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Packing problem 1: Independent sets in finite graphs

- In general difficult to solve to optimality (NP-hard)

- The Lovász ϑ-number upper bounds the independence number

- Can be computed through semidefinite programming (SDP)
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Packing problem 2: Topological packing graphs

Definition (L-Vallentin 2015)
A graph whose vertex set is a Hausdorff space is a topological
packing graph if each finite clique is contained in an open clique

Motivating example: The spherical cap packing problem

- As vertex set we take the unit sphere

- Distinct vertices x and y are adjacent if the spherical caps
centered about x and y intersect in their interiors:

x

y

- Optimal density given by the independence number α(G)

- [Bachoc-Nebe-Oliveira-Vallentin 2009] showed the Delsarte
bound can be interpreted as the ϑ-number of this graph
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Packing problem 3: Almost finite graphs

- The symmetry group Γ of a topological packing graph G is
the group of all autohomeomorphisms of the vertices
preserving adjacencies and nonadjacencies

- Let I be the set of independent sets in the graph

- Consider graphs where the quotient I/Γ is finite

Motivating example: Spherical finite distance graphs

- Two vertices x, y ∈ Sn−1 are adjacent if x · y 6∈ {1, a1, . . . , ar}
- |I/Γ| <∞ follows from the fact that any two isometric sets

in Rn are related by an isometry of Rn
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Packing problem 3: Almost finite graphs

- Can use bounds for spherical finite distance graphs to obtain
bounds on the maximum number of equiangular lines and
nonexistence proofs of strongly regular graphs

- The Delsarte 2-point bound and Bachoc-Vallentin 3-point
bound have been studied extensively in the context of
spherical finite distance graphs and equiangular lines
[Delsarte, Goethals, Seidel, Barg, Yu, King, Tang, Glazyrin]
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A hierarchy of k-point bounds for packing problems

- Ik−2 is the set of independent sets of cardinality ≤ k − 2

- C(V 2 × Ik−2)�0 cone of continuous maps T : V 2 × Ik−2 → R
where each (x, y) 7→ T (x, y,Q) is a positive kernel

Definition (L-Machado-Oliveira-Vallentin 2018)

∆k(G)∗ = inf
{
α : α ∈ R, T ∈ C(V 2 × Ik−2)�0,

BkT ≤ (α− 1)1I=1 − 21I=2

}
Bk : C(Ik\{∅})→ C(V 2×Ik−2), BkT (S) =

∑
Q⊆S:
|Q|≤k−2

∑
x,y∈S:

{x,y}∪Q=S

T (x, y,Q)

- α(G) ≤ ∆k(G)∗ for all compact topological packing graphs G

- ∆2(G) is the Lovász ϑ-number (Delsarte bound)

- ∆3(G) is essentially the Bachoc-Vallentin 3-point bound

- Stabilization at ∆α(G)+2(G), but no convergence proof

- T (γx, γy, γQ) = T (x, y,Q) for all γ ∈ Γ
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Symmetry reduction

Lemma (L-Machado-Oliveira-Vallentin 2018)
If Ik−2/Γ is finite, then we have the homeomorphism∐

R∈Rk−2

V 2/StabΓ(R) ' (V 2 × Ik−2)/Γ,

where Rk−2 a complete set of representatives of the orbits of Ik−2

- For Q ∈ ΓR, let γQ ∈ Γ be an operation for which γQR = Q

Corollary
If Ik−2/Γ is finite, then we have the isomorphism

Ψ:
⊕

R∈Rk−2

C(V 2)StabΓ(R) → C(V 2 × Ik−2)Γ

given by Ψ(K)(x, y,Q) = Kγ−1
Q Q(γ−1

Q x, γ−1
Q y)
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Stabilizer invariant kernels

- Let R ∈ Rk−2 with k ≤ n; assume vectors in R independent

- Let AR be an n×m matrix with the vectors of R as columns

- Let LAR = L−1AT
R, where L is a matrix such that LLT is the

Cholesky factorization of AT
RAR

Theorem (Musin 2014 / Nonorthogonal extension LMOV 2018)
Every

K ∈ C(Sn−1 × Sn−1)
StabO(n)(span(R))

�0

can be approximated uniformly by kernels of the form

K(x, y) =

d∑
l=0

trace(Fl Y
n,m
l (x · y, LARx, LARy)),

where the matrices Fl are positive semidefinite
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The cardinality of Ik−2/Γ

- We can write ∆k(G)∗ as an SDP when Ik−2/Γ is finite

- If Γ acts transitively on V , then Ik−2/Γ is finite for k = 2, 3

- Explains why the Delsarte and Bachoc-Vallentin bounds can
be computed for spherical codes, and why it’s not clear how to
compute 4-point bounds for spherical codes via this approach

- For finite spherical distance graphs we do not need SOS
techniques

- Implementation of ∆k(G)∗ for finite spherical distance graphs
for general k

- Currently computations for k = 4, 5
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Adaptation of the Lasserre hierarchy for packing

Definition (L-Vallentin 2015):

last(G)∗ = inf
{
K(∅, ∅) : K ∈ C(It × It)�0,

AtK(S) ≤ −1I=1(S) for S ∈ I ′2t
}

At : C(It × It)→ C(I2t), AtK(S) =
∑

J,J ′∈It:J∪J ′=S
K(J, J ′)

- α(G) ≤ last(G)∗ for all compact topological packing graphs G

- last(G)∗ is a 2t-point bound

Theorem
Convergence: lasα(G)(G)∗ = α(G)
(The proof uses the primal)



Adaptation of the Lasserre hierarchy for packing

Definition (L-Vallentin 2015):

last(G)∗ = inf
{
K(∅, ∅) : K ∈ C(It × It)�0,

AtK(S) ≤ −1I=1(S) for S ∈ I ′2t
}

At : C(It × It)→ C(I2t), AtK(S) =
∑

J,J ′∈It:J∪J ′=S
K(J, J ′)

- α(G) ≤ last(G)∗ for all compact topological packing graphs G

- last(G)∗ is a 2t-point bound

Theorem
Convergence: lasα(G)(G)∗ = α(G)
(The proof uses the primal)



Adaptation of the Lasserre hierarchy for packing

Definition (L-Vallentin 2015):

last(G)∗ = inf
{
K(∅, ∅) : K ∈ C(It × It)�0,

AtK(S) ≤ −1I=1(S) for S ∈ I ′2t
}

At : C(It × It)→ C(I2t), AtK(S) =
∑

J,J ′∈It:J∪J ′=S
K(J, J ′)

- α(G) ≤ last(G)∗ for all compact topological packing graphs G

- last(G)∗ is a 2t-point bound

Theorem
Convergence: lasα(G)(G)∗ = α(G)
(The proof uses the primal)



Adaptation of the Lasserre hierarchy for packing

Definition (L-Vallentin 2015):

last(G)∗ = inf
{
K(∅, ∅) : K ∈ C(It × It)�0,

AtK(S) ≤ −1I=1(S) for S ∈ I ′2t
}

At : C(It × It)→ C(I2t), AtK(S) =
∑

J,J ′∈It:J∪J ′=S
K(J, J ′)

- α(G) ≤ last(G)∗ for all compact topological packing graphs G

- last(G)∗ is a 2t-point bound

Theorem
Convergence: lasα(G)(G)∗ = α(G)
(The proof uses the primal)



Adaptation of the Lasserre hierarchy for packing

Definition (L-Vallentin 2015):

last(G)∗ = inf
{
K(∅, ∅) : K ∈ C(It × It)�0,

AtK(S) ≤ −1I=1(S) for S ∈ I ′2t
}

At : C(It × It)→ C(I2t), AtK(S) =
∑

J,J ′∈It:J∪J ′=S
K(J, J ′)

- α(G) ≤ last(G)∗ for all compact topological packing graphs G

- last(G)∗ is a 2t-point bound

Theorem
Convergence: lasα(G)(G)∗ = α(G)

(The proof uses the primal)



Adaptation of the Lasserre hierarchy for packing

Definition (L-Vallentin 2015):

last(G)∗ = inf
{
K(∅, ∅) : K ∈ C(It × It)�0,

AtK(S) ≤ −1I=1(S) for S ∈ I ′2t
}

At : C(It × It)→ C(I2t), AtK(S) =
∑

J,J ′∈It:J∪J ′=S
K(J, J ′)

- α(G) ≤ last(G)∗ for all compact topological packing graphs G

- last(G)∗ is a 2t-point bound

Theorem
Convergence: lasα(G)(G)∗ = α(G)
(The proof uses the primal)



Adaptation to energy minimization (L-2016)
The following optimization problem gives a lower bound on the
ground state energy of N particles in V with pair potential f :

E∗t = sup
{ 2t∑
i=0

(
N

i

)
ai : a ∈ R{0,...,2t}, K ∈ C(It × It)�0,

ai +AtK(S) ≤ f(S)

for S ∈ I=i and i = 0, . . . , 2t
}

- Finite convergence: E∗N is equal to the ground state energy

- E∗1 is essentially the Yudin bound

- E∗2 conjectured to be universally sharp for N = 5 on S2

- Computational approach: Harmonic Analysis/SOS/SDP

- Numerically verified with high precision SDP solver for, e.g.,
the Riesz s-potentials with s = 1, . . . , 7

- N = 5 particularly interesting because of the phase transition

- See Schwartz’ talk on Friday for his approach that solves this
problem for all s in an interval containing the phase transition
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Specialization to finite distance graphs (LMOV 2018)

last(G)∗ = inf
{
K(∅, ∅) : K ∈ C(It × It)�0,

AtK(S) ≤ −1I=1(S) for S ∈ I ′2t
}

- May assume K is O(n)-invariant

- Again only finitely many linear constraints (one for each orbit)

- Need to describe the cone C(It × It)O(n)
�0

- Fourier inversion: K(J, J ′) =
∑

π trace(FπZπ(J, J ′))

- Need to compute the zonal matrices Zπ(J, J ′)
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Approach via the addition formula

- Decompose into O(n)-irreducibles: C(It) =
⊕

π

⊕mπ
i=1Hπ,i

- Compatible orthonormal bases:
Hπ,i = span{eπ,i,1, . . . , eπ,i,dπ}

- Addition formula:

Zπ(J, J ′)i,i′ =
∑
j

eπ,i,j(J)eπ,i,j(J ′).

- Can automate this using integration over compact groups

- Slow for large n

- This is like generating all spherical harmonics if you only need
the Jacobi polynomials
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Connection to the Stiefel harmonics

- Let HomO(n)(It, Hπ) be the space of continuous
O(n)-equivariant maps It → Hπ

- Let {ϕπi } be a basis of this space

- Then, Zπ(J, J ′)i,i′ = 〈ϕπi (J), ϕπi′(J
′)
〉

- We have

HomO(n)(It, Hπ) '
⊕
R∈Rt

H
StabO(n)(R)
π

where Rt is a complete set of representatives of the orbits

- Find the right representations Hπ of O(n)

- We are essentially interested in

HSO(n−i)
π for i = 0, . . . , t

where π is a representation of SO(n)
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Connection to the Stiefel harmonics

- By Frobenius reciprocity we have

dim(HSO(n−t)
π ) = mult(Hπ, L

2(SO(n)/SO(n− t))) =: mπ

- SO(n)/SO(n− t) is a Stiefel manifold

- Using the branching rules of the special orthogonal groups we
see that for 2t < n we can index the representations π with
mπ 6= 0 by nonincreasing vectors λ ∈ Nt0

- The polynomial representations ρ of GL(t) can also be
indexed by such vectors!

- [Gelbart 1974] showed mπλ = dim(ρλ)

“seems to be an act of providence”
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Connection to the Stiefel harmonics

- [Gross-Kunze 1977] give two isomorphisms Hρλ → H
SO(n−t)
πλ

- The first maps a vector in Hρλ to a function O(n)→ Hρλ

- Construct Hρλ as polynomials GL(t)→ C
- By choosing subspaces of Hρλ we can also describe H

SO(n−i)
πλ

for 0 ≤ i < t

- Combining this gives

Zπ(J, J ′)i,i′ =

∫
O(n)

∫
U(t)

pπ,i,i′,J,J ′(γ, ξ) dξ dγ,

where pπ,i,i′,J,J ′ is some explicitly computable polynomial

- Outer integral is difficult in general since n is large

- Zπ is O(n− t)-invariant, so we only need to evaluate Zπ at
sets J, J ′ for which pπ,i,i′,J,J ′ depends on very few entries of γ

- [Gorin-Lopez 2008] give formula to compute the integral of a
monomial over O(n) where the complexity depends only on
the entries and degrees of the integrand (not on n)

- The implementation is work in progress
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Thank you!


