A semidefinite programming hierarchy for geometric packing problems

David de Laat
Joint work with Fernando M. de Oliveira Filho and Frank Vallentin

DIAMANT Symposium - November 2012

Polydisperse spherical cap packings

How can one pack spherical caps of sizes $\alpha_{1}, \ldots, \alpha_{N}$ on the unit sphere as densely as possible?

Maximal stable set problem

Simple graph G
Stability number: $\alpha(G)=3$

Maximal weighted stable set problem

Simple weighted graph G
Weighted stability number: $\alpha_{w}(G)=0.9$

Bounds for the maximal stable set problem

- Computing $\alpha(G)$ is NP-hard

Bounds for the maximal stable set problem

- Computing $\alpha(G)$ is NP-hard
- Any stable set provides a lower bound

Bounds for the maximal stable set problem

- Computing $\alpha(G)$ is NP-hard
- Any stable set provides a lower bound
- The theta number provides an upper bound:

$$
\alpha(G) \leq \vartheta(G) \quad \text { and } \quad \alpha_{w}(G) \leq \vartheta_{w}(G)
$$

Bounds for the maximal stable set problem

- Computing $\alpha(G)$ is NP-hard
- Any stable set provides a lower bound
- The theta number provides an upper bound:

$$
\alpha(G) \leq \vartheta(G) \quad \text { and } \quad \alpha_{w}(G) \leq \vartheta_{w}(G)
$$

- Hierarchy of upper bounds:

$$
\alpha(G) \leq \ldots \leq \vartheta_{6}(G) \leq \vartheta_{4}(G) \leq \vartheta_{2}(G)=\vartheta(G)
$$

Bounds for the maximal stable set problem

- Computing $\alpha(G)$ is NP-hard
- Any stable set provides a lower bound
- The theta number provides an upper bound:

$$
\alpha(G) \leq \vartheta(G) \quad \text { and } \quad \alpha_{w}(G) \leq \vartheta_{w}(G)
$$

- Hierarchy of upper bounds:

$$
\alpha(G) \leq \ldots \leq \vartheta_{6}(G) \leq \vartheta_{4}(G) \leq \vartheta_{2}(G)=\vartheta(G)
$$

Spherical cap packing graph
$G:\{$

Spherical cap packing graph

$$
G:\left\{\begin{array}{l}
V=S^{n-1} \times\{1, \ldots, N\} \\
\end{array}\right.
$$

Spherical cap packing graph

$$
G:\left\{\begin{array}{l}
V=S^{n-1} \times\{1, \ldots, N\} \\
(x, i) \sim(y, j) \quad \Leftrightarrow \quad \cos \left(\alpha_{i}+\alpha_{j}\right)<x \cdot y \text { and }(x, i) \neq(y, j)
\end{array}\right.
$$

Spherical cap packing graph

$$
G:\left\{\begin{array}{l}
V=S^{n-1} \times\{1, \ldots, N\} \\
(x, i) \sim(y, j) \quad \Leftrightarrow \quad \cos \left(\alpha_{i}+\alpha_{j}\right)<x \cdot y \text { and }(x, i) \neq(y, j) \\
w(x, i)=\text { normalized area of a cap with angle } \alpha_{i}
\end{array}\right.
$$

Spherical cap packing graph

$$
G:\left\{\begin{array}{l}
V=S^{n-1} \times\{1, \ldots, N\} \\
(x, i) \sim(y, j) \quad \Leftrightarrow \quad \cos \left(\alpha_{i}+\alpha_{j}\right)<x \cdot y \text { and }(x, i) \neq(y, j) \\
w(x, i)=\text { normalized area of a cap with angle } \alpha_{i}
\end{array}\right.
$$

Stable sets correspond to spherical cap packings

Spherical cap packing graph

$$
G:\left\{\begin{array}{l}
V=S^{n-1} \times\{1, \ldots, N\} \\
(x, i) \sim(y, j) \quad \Leftrightarrow \quad \cos \left(\alpha_{i}+\alpha_{j}\right)<x \cdot y \text { and }(x, i) \neq(y, j) \\
w(x, i)=\text { normalized area of a cap with angle } \alpha_{i}
\end{array}\right.
$$

Stable sets correspond to spherical cap packings $\alpha_{w}(G)$ gives the optimal packing density

The theta number for the spherical cap packing graph

$$
\begin{aligned}
\vartheta_{w}(G)=\inf M: & K-\sqrt{w} \otimes \sqrt{w} \in \mathcal{C}(V \times V)_{\succeq 0}, \\
& K(u, u) \leq M \text { for all } u \in V, \\
& K(u, v) \leq 0 \text { for all }\{u, v\} \notin E \text { where } u \neq v .
\end{aligned}
$$

The theta number for the spherical cap packing graph

$$
\begin{aligned}
\vartheta_{w}(G)=\inf M: & K-\sqrt{w} \otimes \sqrt{w} \in \mathcal{C}(V \times V)_{\succeq 0}, \\
& K(u, u) \leq M \text { for all } u \in V, \\
& K(u, v) \leq 0 \text { for all }\{u, v\} \notin E \text { where } u \neq v . \\
& V=S^{n-1} \times\{1, \ldots, N\}
\end{aligned}
$$

The theta number for the spherical cap packing graph

$$
\begin{aligned}
\vartheta_{w}(G)=\inf M: & K-\sqrt{w} \otimes \sqrt{w} \in \mathcal{C}(V \times V)_{\succeq 0}, \\
& K(u, u) \leq M \text { for all } u \in V, \\
& K(u, v) \leq 0 \text { for all }\{u, v\} \notin E \text { where } u \neq v . \\
& \\
& V=S^{n-1} \times\{1, \ldots, N\}
\end{aligned}
$$

Group action: $O(n) \times V \rightarrow V, A(x, i)=(A x, i)$

The theta number for the spherical cap packing graph

$$
\begin{aligned}
\vartheta_{w}(G)=\inf M: & K-\sqrt{w} \otimes \sqrt{w} \in \mathcal{C}(V \times V)_{\succeq 0}, \\
& K(u, u) \leq M \text { for all } u \in V, \\
& K(u, v) \leq 0 \text { for all }\{u, v\} \notin E \text { where } u \neq v . \\
& \\
& V=S^{n-1} \times\{1, \ldots, N\}
\end{aligned}
$$

Group action: $O(n) \times V \rightarrow V, A(x, i)=(A x, i)$
By averaging a feasible solution under the group action, we observe that we can restrict to $O(n)$ invariant kernels.

The theta number for the spherical cap packing graph

$$
\begin{aligned}
\vartheta_{w}(G)=\inf M: & K-\sqrt{w} \otimes \sqrt{w} \in \mathcal{C}(V \times V)_{\succeq 0}^{O(n)}, \\
& K(u, u) \leq M \text { for all } u \in V, \\
& K(u, v) \leq 0 \text { for all }\{u, v\} \notin E \text { where } u \neq v . \\
& \\
& V=S^{n-1} \times\{1, \ldots, N\}
\end{aligned}
$$

Group action: $O(n) \times V \rightarrow V, A(x, i)=(A x, i)$
By averaging a feasible solution under the group action, we observe that we can restrict to $O(n)$ invariant kernels.

Generalization of Schoenberg's theorem

A kernel $K \in \mathcal{C}(V \times V)_{\succeq 0}^{O(n)}$ is of the form

$$
K((x, i),(y, j))=\sum_{k=0}^{\infty} f_{i j, k} P_{k}^{n}(x \cdot y)
$$

where $\left(f_{i j, k}\right)_{i, j=1}^{N} \succeq 0$ for all k

Generalization of Schoenberg's theorem

A kernel $K \in \mathcal{C}(V \times V)_{\succeq 0}^{O(n)}$ is of the form

$$
K((x, i),(y, j))=\sum_{k=0}^{\infty} f_{i j, k} P_{k}^{n}(x \cdot y)
$$

where $\left(f_{i j, k}\right)_{i, j=1}^{N} \succeq 0$ for all k

- We obtain a program with finitely many variables

Generalization of Schoenberg's theorem

A kernel $K \in \mathcal{C}(V \times V)_{\succeq 0}^{O(n)}$ is of the form

$$
K((x, i),(y, j))=\sum_{k=0}^{\infty} f_{i j, k} P_{k}^{n}(x \cdot y)
$$

where $\left(f_{i j, k}\right)_{i, j=1}^{N} \succeq 0$ for all k

- We obtain a program with finitely many variables
- $N=1$: reduces to Delsarte, Goethels, and Seidel LP bound

Generalization of Schoenberg's theorem

A kernel $K \in \mathcal{C}(V \times V)_{\succeq 0}^{O(n)}$ is of the form

$$
K((x, i),(y, j))=\sum_{k=0}^{\infty} f_{i j, k} P_{k}^{n}(x \cdot y)
$$

where $\left(f_{i j, k}\right)_{i, j=1}^{N} \succeq 0$ for all k

- We obtain a program with finitely many variables
- $N=1$: reduces to Delsarte, Goethels, and Seidel LP bound
- Still infinitely many constraints

Generalization of Schoenberg's theorem

A kernel $K \in \mathcal{C}(V \times V)_{\succeq 0}^{O(n)}$ is of the form

$$
K((x, i),(y, j))=\sum_{k=0}^{\infty} f_{i j, k} P_{k}^{n}(x \cdot y)
$$

where $\left(f_{i j, k}\right)_{i, j=1}^{N} \succeq 0$ for all k

- We obtain a program with finitely many variables
- $N=1$: reduces to Delsarte, Goethels, and Seidel LP bound
- Still infinitely many constraints
- Use a sums of squares characterization

Binary spherical cap packings on the 2-sphere

SDP bound / Geometric bound (Florian 2001)

Spherical codes on the 2-sphere

The truncated octahedron packing

This packing is maximal:

- it has density 0.9056...
- the semidefinite programming bound is $0.9079 \ldots$
- the next packing (4 big caps, 19 small caps) would have density $0.9103 \ldots$

Packings associated to the n-prism

- The geometric bound is sharp for $n \geq 6$
- For $n=5$ there is a geometrical proof (Florian, Heppes 1999)
- The semidefinite programming bound is sharp for $n=5$

Packing graphs

- We generalize the Lasserre hierarchy to infinite graphs

Packing graphs

- We generalize the Lasserre hierarchy to infinite graphs
- A packing graph:
- The vertex set is a Hausdorff topological space
- Each finite clique is contained in an open clique

Packing graphs

- We generalize the Lasserre hierarchy to infinite graphs
- A packing graph:
- The vertex set is a Hausdorff topological space
- Each finite clique is contained in an open clique
- We consider compact second-countable packing graphs

Packing graphs

- We generalize the Lasserre hierarchy to infinite graphs
- A packing graph:
- The vertex set is a Hausdorff topological space
- Each finite clique is contained in an open clique
- We consider compact second-countable packing graphs
- These graphs have finite stability number

Packing graphs

- We generalize the Lasserre hierarchy to infinite graphs
- A packing graph:
- The vertex set is a Hausdorff topological space
- Each finite clique is contained in an open clique
- We consider compact second-countable packing graphs
- These graphs have finite stability number
- Example: graphs where the vertex set is a compact metric space such that x and y are adjacent if $d(x, y) \in(0, \delta)$

A semidefinite programming hierarchy

- $\operatorname{Sub}(V, t)=$ set of nonempty subsets of V with $\leq t$ elements

A semidefinite programming hierarchy

- $\operatorname{Sub}(V, t)=$ set of nonempty subsets of V with $\leq t$ elements
- $I_{2 t}=$ subcollection of $\operatorname{Sub}(V, 2 t)$ consisting of stable sets

A semidefinite programming hierarchy

- $\operatorname{Sub}(V, t)=$ set of nonempty subsets of V with $\leq t$ elements
- $I_{2 t}=$ subcollection of $\operatorname{Sub}(V, 2 t)$ consisting of stable sets
- $V_{t}=\operatorname{Sub}(V, t) \cup\{\emptyset\}$

A semidefinite programming hierarchy

- $\operatorname{Sub}(V, t)=$ set of nonempty subsets of V with $\leq t$ elements
- $I_{2 t}=$ subcollection of $\operatorname{Sub}(V, 2 t)$ consisting of stable sets
- $V_{t}=\operatorname{Sub}(V, t) \cup\{\emptyset\}$
- We define the operator $A_{t}: \mathcal{C}\left(V_{t} \times V_{t}\right)_{\text {sym }} \rightarrow \mathcal{C}\left(I_{2 t}\right)$ by

$$
A_{t} f(S)=\sum_{J, J^{\prime} \in V_{t}: J \cup J^{\prime}=S} f\left(J, J^{\prime}\right)
$$

A semidefinite programming hierarchy

- $\operatorname{Sub}(V, t)=$ set of nonempty subsets of V with $\leq t$ elements
- $I_{2 t}=$ subcollection of $\operatorname{Sub}(V, 2 t)$ consisting of stable sets
- $V_{t}=\operatorname{Sub}(V, t) \cup\{\emptyset\}$
- We define the operator $A_{t}: \mathcal{C}\left(V_{t} \times V_{t}\right)_{\text {sym }} \rightarrow \mathcal{C}\left(I_{2 t}\right)$ by

$$
A_{t} f(S)=\sum_{J, J^{\prime} \in V_{t}: J \cup J^{\prime}=S} f\left(J, J^{\prime}\right)
$$

- The hierarchy is given by

$$
\begin{aligned}
\vartheta_{2 t}(G)=\inf f(\emptyset, \emptyset): & f \in \mathcal{C}\left(V_{t} \times V_{t}\right)_{\succeq 0} \\
& A_{t} f(S) \leq-1 \text { for } S \in I_{1} \\
& A_{t} f(S) \leq 0 \text { for } S \in I_{2 t} \backslash I_{1}
\end{aligned}
$$

A semidefinite programming hierarchy

- $\operatorname{Sub}(V, t)=$ set of nonempty subsets of V with $\leq t$ elements
- $I_{2 t}=$ subcollection of $\operatorname{Sub}(V, 2 t)$ consisting of stable sets
- $V_{t}=\operatorname{Sub}(V, t) \cup\{\emptyset\}$
- We define the operator $A_{t}: \mathcal{C}\left(V_{t} \times V_{t}\right)_{\text {sym }} \rightarrow \mathcal{C}\left(I_{2 t}\right)$ by

$$
A_{t} f(S)=\sum_{J, J^{\prime} \in V_{t}: J \cup J^{\prime}=S} f\left(J, J^{\prime}\right)
$$

- The hierarchy is given by

$$
\begin{aligned}
\vartheta_{2 t}(G)=\inf f(\emptyset, \emptyset): & f \in \mathcal{C}\left(V_{t} \times V_{t}\right)_{\succeq 0}, \\
& A_{t} f(S) \leq-1 \text { for } S \in I_{1} \\
& A_{t} f(S) \leq 0 \text { for } S \in I_{2 t} \backslash I_{1}
\end{aligned}
$$

- For $2 t \geq \alpha(G)$ we have

$$
\alpha(G)=\vartheta_{2 t}(G) \leq \ldots \leq \vartheta_{4}(G) \leq \vartheta_{2}(G)=\vartheta(G)
$$

Thank you!

D. de Laat, F.M. de Oliveira Filho, F. Vallentin, Upper bounds for packings of spheres of several radii, arXiv:1206.2608, (2012), 31 pages.
D. de Laat, F. Vallentin, A semidefinite programming hierarchy for geometric packing problems, in preparation.

