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Polydisperse spherical cap packings

How can one pack spherical caps of sizes aj,

sphere as densely as possible?
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Maximal stable set problem

Simple graph G
Stability number: o(G) = 3



Maximal weighted stable set problem

Simple weighted graph G
Weighted stability number: a,,(G) = 0.9
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Spherical cap packing graph

V=5"1x{1,...,N}
Gi{(@i)~ () & coslaitag) <z yand (2,0) £ (1))

w(x,1) = normalized area of a cap with angle «;

Stable sets correspond to spherical cap packings
o (Q) gives the optimal packing density



The theta number for the spherical cap packing graph

Du(G)=inf M: K —vVw@ywel(VxV), ,
K(u,u) < M forall u € V,
K(u,v) <0 for all {u,v} & E where u # v.
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Generalization of Schoenberg's theorem
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A kernel K € C(V x V) g is of the form

K (), o) = 3 fusPia ).

k=0

where (f;; k)” 1 = 0 forall k
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Generalization of Schoenberg's theorem
A kernel K € C(V x V)O(n) is of the form

K (), o) = 3 fusPia ).

k=0

where (f;; k)” 1 = 0 forall k

v

We obtain a program with finitely many variables
N = 1: reduces to Delsarte, Goethels, and Seidel LP bound

Still infinitely many constraints

v

v

» Use a sums of squares characterization



Binary spherical cap packings on the 2-sphere
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SDP bound / Geometric bound (Florian 2001)
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Spherical codes on the 2-sphere
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The truncated octahedron packing

This packing is maximal:
> it has density 0.9056 ...

density 0.9103. ..

> the semidefinite programming bound is 0.9079. ..
» the next packing (4 big caps, 19 small caps) would have



Packings associated to the n-prism

» The geometric bound is sharp for n > 6
» For n =5 there is a geometrical proof (Florian, Heppes 1999)

» The semidefinite programming bound is sharp for n =5




Packing graphs

» We generalize the Lasserre hierarchy to infinite graphs



Packing graphs

» We generalize the Lasserre hierarchy to infinite graphs
» A packing graph:

» The vertex set is a Hausdorff topological space

» Each finite clique is contained in an open clique



Packing graphs

» We generalize the Lasserre hierarchy to infinite graphs
» A packing graph:

» The vertex set is a Hausdorff topological space

» Each finite clique is contained in an open clique

» We consider compact second-countable packing graphs



Packing graphs

v

We generalize the Lasserre hierarchy to infinite graphs

v

A packing graph:
» The vertex set is a Hausdorff topological space
» Each finite clique is contained in an open clique

v

We consider compact second-countable packing graphs

v

These graphs have finite stability number



Packing graphs
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We generalize the Lasserre hierarchy to infinite graphs
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A packing graph:
» The vertex set is a Hausdorff topological space
» Each finite clique is contained in an open clique

v

We consider compact second-countable packing graphs

v

These graphs have finite stability number

v

Example: graphs where the vertex set is a compact metric
space such that z and y are adjacent if d(x,y) € (0,0)
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For 2t > a(G) we have

a(G) = 92(G) < ... < 94(G) < ¥a(G) = 9(G)



Thank you!
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