
Energy minimization via moment hierarchies

David de Laat (TU Delft)

ESI Workshop on Optimal Point Configurations and Applications
16 October 2014

http://www.daviddelaat.nl


Energy minimization

I What is the minimal potential energy E when we put N
particles with pair potential h in a container V ?

I Example: For the Thomson problem we take

V = S2 and h({x, y}) =
1

‖x− y‖

I As an optimization problem:

E = min
S∈(V

N)

∑
P∈(S2)

h(P )
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Approach

I Configurations provide upper bounds on the optimal energy E

I To prove a configuration is good (or optimal) we need good
lower bounds for E

Some systematic approaches for obtaining bounds:

I Linear programming bounds using the pair correlation function
[Delsarte 1973, Delsarte-Goethals-Seidel 1977, Yudin 1992]

I 3-point bounds using 3-point correlation functions and
constraints arising from the stabilizer subgroup of 1 point
[Schrijver 2005, Bachoc-Vallentin 2008, Cohn-Woo 2012]

I k-point bounds using stabilizer subgroup of k − 2 points
[Musin 2007]

I Hierarchy for packing problems [L.-Vallentin 2014]
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This talk

I Hierarchy obtained by generalizing Lasserre’s hierarchy from
combinatorial optimization to the continuous setting

I Finite convergence to the optimal energy

I A duality theory

I Reduction to a converging sequence of semidefinite programs

I Towards computations using several types of symmetry
reduction
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The minimization problem

I I=t (It) is the set of subsets of V which
I have cardinality t (≤ t)
I contain no points which are too close

I Assuming h({x, y})→∞ when x and y converge, we have

E = min
S∈I=N

∑
P∈(S2)

h(P )

I We will also assume that V is compact and h continuous

I I=t gets its topology as a subset of a quotient of V t
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Moment hierarchy of relaxations
I In the relaxation Et we minimize over measures λ on the

space Is, where s = min{2t,N}

Lemma

When t = N , the feasible measures λ are (generalized) convex
combinations of measures

χS =
∑
R⊆S

δR where S ∈ I=N

I Objective function: λ(h) =
∫
I=N

h(S) dλ(S)
I Moment constraints: A∗tλ ∈M(It × It)�0
I Here A∗t is an operator M(Is)→M(It × It)
I M(It × It)�0 is the cone dual to the cone C(It × It)�0 of

positive kernels: µ(K) ≥ 0 for all K � 0
I We have χS(h) =

∑
P∈(S2)

h(P )

Theorem (Finite convergence)

We have E1 ≤ · · · ≤ EN = E
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Dual hierarchy

I Et is a minimization problem, so we need an optimal solution
to find a lower bound

I The conic dual E∗t is a maximization problem where any
feasible solution provides an upper bound

I In E∗t optimization is over scalars ai ∈ R and positive definite
kernels K ∈ C(It × It)�0

I The dual program:

E∗t = sup
{ s∑
i=0

(
N
i

)
ai : a0, . . . , as ∈ R, K ∈ C(It × It)�0,

ai +AtK ≤ h on I=i for i = 0, . . . , s
}

I Here At is the linear operator C(It × It)→ C(It) given by
AtK(S) =

∑
J,J ′∈It:J∪J ′=SK(J, J ′)

Theorem

Strong duality holds: Et = E∗t for each t



Dual hierarchy

I Et is a minimization problem, so we need an optimal solution
to find a lower bound

I The conic dual E∗t is a maximization problem where any
feasible solution provides an upper bound

I In E∗t optimization is over scalars ai ∈ R and positive definite
kernels K ∈ C(It × It)�0

I The dual program:

E∗t = sup
{ s∑
i=0

(
N
i

)
ai : a0, . . . , as ∈ R, K ∈ C(It × It)�0,

ai +AtK ≤ h on I=i for i = 0, . . . , s
}

I Here At is the linear operator C(It × It)→ C(It) given by
AtK(S) =

∑
J,J ′∈It:J∪J ′=SK(J, J ′)

Theorem

Strong duality holds: Et = E∗t for each t



Dual hierarchy

I Et is a minimization problem, so we need an optimal solution
to find a lower bound

I The conic dual E∗t is a maximization problem where any
feasible solution provides an upper bound

I In E∗t optimization is over scalars ai ∈ R and positive definite
kernels K ∈ C(It × It)�0

I The dual program:

E∗t = sup
{ s∑
i=0

(
N
i

)
ai : a0, . . . , as ∈ R, K ∈ C(It × It)�0,

ai +AtK ≤ h on I=i for i = 0, . . . , s
}

I Here At is the linear operator C(It × It)→ C(It) given by
AtK(S) =

∑
J,J ′∈It:J∪J ′=SK(J, J ′)

Theorem

Strong duality holds: Et = E∗t for each t



Dual hierarchy

I Et is a minimization problem, so we need an optimal solution
to find a lower bound

I The conic dual E∗t is a maximization problem where any
feasible solution provides an upper bound

I In E∗t optimization is over scalars ai ∈ R and positive definite
kernels K ∈ C(It × It)�0

I The dual program:

E∗t = sup
{ s∑
i=0

(
N
i

)
ai : a0, . . . , as ∈ R, K ∈ C(It × It)�0,

ai +AtK ≤ h on I=i for i = 0, . . . , s
}

I Here At is the linear operator C(It × It)→ C(It) given by
AtK(S) =

∑
J,J ′∈It:J∪J ′=SK(J, J ′)

Theorem

Strong duality holds: Et = E∗t for each t



Dual hierarchy

I Et is a minimization problem, so we need an optimal solution
to find a lower bound

I The conic dual E∗t is a maximization problem where any
feasible solution provides an upper bound

I In E∗t optimization is over scalars ai ∈ R and positive definite
kernels K ∈ C(It × It)�0

I The dual program:

E∗t = sup
{ s∑
i=0

(
N
i

)
ai : a0, . . . , as ∈ R, K ∈ C(It × It)�0,

ai +AtK ≤ h on I=i for i = 0, . . . , s
}

I Here At is the linear operator C(It × It)→ C(It) given by
AtK(S) =

∑
J,J ′∈It:J∪J ′=SK(J, J ′)

Theorem

Strong duality holds: Et = E∗t for each t



Dual hierarchy

I Et is a minimization problem, so we need an optimal solution
to find a lower bound

I The conic dual E∗t is a maximization problem where any
feasible solution provides an upper bound

I In E∗t optimization is over scalars ai ∈ R and positive definite
kernels K ∈ C(It × It)�0

I The dual program:

E∗t = sup
{ s∑
i=0

(
N
i

)
ai : a0, . . . , as ∈ R, K ∈ C(It × It)�0,

ai +AtK ≤ h on I=i for i = 0, . . . , s
}

I Here At is the linear operator C(It × It)→ C(It) given by
AtK(S) =

∑
J,J ′∈It:J∪J ′=SK(J, J ′)

Theorem

Strong duality holds: Et = E∗t for each t



Closing the gaps

Et E0 E∗tE∗t,d

Difficult minimization problem

Relaxation to a conic program:

Conic dual:

Semi-infinite semidefinite program

Infinite dimensional minimization problem

Infinite dimensional maximization problem



Finite dimensional approximations to E∗t

I Define E∗t,d by replacing the cone C(It × It)�0 in E∗t by a
finite dimensional inner approximating cone Cd

I Let e1, e2, . . . be a dense sequence in C(It) and define

Cd =
{ d∑
i,j=1

Fi,jei ⊗ ej : F ∈ Rd×d positive semidefinite
}

Lemma

Suppose X is a compact metric space. Then the extreme rays of
the cone C(X×X)�0 are precisely the kernels f ⊗f with f ∈ C(X)

I This implies ∪∞d=0Cd is uniformly dense in C(It × It)�0

Theorem

If V is a compact metric space, then E∗t,d → E∗t as d→∞ for all t
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Block diagonalization

I For computations use the symmetry of V and h, expressed by
the action of a group Γ, and Bochner’s theorem to block
diagonalize the matrix F

I For this we need a symmetry adapted basis of C(It)
I If t = 1 and V = S2, then

C(It) ' R⊕ C(S2) = R⊕
∞⊕
k=0

Hk

I This will block diagonalize to a diagonal matrix and we get
(something close to) Yudin’s LP bound

I In general C(It) injects into C(V )�t

I C(V )�t can be written in terms of tensor products of the
irreducible subspaces of C(V )

I If we know how to decompose C(V ) into irreducibles, and how
to decompose tensor products of those irreducibles into
irreducibles, then we have a symmerty adapted basis of Vt
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The case t = 2 and V = S2

I We know how to these decompositions from the quantum
mechanics literature (angular momentum coupling): use
Clebsch-Gordan coefficients

I The affine constraints in E∗t,d are nonnegativity constraints of
a polynomial p ∈ R[x1, . . . , x4], where each xi is a vector of 3
variables (the coefficients of these polynomials depend on the
entries in the block diagonalization of F )

I We have p(γx1, . . . , γx4) = p(x1, . . . , x4) for all γ ∈ O(3)

I Invariant theory: there is a polynomial q such that
p(x1, . . . , x4) = q(x1 · x2, . . . , x3 · x4)

I Model nonnegativity constraints as sum of squares constraints
using Putinar’s theorem from real algebraic geometry

I A sum of squares polynomial s can be written as
s(x) = v(x)TQv(x), where Q is a positive semidefinite matrix
and v(x) a vector containing all monomials up to some degree
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More symmetry

I More symmetry: p(x1, . . . , x4) = p(xσ(1), . . . , xσ(4)) for all
permutations σ ∈ S4

I This means that q is symmetric under a subgroup of S6
I Use this to block diagonalize the positive semidefinite

matrices showing up in the sums of squares characterizations

I We give a symmetrized version of Putinar’s theorem using the
method of Gatermann and Parillo for symmetry reduction in
sums of squares characterizations

I Significant simplifications in the semidefinite programs

I Not clear yet whether we can compute E∗2,d for large enough d

(with current SDP solvers) to get improved bounds for S2

I Toy example: E1 is not sharp for 3 points on S1 with the
Lennard-Jones potential

I Using a reduction to 3 variables using trigonometric
polynomials we compute that E2 = E (up to solver precision)



More symmetry

I More symmetry: p(x1, . . . , x4) = p(xσ(1), . . . , xσ(4)) for all
permutations σ ∈ S4

I This means that q is symmetric under a subgroup of S6

I Use this to block diagonalize the positive semidefinite
matrices showing up in the sums of squares characterizations

I We give a symmetrized version of Putinar’s theorem using the
method of Gatermann and Parillo for symmetry reduction in
sums of squares characterizations

I Significant simplifications in the semidefinite programs

I Not clear yet whether we can compute E∗2,d for large enough d

(with current SDP solvers) to get improved bounds for S2

I Toy example: E1 is not sharp for 3 points on S1 with the
Lennard-Jones potential

I Using a reduction to 3 variables using trigonometric
polynomials we compute that E2 = E (up to solver precision)



More symmetry

I More symmetry: p(x1, . . . , x4) = p(xσ(1), . . . , xσ(4)) for all
permutations σ ∈ S4

I This means that q is symmetric under a subgroup of S6
I Use this to block diagonalize the positive semidefinite

matrices showing up in the sums of squares characterizations

I We give a symmetrized version of Putinar’s theorem using the
method of Gatermann and Parillo for symmetry reduction in
sums of squares characterizations

I Significant simplifications in the semidefinite programs

I Not clear yet whether we can compute E∗2,d for large enough d

(with current SDP solvers) to get improved bounds for S2

I Toy example: E1 is not sharp for 3 points on S1 with the
Lennard-Jones potential

I Using a reduction to 3 variables using trigonometric
polynomials we compute that E2 = E (up to solver precision)



More symmetry

I More symmetry: p(x1, . . . , x4) = p(xσ(1), . . . , xσ(4)) for all
permutations σ ∈ S4

I This means that q is symmetric under a subgroup of S6
I Use this to block diagonalize the positive semidefinite

matrices showing up in the sums of squares characterizations

I We give a symmetrized version of Putinar’s theorem using the
method of Gatermann and Parillo for symmetry reduction in
sums of squares characterizations

I Significant simplifications in the semidefinite programs

I Not clear yet whether we can compute E∗2,d for large enough d

(with current SDP solvers) to get improved bounds for S2

I Toy example: E1 is not sharp for 3 points on S1 with the
Lennard-Jones potential

I Using a reduction to 3 variables using trigonometric
polynomials we compute that E2 = E (up to solver precision)



More symmetry

I More symmetry: p(x1, . . . , x4) = p(xσ(1), . . . , xσ(4)) for all
permutations σ ∈ S4

I This means that q is symmetric under a subgroup of S6
I Use this to block diagonalize the positive semidefinite

matrices showing up in the sums of squares characterizations

I We give a symmetrized version of Putinar’s theorem using the
method of Gatermann and Parillo for symmetry reduction in
sums of squares characterizations

I Significant simplifications in the semidefinite programs

I Not clear yet whether we can compute E∗2,d for large enough d

(with current SDP solvers) to get improved bounds for S2

I Toy example: E1 is not sharp for 3 points on S1 with the
Lennard-Jones potential

I Using a reduction to 3 variables using trigonometric
polynomials we compute that E2 = E (up to solver precision)



More symmetry

I More symmetry: p(x1, . . . , x4) = p(xσ(1), . . . , xσ(4)) for all
permutations σ ∈ S4

I This means that q is symmetric under a subgroup of S6
I Use this to block diagonalize the positive semidefinite

matrices showing up in the sums of squares characterizations

I We give a symmetrized version of Putinar’s theorem using the
method of Gatermann and Parillo for symmetry reduction in
sums of squares characterizations

I Significant simplifications in the semidefinite programs

I Not clear yet whether we can compute E∗2,d for large enough d

(with current SDP solvers) to get improved bounds for S2

I Toy example: E1 is not sharp for 3 points on S1 with the
Lennard-Jones potential

I Using a reduction to 3 variables using trigonometric
polynomials we compute that E2 = E (up to solver precision)



More symmetry

I More symmetry: p(x1, . . . , x4) = p(xσ(1), . . . , xσ(4)) for all
permutations σ ∈ S4

I This means that q is symmetric under a subgroup of S6
I Use this to block diagonalize the positive semidefinite

matrices showing up in the sums of squares characterizations

I We give a symmetrized version of Putinar’s theorem using the
method of Gatermann and Parillo for symmetry reduction in
sums of squares characterizations

I Significant simplifications in the semidefinite programs

I Not clear yet whether we can compute E∗2,d for large enough d

(with current SDP solvers) to get improved bounds for S2

I Toy example: E1 is not sharp for 3 points on S1 with the
Lennard-Jones potential

I Using a reduction to 3 variables using trigonometric
polynomials we compute that E2 = E (up to solver precision)



More symmetry

I More symmetry: p(x1, . . . , x4) = p(xσ(1), . . . , xσ(4)) for all
permutations σ ∈ S4

I This means that q is symmetric under a subgroup of S6
I Use this to block diagonalize the positive semidefinite

matrices showing up in the sums of squares characterizations

I We give a symmetrized version of Putinar’s theorem using the
method of Gatermann and Parillo for symmetry reduction in
sums of squares characterizations

I Significant simplifications in the semidefinite programs

I Not clear yet whether we can compute E∗2,d for large enough d

(with current SDP solvers) to get improved bounds for S2

I Toy example: E1 is not sharp for 3 points on S1 with the
Lennard-Jones potential

I Using a reduction to 3 variables using trigonometric
polynomials we compute that E2 = E (up to solver precision)



Thank you!


