Energy minimization via moment hierarchies

David de Laat (TU Delft)

ESI Workshop on Optimal Point Configurations and Applications
16 October 2014

Energy minimization

- What is the minimal potential energy E when we put N particles with pair potential h in a container V ?

Energy minimization

- What is the minimal potential energy E when we put N particles with pair potential h in a container V ?
- Example: For the Thomson problem we take

$$
V=S^{2} \quad \text { and } \quad h(\{x, y\})=\frac{1}{\|x-y\|}
$$

Energy minimization

- What is the minimal potential energy E when we put N particles with pair potential h in a container V ?
- Example: For the Thomson problem we take

$$
V=S^{2} \quad \text { and } \quad h(\{x, y\})=\frac{1}{\|x-y\|}
$$

- As an optimization problem:

$$
E=\min _{S \in\binom{V}{N}} \sum_{P \in\binom{S}{2}} h(P)
$$

Approach

- Configurations provide upper bounds on the optimal energy E

Approach

- Configurations provide upper bounds on the optimal energy E
- To prove a configuration is good (or optimal) we need good lower bounds for E

Approach

- Configurations provide upper bounds on the optimal energy E
- To prove a configuration is good (or optimal) we need good lower bounds for E

Some systematic approaches for obtaining bounds:

- Linear programming bounds using the pair correlation function [Delsarte 1973, Delsarte-Goethals-Seidel 1977, Yudin 1992]

Approach

- Configurations provide upper bounds on the optimal energy E
- To prove a configuration is good (or optimal) we need good lower bounds for E

Some systematic approaches for obtaining bounds:

- Linear programming bounds using the pair correlation function [Delsarte 1973, Delsarte-Goethals-Seidel 1977, Yudin 1992]
- 3-point bounds using 3-point correlation functions and constraints arising from the stabilizer subgroup of 1 point [Schrijver 2005, Bachoc-Vallentin 2008, Cohn-Woo 2012]

Approach

- Configurations provide upper bounds on the optimal energy E
- To prove a configuration is good (or optimal) we need good lower bounds for E

Some systematic approaches for obtaining bounds:

- Linear programming bounds using the pair correlation function [Delsarte 1973, Delsarte-Goethals-Seidel 1977, Yudin 1992]
- 3-point bounds using 3-point correlation functions and constraints arising from the stabilizer subgroup of 1 point [Schrijver 2005, Bachoc-Vallentin 2008, Cohn-Woo 2012]
- k-point bounds using stabilizer subgroup of $k-2$ points [Musin 2007]

Approach

- Configurations provide upper bounds on the optimal energy E
- To prove a configuration is good (or optimal) we need good lower bounds for E

Some systematic approaches for obtaining bounds:

- Linear programming bounds using the pair correlation function [Delsarte 1973, Delsarte-Goethals-Seidel 1977, Yudin 1992]
- 3-point bounds using 3-point correlation functions and constraints arising from the stabilizer subgroup of 1 point [Schrijver 2005, Bachoc-Vallentin 2008, Cohn-Woo 2012]
- k-point bounds using stabilizer subgroup of $k-2$ points [Musin 2007]
- Hierarchy for packing problems [L.-Vallentin 2014]

This talk

- Hierarchy obtained by generalizing Lasserre's hierarchy from combinatorial optimization to the continuous setting

This talk

- Hierarchy obtained by generalizing Lasserre's hierarchy from combinatorial optimization to the continuous setting
- Finite convergence to the optimal energy

This talk

- Hierarchy obtained by generalizing Lasserre's hierarchy from combinatorial optimization to the continuous setting
- Finite convergence to the optimal energy
- A duality theory

This talk

- Hierarchy obtained by generalizing Lasserre's hierarchy from combinatorial optimization to the continuous setting
- Finite convergence to the optimal energy
- A duality theory
- Reduction to a converging sequence of semidefinite programs

This talk

- Hierarchy obtained by generalizing Lasserre's hierarchy from combinatorial optimization to the continuous setting
- Finite convergence to the optimal energy
- A duality theory
- Reduction to a converging sequence of semidefinite programs
- Towards computations using several types of symmetry reduction

Approach

Approach

Approach

Approach

Approach

Approach

Conic dual:
Infinite dimensional maximization problem

Approach

Conic dual:
Infinite dimensional maximization problem

Approach

Conic dual:
Infinite dimensional maximization problem

Semi-infinite semidefinite program

The minimization problem

- $I_{=t}\left(I_{t}\right)$ is the set of subsets of V which
- have cardinality $t(\leq t)$
- contain no points which are too close

The minimization problem

- $I_{=t}\left(I_{t}\right)$ is the set of subsets of V which
- have cardinality $t(\leq t)$
- contain no points which are too close
- Assuming $h(\{x, y\}) \rightarrow \infty$ when x and y converge, we have

$$
E=\min _{S \in I_{=N}} \sum_{P \in\binom{S}{2}} h(P)
$$

The minimization problem

- $I_{=t}\left(I_{t}\right)$ is the set of subsets of V which
- have cardinality $t(\leq t)$
- contain no points which are too close
- Assuming $h(\{x, y\}) \rightarrow \infty$ when x and y converge, we have

$$
E=\min _{S \in I=N} \sum_{P \in\binom{S}{2}} h(P)
$$

- We will also assume that V is compact and h continuous

The minimization problem

- $I_{=t}\left(I_{t}\right)$ is the set of subsets of V which
- have cardinality $t(\leq t)$
- contain no points which are too close
- Assuming $h(\{x, y\}) \rightarrow \infty$ when x and y converge, we have

$$
E=\min _{S \in I=N} \sum_{P \in\binom{S}{2}} h(P)
$$

- We will also assume that V is compact and h continuous
- $I_{=t}$ gets its topology as a subset of a quotient of V^{t}

Moment hierarchy of relaxations

- In the relaxation E_{t} we minimize over measures λ on the space I_{s}, where $s=\min \{2 t, N\}$

Moment hierarchy of relaxations

- In the relaxation E_{t} we minimize over measures λ on the space I_{s}, where $s=\min \{2 t, N\}$

Lemma

When $t=N$, the feasible measures λ are (generalized) convex combinations of measures

$$
\chi_{S}=\sum_{R \subseteq S} \delta_{R} \quad \text { where } \quad S \in I_{=N}
$$

Moment hierarchy of relaxations

- In the relaxation E_{t} we minimize over measures λ on the space I_{s}, where $s=\min \{2 t, N\}$

Lemma

When $t=N$, the feasible measures λ are (generalized) convex combinations of measures

$$
\chi_{S}=\sum_{R \subseteq S} \delta_{R} \quad \text { where } \quad S \in I_{=N}
$$

- Objective function: $\lambda(h)=\int_{I_{=N}} h(S) d \lambda(S)$

Moment hierarchy of relaxations

- In the relaxation E_{t} we minimize over measures λ on the space I_{s}, where $s=\min \{2 t, N\}$

Lemma

When $t=N$, the feasible measures λ are (generalized) convex combinations of measures

$$
\chi_{S}=\sum_{R \subseteq S} \delta_{R} \quad \text { where } \quad S \in I_{=N}
$$

- Objective function: $\lambda(h)=\int_{I_{=N}} h(S) d \lambda(S)$
- Moment constraints: $A_{t}^{*} \lambda \in \mathcal{M}\left(I_{t} \times I_{t}\right)_{\succeq 0}$

Moment hierarchy of relaxations

- In the relaxation E_{t} we minimize over measures λ on the space I_{s}, where $s=\min \{2 t, N\}$

Lemma

When $t=N$, the feasible measures λ are (generalized) convex combinations of measures

$$
\chi_{S}=\sum_{R \subseteq S} \delta_{R} \quad \text { where } \quad S \in I_{=N}
$$

- Objective function: $\lambda(h)=\int_{I_{=N}} h(S) d \lambda(S)$
- Moment constraints: $A_{t}^{*} \lambda \in \mathcal{M}\left(I_{t} \times I_{t}\right)_{\succeq 0}$
- Here A_{t}^{*} is an operator $\mathcal{M}\left(I_{s}\right) \rightarrow \mathcal{M}\left(I_{t} \times I_{t}\right)$

Moment hierarchy of relaxations

- In the relaxation E_{t} we minimize over measures λ on the space I_{s}, where $s=\min \{2 t, N\}$

Lemma

When $t=N$, the feasible measures λ are (generalized) convex combinations of measures

$$
\chi_{S}=\sum_{R \subseteq S} \delta_{R} \quad \text { where } \quad S \in I_{=N}
$$

- Objective function: $\lambda(h)=\int_{I_{=N}} h(S) d \lambda(S)$
- Moment constraints: $A_{t}^{*} \lambda \in \mathcal{M}\left(I_{t} \times I_{t}\right)_{\succeq 0}$
- Here A_{t}^{*} is an operator $\mathcal{M}\left(I_{s}\right) \rightarrow \mathcal{M}\left(I_{t} \times I_{t}\right)$
- $\mathcal{M}\left(I_{t} \times I_{t}\right)_{\succeq 0}$ is the cone dual to the cone $\mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}$ of positive kernels

Moment hierarchy of relaxations

- In the relaxation E_{t} we minimize over measures λ on the space I_{s}, where $s=\min \{2 t, N\}$

Lemma

When $t=N$, the feasible measures λ are (generalized) convex combinations of measures

$$
\chi_{S}=\sum_{R \subseteq S} \delta_{R} \quad \text { where } \quad S \in I_{=N}
$$

- Objective function: $\lambda(h)=\int_{I_{=N}} h(S) d \lambda(S)$
- Moment constraints: $A_{t}^{*} \lambda \in \mathcal{M}\left(I_{t} \times I_{t}\right)_{\succeq 0}$
- Here A_{t}^{*} is an operator $\mathcal{M}\left(I_{s}\right) \rightarrow \mathcal{M}\left(I_{t} \times I_{t}\right)$
- $\mathcal{M}\left(I_{t} \times I_{t}\right)_{\succeq 0}$ is the cone dual to the cone $\mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}$ of positive kernels: $\mu(K) \geq 0$ for all $K \succeq 0$

Moment hierarchy of relaxations

- In the relaxation E_{t} we minimize over measures λ on the space I_{s}, where $s=\min \{2 t, N\}$

Lemma

When $t=N$, the feasible measures λ are (generalized) convex combinations of measures

$$
\chi_{S}=\sum_{R \subseteq S} \delta_{R} \quad \text { where } \quad S \in I_{=N}
$$

- Objective function: $\lambda(h)=\int_{I_{=N}} h(S) d \lambda(S)$
- Moment constraints: $A_{t}^{*} \lambda \in \mathcal{M}\left(I_{t} \times I_{t}\right)_{\succeq 0}$
- Here A_{t}^{*} is an operator $\mathcal{M}\left(I_{s}\right) \rightarrow \mathcal{M}\left(I_{t} \times I_{t}\right)$
- $\mathcal{M}\left(I_{t} \times I_{t}\right)_{\succeq 0}$ is the cone dual to the cone $\mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}$ of positive kernels: $\mu(K) \geq 0$ for all $K \succeq 0$
- We have $\chi_{S}(h)=\sum_{P \in\binom{S}{2}} h(P)$

Moment hierarchy of relaxations

- In the relaxation E_{t} we minimize over measures λ on the space I_{s}, where $s=\min \{2 t, N\}$

Lemma

When $t=N$, the feasible measures λ are (generalized) convex combinations of measures

$$
\chi_{S}=\sum_{R \subseteq S} \delta_{R} \quad \text { where } \quad S \in I_{=N}
$$

- Objective function: $\lambda(h)=\int_{I_{=N}} h(S) d \lambda(S)$
- Moment constraints: $A_{t}^{*} \lambda \in \mathcal{M}\left(I_{t} \times I_{t}\right)_{\succeq 0}$
- Here A_{t}^{*} is an operator $\mathcal{M}\left(I_{s}\right) \rightarrow \mathcal{M}\left(I_{t} \times I_{t}\right)$
- $\mathcal{M}\left(I_{t} \times I_{t}\right)_{\succeq 0}$ is the cone dual to the cone $\mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}$ of positive kernels: $\mu(K) \geq 0$ for all $K \succeq 0$
- We have $\chi_{S}(h)=\sum_{P \in\binom{S}{2}} h(P)$

Theorem (Finite convergence)

We have $E_{1} \leq \cdots \leq E_{N}=E$

Dual hierarchy

- E_{t} is a minimization problem, so we need an optimal solution to find a lower bound

Dual hierarchy

- E_{t} is a minimization problem, so we need an optimal solution to find a lower bound
- The conic dual E_{t}^{*} is a maximization problem where any feasible solution provides an upper bound

Dual hierarchy

- E_{t} is a minimization problem, so we need an optimal solution to find a lower bound
- The conic dual E_{t}^{*} is a maximization problem where any feasible solution provides an upper bound
- In E_{t}^{*} optimization is over scalars $a_{i} \in \mathbb{R}$ and positive definite kernels $K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}$

Dual hierarchy

- E_{t} is a minimization problem, so we need an optimal solution to find a lower bound
- The conic dual E_{t}^{*} is a maximization problem where any feasible solution provides an upper bound
- In E_{t}^{*} optimization is over scalars $a_{i} \in \mathbb{R}$ and positive definite kernels $K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}$
- The dual program:

$$
\begin{aligned}
E_{t}^{*}=\sup \left\{\sum_{i=0}^{s}\binom{N}{i} a_{i}: a_{0}, \ldots, a_{s}\right. & \in \mathbb{R}, K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0} \\
& \left.a_{i}+A_{t} K \leq h \text { on } I_{=i} \text { for } i=0, \ldots, s\right\}
\end{aligned}
$$

Dual hierarchy

- E_{t} is a minimization problem, so we need an optimal solution to find a lower bound
- The conic dual E_{t}^{*} is a maximization problem where any feasible solution provides an upper bound
- In E_{t}^{*} optimization is over scalars $a_{i} \in \mathbb{R}$ and positive definite kernels $K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}$
- The dual program:

$$
\begin{aligned}
E_{t}^{*}=\sup \left\{\sum_{i=0}^{s}\binom{N}{i} a_{i}: a_{0}, \ldots, a_{s}\right. & \in \mathbb{R}, K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}, \\
& \left.a_{i}+A_{t} K \leq h \text { on } I_{=i} \text { for } i=0, \ldots, s\right\}
\end{aligned}
$$

- Here A_{t} is the linear operator $\mathcal{C}\left(I_{t} \times I_{t}\right) \rightarrow \mathcal{C}\left(I_{t}\right)$ given by $A_{t} K(S)=\sum_{J, J^{\prime} \in I_{t}: J \cup J^{\prime}=S} K\left(J, J^{\prime}\right)$

Dual hierarchy

- E_{t} is a minimization problem, so we need an optimal solution to find a lower bound
- The conic dual E_{t}^{*} is a maximization problem where any feasible solution provides an upper bound
- In E_{t}^{*} optimization is over scalars $a_{i} \in \mathbb{R}$ and positive definite kernels $K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}$
- The dual program:

$$
\begin{aligned}
E_{t}^{*}=\sup \left\{\sum_{i=0}^{s}\binom{N}{i} a_{i}: a_{0}, \ldots, a_{s}\right. & \in \mathbb{R}, K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0} \\
& \left.a_{i}+A_{t} K \leq h \text { on } I_{=i} \text { for } i=0, \ldots, s\right\}
\end{aligned}
$$

- Here A_{t} is the linear operator $\mathcal{C}\left(I_{t} \times I_{t}\right) \rightarrow \mathcal{C}\left(I_{t}\right)$ given by $A_{t} K(S)=\sum_{J, J^{\prime} \in I_{t}: J \cup J^{\prime}=S} K\left(J, J^{\prime}\right)$

Theorem

Strong duality holds: $E_{t}=E_{t}^{*}$ for each t

Closing the gaps

Conic dual:
Infinite dimensional maximization problem

Semi-infinite semidefinite program

Finite dimensional approximations to E_{t}^{*}

- Define $E_{t, d}^{*}$ by replacing the cone $\mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}$ in E_{t}^{*} by a finite dimensional inner approximating cone C_{d}

Finite dimensional approximations to E_{t}^{*}

- Define $E_{t, d}^{*}$ by replacing the cone $\mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}$ in E_{t}^{*} by a finite dimensional inner approximating cone C_{d}
- Let e_{1}, e_{2}, \ldots be a dense sequence in $\mathcal{C}\left(I_{t}\right)$ and define

$$
C_{d}=\left\{\sum_{i, j=1}^{d} F_{i, j} e_{i} \otimes e_{j}: F \in \mathbb{R}^{d \times d} \text { positive semidefinite }\right\}
$$

Finite dimensional approximations to E_{t}^{*}

- Define $E_{t, d}^{*}$ by replacing the cone $\mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}$ in E_{t}^{*} by a finite dimensional inner approximating cone C_{d}
- Let e_{1}, e_{2}, \ldots be a dense sequence in $\mathcal{C}\left(I_{t}\right)$ and define

$$
C_{d}=\left\{\sum_{i, j=1}^{d} F_{i, j} e_{i} \otimes e_{j}: F \in \mathbb{R}^{d \times d} \text { positive semidefinite }\right\}
$$

Lemma

Suppose X is a compact metric space. Then the extreme rays of the cone $\mathcal{C}(X \times X)_{\succeq 0}$ are precisely the kernels $f \otimes f$ with $f \in \mathcal{C}(X)$

Finite dimensional approximations to E_{t}^{*}

- Define $E_{t, d}^{*}$ by replacing the cone $\mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}$ in E_{t}^{*} by a finite dimensional inner approximating cone C_{d}
- Let e_{1}, e_{2}, \ldots be a dense sequence in $\mathcal{C}\left(I_{t}\right)$ and define

$$
C_{d}=\left\{\sum_{i, j=1}^{d} F_{i, j} e_{i} \otimes e_{j}: F \in \mathbb{R}^{d \times d} \text { positive semidefinite }\right\}
$$

Lemma

Suppose X is a compact metric space. Then the extreme rays of the cone $\mathcal{C}(X \times X)_{\succeq 0}$ are precisely the kernels $f \otimes f$ with $f \in \mathcal{C}(X)$

- This implies $\cup_{d=0}^{\infty} C_{d}$ is uniformly dense in $\mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}$

Finite dimensional approximations to E_{t}^{*}

- Define $E_{t, d}^{*}$ by replacing the cone $\mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}$ in E_{t}^{*} by a finite dimensional inner approximating cone C_{d}
- Let e_{1}, e_{2}, \ldots be a dense sequence in $\mathcal{C}\left(I_{t}\right)$ and define

$$
C_{d}=\left\{\sum_{i, j=1}^{d} F_{i, j} e_{i} \otimes e_{j}: F \in \mathbb{R}^{d \times d} \text { positive semidefinite }\right\}
$$

Lemma

Suppose X is a compact metric space. Then the extreme rays of the cone $\mathcal{C}(X \times X)_{\succeq 0}$ are precisely the kernels $f \otimes f$ with $f \in \mathcal{C}(X)$

- This implies $\cup_{d=0}^{\infty} C_{d}$ is uniformly dense in $\mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}$

Theorem

If V is a compact metric space, then $E_{t, d}^{*} \rightarrow E_{t}^{*}$ as $d \rightarrow \infty$ for all t

Block diagonalization

- For computations use the symmetry of V and h, expressed by the action of a group Γ, and Bochner's theorem to block diagonalize the matrix F

Block diagonalization

- For computations use the symmetry of V and h, expressed by the action of a group Γ, and Bochner's theorem to block diagonalize the matrix F
- For this we need a symmetry adapted basis of $\mathcal{C}\left(I_{t}\right)$

Block diagonalization

- For computations use the symmetry of V and h, expressed by the action of a group Γ, and Bochner's theorem to block diagonalize the matrix F
- For this we need a symmetry adapted basis of $\mathcal{C}\left(I_{t}\right)$
- If $t=1$ and $V=S^{2}$, then

$$
\mathcal{C}\left(I_{t}\right) \simeq \mathbb{R} \oplus \mathcal{C}\left(S^{2}\right)
$$

Block diagonalization

- For computations use the symmetry of V and h, expressed by the action of a group Γ, and Bochner's theorem to block diagonalize the matrix F
- For this we need a symmetry adapted basis of $\mathcal{C}\left(I_{t}\right)$
- If $t=1$ and $V=S^{2}$, then

$$
\mathcal{C}\left(I_{t}\right) \simeq \mathbb{R} \oplus \mathcal{C}\left(S^{2}\right)=\mathbb{R} \oplus \bigoplus_{k=0}^{\infty} H_{k}
$$

Block diagonalization

- For computations use the symmetry of V and h, expressed by the action of a group Γ, and Bochner's theorem to block diagonalize the matrix F
- For this we need a symmetry adapted basis of $\mathcal{C}\left(I_{t}\right)$
- If $t=1$ and $V=S^{2}$, then

$$
\mathcal{C}\left(I_{t}\right) \simeq \mathbb{R} \oplus \mathcal{C}\left(S^{2}\right)=\mathbb{R} \oplus \bigoplus_{k=0}^{\infty} H_{k}
$$

- This will block diagonalize to a diagonal matrix and we get (something close to) Yudin's LP bound

Block diagonalization

- For computations use the symmetry of V and h, expressed by the action of a group Γ, and Bochner's theorem to block diagonalize the matrix F
- For this we need a symmetry adapted basis of $\mathcal{C}\left(I_{t}\right)$
- If $t=1$ and $V=S^{2}$, then

$$
\mathcal{C}\left(I_{t}\right) \simeq \mathbb{R} \oplus \mathcal{C}\left(S^{2}\right)=\mathbb{R} \oplus \bigoplus_{k=0}^{\infty} H_{k}
$$

- This will block diagonalize to a diagonal matrix and we get (something close to) Yudin's LP bound
- In general $\mathcal{C}\left(I_{t}\right)$ injects into $\mathcal{C}(V)^{\odot t}$

Block diagonalization

- For computations use the symmetry of V and h, expressed by the action of a group Γ, and Bochner's theorem to block diagonalize the matrix F
- For this we need a symmetry adapted basis of $\mathcal{C}\left(I_{t}\right)$
- If $t=1$ and $V=S^{2}$, then

$$
\mathcal{C}\left(I_{t}\right) \simeq \mathbb{R} \oplus \mathcal{C}\left(S^{2}\right)=\mathbb{R} \oplus \bigoplus_{k=0}^{\infty} H_{k}
$$

- This will block diagonalize to a diagonal matrix and we get (something close to) Yudin's LP bound
- In general $\mathcal{C}\left(I_{t}\right)$ injects into $\mathcal{C}(V)^{\odot t}$
- $\mathcal{C}(V)^{\odot t}$ can be written in terms of tensor products of the irreducible subspaces of $\mathcal{C}(V)$

Block diagonalization

- For computations use the symmetry of V and h, expressed by the action of a group Γ, and Bochner's theorem to block diagonalize the matrix F
- For this we need a symmetry adapted basis of $\mathcal{C}\left(I_{t}\right)$
- If $t=1$ and $V=S^{2}$, then

$$
\mathcal{C}\left(I_{t}\right) \simeq \mathbb{R} \oplus \mathcal{C}\left(S^{2}\right)=\mathbb{R} \oplus \bigoplus_{k=0}^{\infty} H_{k}
$$

- This will block diagonalize to a diagonal matrix and we get (something close to) Yudin's LP bound
- In general $\mathcal{C}\left(I_{t}\right)$ injects into $\mathcal{C}(V)^{\odot t}$
- $\mathcal{C}(V)^{\odot t}$ can be written in terms of tensor products of the irreducible subspaces of $\mathcal{C}(V)$
- If we know how to decompose $\mathcal{C}(V)$ into irreducibles, and how to decompose tensor products of those irreducibles into irreducibles, then we have a symmerty adapted basis of V_{t}

The case $t=2$ and $V=S^{2}$

- We know how to these decompositions from the quantum mechanics literature (angular momentum coupling): use Clebsch-Gordan coefficients

The case $t=2$ and $V=S^{2}$

- We know how to these decompositions from the quantum mechanics literature (angular momentum coupling): use Clebsch-Gordan coefficients
- The affine constraints in $E_{t, d}^{*}$ are nonnegativity constraints of a polynomial $p \in \mathbb{R}\left[x_{1}, \ldots, x_{4}\right]$, where each x_{i} is a vector of 3 variables (the coefficients of these polynomials depend on the entries in the block diagonalization of F)

The case $t=2$ and $V=S^{2}$

- We know how to these decompositions from the quantum mechanics literature (angular momentum coupling): use Clebsch-Gordan coefficients
- The affine constraints in $E_{t, d}^{*}$ are nonnegativity constraints of a polynomial $p \in \mathbb{R}\left[x_{1}, \ldots, x_{4}\right]$, where each x_{i} is a vector of 3 variables (the coefficients of these polynomials depend on the entries in the block diagonalization of F)
- We have $p\left(\gamma x_{1}, \ldots, \gamma x_{4}\right)=p\left(x_{1}, \ldots, x_{4}\right)$ for all $\gamma \in O(3)$

The case $t=2$ and $V=S^{2}$

- We know how to these decompositions from the quantum mechanics literature (angular momentum coupling): use Clebsch-Gordan coefficients
- The affine constraints in $E_{t, d}^{*}$ are nonnegativity constraints of a polynomial $p \in \mathbb{R}\left[x_{1}, \ldots, x_{4}\right]$, where each x_{i} is a vector of 3 variables (the coefficients of these polynomials depend on the entries in the block diagonalization of F)
- We have $p\left(\gamma x_{1}, \ldots, \gamma x_{4}\right)=p\left(x_{1}, \ldots, x_{4}\right)$ for all $\gamma \in O(3)$
- Invariant theory: there is a polynomial q such that $p\left(x_{1}, \ldots, x_{4}\right)=q\left(x_{1} \cdot x_{2}, \ldots, x_{3} \cdot x_{4}\right)$

The case $t=2$ and $V=S^{2}$

- We know how to these decompositions from the quantum mechanics literature (angular momentum coupling): use Clebsch-Gordan coefficients
- The affine constraints in $E_{t, d}^{*}$ are nonnegativity constraints of a polynomial $p \in \mathbb{R}\left[x_{1}, \ldots, x_{4}\right]$, where each x_{i} is a vector of 3 variables (the coefficients of these polynomials depend on the entries in the block diagonalization of F)
- We have $p\left(\gamma x_{1}, \ldots, \gamma x_{4}\right)=p\left(x_{1}, \ldots, x_{4}\right)$ for all $\gamma \in O(3)$
- Invariant theory: there is a polynomial q such that $p\left(x_{1}, \ldots, x_{4}\right)=q\left(x_{1} \cdot x_{2}, \ldots, x_{3} \cdot x_{4}\right)$
- Model nonnegativity constraints as sum of squares constraints using Putinar's theorem from real algebraic geometry

The case $t=2$ and $V=S^{2}$

- We know how to these decompositions from the quantum mechanics literature (angular momentum coupling): use Clebsch-Gordan coefficients
- The affine constraints in $E_{t, d}^{*}$ are nonnegativity constraints of a polynomial $p \in \mathbb{R}\left[x_{1}, \ldots, x_{4}\right]$, where each x_{i} is a vector of 3 variables (the coefficients of these polynomials depend on the entries in the block diagonalization of F)
- We have $p\left(\gamma x_{1}, \ldots, \gamma x_{4}\right)=p\left(x_{1}, \ldots, x_{4}\right)$ for all $\gamma \in O(3)$
- Invariant theory: there is a polynomial q such that $p\left(x_{1}, \ldots, x_{4}\right)=q\left(x_{1} \cdot x_{2}, \ldots, x_{3} \cdot x_{4}\right)$
- Model nonnegativity constraints as sum of squares constraints using Putinar's theorem from real algebraic geometry
- A sum of squares polynomial s can be written as $s(x)=v(x)^{\top} Q v(x)$, where Q is a positive semidefinite matrix and $v(x)$ a vector containing all monomials up to some degree

More symmetry

- More symmetry: $p\left(x_{1}, \ldots, x_{4}\right)=p\left(x_{\sigma(1)}, \ldots, x_{\sigma(4)}\right)$ for all permutations $\sigma \in S_{4}$

More symmetry

- More symmetry: $p\left(x_{1}, \ldots, x_{4}\right)=p\left(x_{\sigma(1)}, \ldots, x_{\sigma(4)}\right)$ for all permutations $\sigma \in S_{4}$
- This means that q is symmetric under a subgroup of S_{6}

More symmetry

- More symmetry: $p\left(x_{1}, \ldots, x_{4}\right)=p\left(x_{\sigma(1)}, \ldots, x_{\sigma(4)}\right)$ for all permutations $\sigma \in S_{4}$
- This means that q is symmetric under a subgroup of S_{6}
- Use this to block diagonalize the positive semidefinite matrices showing up in the sums of squares characterizations

More symmetry

- More symmetry: $p\left(x_{1}, \ldots, x_{4}\right)=p\left(x_{\sigma(1)}, \ldots, x_{\sigma(4)}\right)$ for all permutations $\sigma \in S_{4}$
- This means that q is symmetric under a subgroup of S_{6}
- Use this to block diagonalize the positive semidefinite matrices showing up in the sums of squares characterizations
- We give a symmetrized version of Putinar's theorem using the method of Gatermann and Parillo for symmetry reduction in sums of squares characterizations

More symmetry

- More symmetry: $p\left(x_{1}, \ldots, x_{4}\right)=p\left(x_{\sigma(1)}, \ldots, x_{\sigma(4)}\right)$ for all permutations $\sigma \in S_{4}$
- This means that q is symmetric under a subgroup of S_{6}
- Use this to block diagonalize the positive semidefinite matrices showing up in the sums of squares characterizations
- We give a symmetrized version of Putinar's theorem using the method of Gatermann and Parillo for symmetry reduction in sums of squares characterizations
- Significant simplifications in the semidefinite programs

More symmetry

- More symmetry: $p\left(x_{1}, \ldots, x_{4}\right)=p\left(x_{\sigma(1)}, \ldots, x_{\sigma(4)}\right)$ for all permutations $\sigma \in S_{4}$
- This means that q is symmetric under a subgroup of S_{6}
- Use this to block diagonalize the positive semidefinite matrices showing up in the sums of squares characterizations
- We give a symmetrized version of Putinar's theorem using the method of Gatermann and Parillo for symmetry reduction in sums of squares characterizations
- Significant simplifications in the semidefinite programs
- Not clear yet whether we can compute $E_{2, d}^{*}$ for large enough d (with current SDP solvers) to get improved bounds for S^{2}

More symmetry

- More symmetry: $p\left(x_{1}, \ldots, x_{4}\right)=p\left(x_{\sigma(1)}, \ldots, x_{\sigma(4)}\right)$ for all permutations $\sigma \in S_{4}$
- This means that q is symmetric under a subgroup of S_{6}
- Use this to block diagonalize the positive semidefinite matrices showing up in the sums of squares characterizations
- We give a symmetrized version of Putinar's theorem using the method of Gatermann and Parillo for symmetry reduction in sums of squares characterizations
- Significant simplifications in the semidefinite programs
- Not clear yet whether we can compute $E_{2, d}^{*}$ for large enough d (with current SDP solvers) to get improved bounds for S^{2}
- Toy example: E_{1} is not sharp for 3 points on S^{1} with the Lennard-Jones potential

More symmetry

- More symmetry: $p\left(x_{1}, \ldots, x_{4}\right)=p\left(x_{\sigma(1)}, \ldots, x_{\sigma(4)}\right)$ for all permutations $\sigma \in S_{4}$
- This means that q is symmetric under a subgroup of S_{6}
- Use this to block diagonalize the positive semidefinite matrices showing up in the sums of squares characterizations
- We give a symmetrized version of Putinar's theorem using the method of Gatermann and Parillo for symmetry reduction in sums of squares characterizations
- Significant simplifications in the semidefinite programs
- Not clear yet whether we can compute $E_{2, d}^{*}$ for large enough d (with current SDP solvers) to get improved bounds for S^{2}
- Toy example: E_{1} is not sharp for 3 points on S^{1} with the Lennard-Jones potential
- Using a reduction to 3 variables using trigonometric polynomials we compute that $E_{2}=E$ (up to solver precision)

Thank you!

