \mathbb{R}_{+}^{I},\right. \\
& \left.\sum_{i=1}^{I} \lambda_{i}=1, P=\sum_{i=1}^{I} \lambda_{i} P_{i}, P_{i} \in C_{q}(\Gamma)\right\}
\end{aligned}
$$

- Suppose $\left(P_{i}, \lambda_{i}\right)_{i}$ is feasible for the above problem
- Assume $P_{i}(a, b \mid s, t)=\operatorname{Tr}\left(X_{s}^{a}(i) Y_{t}^{b}(i) \psi_{i} \psi_{i}^{*}\right)$
- $\mathbb{R}\left\langle x_{s}^{a}, y_{t}^{b}, z\right\rangle$ the noncommutative polynomials in x_{s}^{a}, y_{t}^{b}, z
- Define a linear form \mathcal{L} on $\mathbb{R}\left\langle x_{s}^{a}, y_{t}^{b}, z\right\rangle$ by

$$
\mathcal{L}(p)=\sum_{i} \lambda_{i} \operatorname{Re}\left(\operatorname{Tr}\left(p\left(X(i), Y(i), \psi_{i} \psi_{i}^{*}\right)\right)\right)
$$

- We have $\mathcal{L}(1)=\sum_{i} \lambda_{i} D_{q c}\left(P_{i}\right)$

SDP hierarchy for lower bounding $A_{q c}(P)$

$$
\begin{aligned}
& A_{q c}(P)=\inf \left\{\sum_{i=1}^{I} \lambda_{i} D_{q c}\left(P_{i}\right): I \in \mathbb{N}, \lambda \in \mathbb{R}_{+}^{I},\right. \\
& \left.\sum_{i=1}^{I} \lambda_{i}=1, P=\sum_{i=1}^{I} \lambda_{i} P_{i}, P_{i} \in C_{q}(\Gamma)\right\}
\end{aligned}
$$

- Suppose $\left(P_{i}, \lambda_{i}\right)_{i}$ is feasible for the above problem
- Assume $P_{i}(a, b \mid s, t)=\operatorname{Tr}\left(X_{s}^{a}(i) Y_{t}^{b}(i) \psi_{i} \psi_{i}^{*}\right)$
- $\mathbb{R}\left\langle x_{s}^{a}, y_{t}^{b}, z\right\rangle$ the noncommutative polynomials in x_{s}^{a}, y_{t}^{b}, z
- Define a linear form \mathcal{L} on $\mathbb{R}\left\langle x_{s}^{a}, y_{t}^{b}, z\right\rangle$ by

$$
\mathcal{L}(p)=\sum_{i} \lambda_{i} \operatorname{Re}\left(\operatorname{Tr}\left(p\left(X(i), Y(i), \psi_{i} \psi_{i}^{*}\right)\right)\right)
$$

- We have $\mathcal{L}(1)=\sum_{i} \lambda_{i} D_{q c}\left(P_{i}\right)$
- Idea: minimize $L(1)$ over linear forms L on $\mathbb{R}\left\langle x_{s}^{a}, y_{t}^{b}, z\right\rangle$ that satisfy certain computationaly tractable properties of \mathcal{L}

SDP hierarchy for lower bounding $A_{q c}(P)$

$$
\begin{aligned}
& A_{q c}(P)=\inf \left\{\sum_{i=1}^{I} \lambda_{i} D_{q c}\left(P_{i}\right): I \in \mathbb{N}, \lambda \in \mathbb{R}_{+}^{I}\right. \\
&\left.\sum_{i=1}^{I} \lambda_{i}=1, P=\sum_{i=1}^{I} \lambda_{i} P_{i}, P_{i} \in C_{q}(\Gamma)\right\}
\end{aligned}
$$

- Suppose $\left(P_{i}, \lambda_{i}\right)_{i}$ is feasible for the above problem
- Assume $P_{i}(a, b \mid s, t)=\operatorname{Tr}\left(X_{s}^{a}(i) Y_{t}^{b}(i) \psi_{i} \psi_{i}^{*}\right)$
- $\mathbb{R}\left\langle x_{s}^{a}, y_{t}^{b}, z\right\rangle$ the noncommutative polynomials in x_{s}^{a}, y_{t}^{b}, z
- Define a linear form \mathcal{L} on $\mathbb{R}\left\langle x_{s}^{a}, y_{t}^{b}, z\right\rangle$ by

$$
\mathcal{L}(p)=\sum_{i} \lambda_{i} \operatorname{Re}\left(\operatorname{Tr}\left(p\left(X(i), Y(i), \psi_{i} \psi_{i}^{*}\right)\right)\right)
$$

- We have $\mathcal{L}(1)=\sum_{i} \lambda_{i} D_{q c}\left(P_{i}\right)$
- Idea: minimize $L(1)$ over linear forms L on $\mathbb{R}\left\langle x_{s}^{a}, y_{t}^{b}, z\right\rangle$ that satisfy certain computationaly tractable properties of \mathcal{L}
- Minimization of $L(1)$ used by [Nie 2017] in the commutative setting for the nuclear tensor norm

SDP hierarchy for lower bounding $A_{q c}(P)$

- $\mathbb{R}\left\langle x_{s}^{a}, y_{t}^{b}, z\right\rangle_{2 r}$ noncommutative polynomials of degree $\leq 2 r$

SDP hierarchy for lower bounding $A_{q c}(P)$

- $\mathbb{R}\left\langle x_{s}^{a}, y_{t}^{b}, z\right\rangle_{2 r}$ noncommutative polynomials of degree $\leq 2 r$
- Space of linear functionals: $\mathbb{R}\left\langle x_{s}^{a}, y_{t}^{b}, z\right\rangle_{2 r}^{*}$

SDP hierarchy for lower bounding $A_{q c}(P)$

- $\mathbb{R}\left\langle x_{s}^{a}, y_{t}^{b}, z\right\rangle_{2 r}$ noncommutative polynomials of degree $\leq 2 r$
- Space of linear functionals: $\mathbb{R}\left\langle x_{s}^{a}, y_{t}^{b}, z\right\rangle_{2 r}^{*}$
- A functional is tracial if $L(p q)=L(q p)$ for all p, q

SDP hierarchy for lower bounding $A_{q c}(P)$

- $\mathbb{R}\left\langle x_{s}^{a}, y_{t}^{b}, z\right\rangle_{2 r}$ noncommutative polynomials of degree $\leq 2 r$
- Space of linear functionals: $\mathbb{R}\left\langle x_{s}^{a}, y_{t}^{b}, z\right\rangle_{2 r}^{*}$
- A functional is tracial if $L(p q)=L(q p)$ for all p, q

$$
\begin{aligned}
\xi_{r}^{q}(P)=\min \{L(1): & L \in \mathbb{R}\left\langle x_{s}^{a}, y_{t}^{b}, z\right\rangle_{2 r}^{*} \text { tracial and symmetric, } \\
& L(z)=1, L\left(x_{s}^{a} y_{t}^{b} z\right)=P(a, b \mid s, t) \\
& L\left(p^{*} p\right) \geq 0 \text { for all } p \in \mathbb{R}\left\langle x_{s}^{a}, y_{t}^{b}, z\right\rangle_{r} \\
& \cdots\}
\end{aligned}
$$

SDP hierarchy for lower bounding $A_{q c}(P)$

- $\mathbb{R}\left\langle x_{s}^{a}, y_{t}^{b}, z\right\rangle_{2 r}$ noncommutative polynomials of degree $\leq 2 r$
- Space of linear functionals: $\mathbb{R}\left\langle x_{s}^{a}, y_{t}^{b}, z\right\rangle_{2 r}^{*}$
- A functional is tracial if $L(p q)=L(q p)$ for all p, q
$\xi_{r}^{q}(P)=\min \left\{L(1): L \in \mathbb{R}\left\langle x_{s}^{a}, y_{t}^{b}, z\right\rangle_{2 r}^{*}\right.$ tracial and symmetric,

$$
\begin{aligned}
& L(z)=1, L\left(x_{s}^{a} y_{t}^{b} z\right)=P(a, b \mid s, t) \\
& L\left(p^{*} p\right) \geq 0 \text { for all } p \in \mathbb{R}\left\langle x_{s}^{a}, y_{t}^{b}, z\right\rangle_{r} \\
& \ldots\}
\end{aligned}
$$

- For each r this is a semidefinite program whose optimal value lower bounds $A_{q c}(P)$

SDP hierarchy for lower bounding $A_{q c}(P)$

- $\mathbb{R}\left\langle x_{s}^{a}, y_{t}^{b}, z\right\rangle_{2 r}$ noncommutative polynomials of degree $\leq 2 r$
- Space of linear functionals: $\mathbb{R}\left\langle x_{s}^{a}, y_{t}^{b}, z\right\rangle_{2 r}^{*}$
- A functional is tracial if $L(p q)=L(q p)$ for all p, q
$\xi_{r}^{q}(P)=\min \left\{L(1): L \in \mathbb{R}\left\langle x_{s}^{a}, y_{t}^{b}, z\right\rangle_{2 r}^{*}\right.$ tracial and symmetric,

$$
\begin{aligned}
& L(z)=1, L\left(x_{s}^{a} y_{t}^{b} z\right)=P(a, b \mid s, t) \\
& L\left(p^{*} p\right) \geq 0 \text { for all } p \in \mathbb{R}\left\langle x_{s}^{a}, y_{t}^{b}, z\right\rangle_{r} \\
& \ldots\}
\end{aligned}
$$

- For each r this is a semidefinite program whose optimal value lower bounds $A_{q c}(P)$
- Why SDP? Because $L\left(p^{*} p\right) \geq 0$ is equivalent to $M(L) \succeq 0$, where $M(L)_{u, v}=L\left(u^{*} v\right)$ for all monomials u, v

Convergence of the hierarchy

Convergence of the hierarchy

- For $r=\infty$ we have an infinite dimensional SDP where we use the full algebra $\mathbb{R}\left\langle x_{s}^{a}, y_{t}^{b}, z\right\rangle$

Convergence of the hierarchy

- For $r=\infty$ we have an infinite dimensional SDP where we use the full algebra $\mathbb{R}\left\langle x_{s}^{a}, y_{t}^{b}, z\right\rangle$
- We have $\xi_{r}^{q}(P) \rightarrow \xi_{\infty}^{q}(P)$

Convergence of the hierarchy

- For $r=\infty$ we have an infinite dimensional SDP where we use the full algebra $\mathbb{R}\left\langle x_{s}^{a}, y_{t}^{b}, z\right\rangle$
- We have $\xi_{r}^{q}(P) \rightarrow \xi_{\infty}^{q}(P)$
- Let $\xi_{*}^{q}(P)$ be the same as $\xi_{\infty}^{q}(P)$ with the additional constraint $\operatorname{rank}(M(L))<\infty$

Convergence of the hierarchy

- For $r=\infty$ we have an infinite dimensional SDP where we use the full algebra $\mathbb{R}\left\langle x_{s}^{a}, y_{t}^{b}, z\right\rangle$
- We have $\xi_{r}^{q}(P) \rightarrow \xi_{\infty}^{q}(P)$
- Let $\xi_{*}^{q}(P)$ be the same as $\xi_{\infty}^{q}(P)$ with the additional constraint $\operatorname{rank}(M(L))<\infty$

We have $\xi_{*}^{q}(P)=A_{\mathrm{qc}}(P)$

Convergence of the hierarchy

- For $r=\infty$ we have an infinite dimensional SDP where we use the full algebra $\mathbb{R}\left\langle x_{s}^{a}, y_{t}^{b}, z\right\rangle$
- We have $\xi_{r}^{q}(P) \rightarrow \xi_{\infty}^{q}(P)$
- Let $\xi_{*}^{q}(P)$ be the same as $\xi_{\infty}^{q}(P)$ with the additional constraint $\operatorname{rank}(M(L))<\infty$

We have $\xi_{*}^{q}(P)=A_{\mathrm{qc}}(P)$

- Proof uses GNS construction and Artin-Wedderburn theory, and the linear constraints not shown in the program

Convergence of the hierarchy

- For $r=\infty$ we have an infinite dimensional SDP where we use the full algebra $\mathbb{R}\left\langle x_{s}^{a}, y_{t}^{b}, z\right\rangle$
- We have $\xi_{r}^{q}(P) \rightarrow \xi_{\infty}^{q}(P)$
- Let $\xi_{*}^{q}(P)$ be the same as $\xi_{\infty}^{q}(P)$ with the additional constraint $\operatorname{rank}(M(L))<\infty$

We have $\xi_{*}^{q}(P)=A_{\mathrm{qc}}(P)$

- Proof uses GNS construction and Artin-Wedderburn theory, and the linear constraints not shown in the program
- Perhaps counterintuitively, the constraint $L(w z u z v z)=L(w z v z u z)$ (we get this trick from [Navascués 2012]) to force " z " to be rank-1 is crucial (see proof)

Convergence of the hierarchy

- For $r=\infty$ we have an infinite dimensional SDP where we use the full algebra $\mathbb{R}\left\langle x_{s}^{a}, y_{t}^{b}, z\right\rangle$
- We have $\xi_{r}^{q}(P) \rightarrow \xi_{\infty}^{q}(P)$
- Let $\xi_{*}^{q}(P)$ be the same as $\xi_{\infty}^{q}(P)$ with the additional constraint $\operatorname{rank}(M(L))<\infty$

We have $\xi_{*}^{q}(P)=A_{\mathrm{qc}}(P)$

- Proof uses GNS construction and Artin-Wedderburn theory, and the linear constraints not shown in the program
- Perhaps counterintuitively, the constraint $L(w z u z v z)=L(w z v z u z)$ (we get this trick from [Navascués 2012]) to force " z " to be rank-1 is crucial (see proof)
- Under a certain flatness condition we have $\xi_{r}^{q}(P)=\xi_{*}^{q}(P)$

Matrix factorization ranks

- cpsd-rank (M) is the smallest d for which there are Hermitian psd matrices $X_{1}, \ldots, X_{n} \in \mathbb{C}^{d \times d}$ with $M_{i j}=\operatorname{Tr}\left(X_{i} X_{j}\right)$

Matrix factorization ranks

- cpsd-rank (M) is the smallest d for which there are Hermitian psd matrices $X_{1}, \ldots, X_{n} \in \mathbb{C}^{d \times d}$ with $M_{i j}=\operatorname{Tr}\left(X_{i} X_{j}\right)$
- Let P be a synchronous correlation

Matrix factorization ranks

- cpsd-rank (M) is the smallest d for which there are Hermitian psd matrices $X_{1}, \ldots, X_{n} \in \mathbb{C}^{d \times d}$ with $M_{i j}=\operatorname{Tr}\left(X_{i} X_{j}\right)$
- Let P be a synchronous correlation
- Combining proofs from [Sikora-Varvitsiotis 2017] and [Paulsen-Severini-Stahlke-Todorov-Winter 2016] gives

$$
D_{q}(P)=\operatorname{cpsd}-\operatorname{rank}\left(M_{P}\right)
$$

where $\left(M_{P}\right)_{(s, a),(t, b)}=P(a, b \mid s, t)$

Matrix factorization ranks

- cpsd-rank (M) is the smallest d for which there are Hermitian psd matrices $X_{1}, \ldots, X_{n} \in \mathbb{C}^{d \times d}$ with $M_{i j}=\operatorname{Tr}\left(X_{i} X_{j}\right)$
- Let P be a synchronous correlation
- Combining proofs from [Sikora-Varvitsiotis 2017] and [Paulsen-Severini-Stahlke-Todorov-Winter 2016] gives

$$
D_{q}(P)=\operatorname{cpsd}-\operatorname{rank}\left(M_{P}\right)
$$

where $\left(M_{P}\right)_{(s, a),(t, b)}=P(a, b \mid s, t)$

- In an earlier paper we have hierarchies for lower bounding matrix factorization ranks, and the hierarchy for $A_{q}(P)$ is an adaptation of this for (nonsynchronous) quantum correlations

Quantum graph parameters

- Using similar techniques we introduce semidefinite programming hierarchies for the quantum chromatic and quantum stability numbers

Quantum graph parameters

- Using similar techniques we introduce semidefinite programming hierarchies for the quantum chromatic and quantum stability numbers
- This unifies some of the existing literature; for example, the projective packing number, projective rank, and the tracial rank can be seen as certain steps in the hierarchies

Thank you!

S. Gribling, D. de Laat, M. Laurent, Bounds on entanglement dimensions and quantum graph parameters via noncommutative polynomial optimization, Math. Program., Ser. B (2018), 38 pages

