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Packing problem 1: Independent sets in finite graphs

Example: the Petersen graph

- In general difficult to solve to optimality (NP-hard)
- The Lovasz ¥-number upper bounds the independence number
- Can be computed through semidefinite programming (SDP)
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Packing problem 2: Topological packing graphs

Definition (L-Vallentin 2015)
A graph whose vertex set is a Hausdorff space is a topological
packing graph if each finite clique is contained in an open clique

Motivating example: The spherical cap packing problem
- As vertex set we take the unit sphere

- Distinct vertices x and y are adjacent if the spherical caps
centered about = and y intersect in their interiors:

- Optimal density given by the independence number a(G)
- [Bachoc-Nebe-Oliveira-Vallentin 2009] showed the Delsarte
bound can be interpreted as the ¥-number of this graph
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Packing problem 3: Almost finite graphs

- The symmetry group I' of a topological packing graph G is
the group of all autohomeomorphisms of the vertices
preserving adjacencies and nonadjacencies

- Let I be the set of independent sets in the graph
- Consider graphs where the quotient I/T is finite

Motivating example: Spherical finite distance graphs
- Two vertices z,y € S"! are adjacent if x-y & {1,a1,...,a,}

- |I/T| < oo follows from the fact that any two isometric sets
in R™ are related by an isometry of R™
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Packing problem 3: Almost finite graphs

- Can use bounds for spherical finite distance graphs to obtain
bounds on the maximum number of equiangular lines and
nonexistence proofs of strongly regular graphs

- The Delsarte 2-point bound and Bachoc-Vallentin 3-point
bound have been studied extensively in the context of
spherical finite distance graphs and equiangular lines
[Delsarte, Goethals, Seidel, Barg, Yu, King, Tang, Glazyrin]
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- I _o is the set of independent sets of cardinality < k — 2
- C(V? x Ij_9)»0 cone of continuous maps T: V2 x I;_5 — R
where each (z,y) — T'(z,y, Q) is a positive kernel

Definition (L-Machado-Oliveira-Vallentin 2018)
AR(G)* = int {a a €R, T €C(V2x I )Ly,
ByT < (a— 1)1, — 21[:2}

Bi: C(I\{0}) — C(V?xIi—s), ByT(S) = ) > T(x,y,Q)
QCS: z,y€es:
IQI<k—2 {z,y}uR=S
- a(G) < Ag(G)* for all compact topological packing graphs G
Ay (G) is the Lovész ¥-number (Delsarte bound)
- A3(Q) is essentially the Bachoc-Vallentin 3-point bound
- Stabilization at A, z)4+2(G), but no convergence proof

T(vz,vy, Q) =T(x,y,Q) forall y €T
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Symmetry reduction

Lemma (L-Machado-Oliveira-Vallentin 2018)
If Ix_o/I" is finite, then we have the homeomorphism

[I Vv?/stabr(R) ~ (V* x I_5)/T,
RERE_o

where Rj_o a complete set of representatives of the orbits of I;_»
- For Q € 'R, let v € I" be an operation for which vgR = Q

Corollary
If I_o /T is finite, then we have the isomorphism

v P vt o oV x y)T
RERK_o

given by ¥(K)(z,y,Q) = KyélQ(’@lx’V&ly)
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Stabilizer invariant kernels

- Let R € Ri_o with k < n; assume vectors in R independent
- Let A be an n x m matrix with the vectors of R as columns

- Let Ly, = L_IA-']%, where L is a matrix such that LLT is the
Cholesky factorization of ALAp

Theorem (Musin 2014 / Nonorthogonal extension LMOV 2018)
Every

K e C<Sn—1 % Sn—l)itgbo(vz)(SPan(R))

can be approximated uniformly by kernels of the form

d
K(x,y) =Y trace(FY""(x -y, Layz, Lagy)),
=0

where the matrices F} are positive semidefinite
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The cardinality of I /I’

- We can write Ag(G)* as an SDP when Ij_/T" is finite
- If T acts transitively on V, then I;_o/T is finite for k = 2,3

- Explains why the Delsarte and Bachoc-Vallentin bounds can
be computed for spherical codes, and why it's not clear how to
compute 4-point bounds for spherical codes via this approach

- For finite spherical distance graphs we do not need SOS
techniques

- Implementation of Ag(G)* for finite spherical distance graphs
for general k

- Currently computations for k = 4,5
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Spherical finite distance graph with a1 = a, as = —a
bound a=17
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Adaptation of the Lasserre hierarchy for packing

Definition (L-Vallentin 2015):
las;(G)* = inf {K(@, 0): K € C(I, x I,)wo,
AK(S) < —1;_(S) for S € Iét}

Ay CI x I) — C(Iy), AK(S) = > oK)
JJ'el:JuJ'=S

- a(G) < lasi(G)* for all compact topological packing graphs G
- las¢(G)* is a 2t-point bound

Theorem
Convergence: las,(q)(G)* = a(G)
(The proof uses the primal)
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Adaptation to energy minimization (L-2016)

The following optimization problem gives a lower bound on the
ground state energy of N particles in V' with pair potential f:
2% /N
E} =sup { Z ( p )ai ca e RO2 K e o1, x Ii)-o,
=0 a; + A K(S) < f(S)
for S € I_; and i:O,...,2t}

- Finite convergence: EY is equal to the ground state energy
- EY is essentially the Yudin bound

- E3 conjectured to be universally sharp for N =5 on S

- Computational approach: Harmonic Analysis/SOS/SDP

- Numerically verified with high precision SDP solver for, e.g.,
the Riesz s-potentials with s =1,...,7

- N = 5 particularly interesting because of the phase transition

- See Schwartz' talk on Friday for his approach that solves this
problem for all s in an interval containing the phase transition
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Specialization to finite distance graphs (LMOV 2018)

las;(G)* = inf {K(@, 0): K € C(I, x I)wo,
AK(S) < —17_,(S) for S € I;t}

- May assume K is O(n)-invariant

Again only finitely many linear constraints (one for each orbit)
Need to describe the cone C(I; x It)g(()")
Fourier inversion: K (J,J') =Y _trace(FrZ;(J,J'))

Need to compute the zonal matrices Z(J, J')
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Approach via the addition formula

- Decompose into O(n)-irreducibles: C(I;) = @, @, Hr.i

- Compatible orthonormal bases:
Hy;=span{er;1,...,€rid,}

- Addition formula:

J Jl i = Z 67‘(‘,1,] eﬂ',Z,J(J )

- Can automate this using integration over compact groups
- Slow for large n

- This is like generating all spherical harmonics if you only need
the Jacobi polynomials
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Connection to the Stiefel harmonics

- Let Hompyy, (Iy, H;) be the space of continuous
O(n)-equivariant maps I; — Hy

- Let {¢I'} be a basis of this space

- Then, Zx(J,J" )i = (@7 (), 95 ("))

- We have

Homo(n) (It, @ HSta‘bO n) (R)
RER:

where R; is a complete set of representatives of the orbits
- Find the right representations H of O(n)

- We are essentially interested in
Hfo("*i) for i=0,...,t

where 7 is a representation of SO(n)
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Connection to the Stiefel harmonics

By Frobenius reciprocity we have
dim(H29M=1) = mult(H,, L*(SO(n)/SO(n — t))) =: my

- SO(n)/SO(n —t) is a Stiefel manifold

- Using the branching rules of the special orthogonal groups we
see that for 2t < n we can index the representations 7 with
my # 0 by nonincreasing vectors \ € N

- The polynomial representations p of GL(t) can also be
indexed by such vectors!

[Gelbart 1974] showed m,, = dim(p))

“seems to be an act of providence”
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Connection to the Stiefel harmonics

[Gross-Kunze 1977] give two isomorphisms H,, — Hal "™
The first maps a vector in H,, to a function O(n) — H,,
Construct H), as polynomials GL(t) = C

By choosing subspaces of H,, we can also describe Hf;)(nfi)
for0<i<t

Combining this gives

2o, T s = / / prsir g (7€) dE d,
O(n) JU(t)

where pr; i/ 7y is some explicitly computable polynomial
Outer integral is difficult in general since n is large

Zr is O(n — t)-invariant, so we only need to evaluate Z, at
sets J,J' for which p; ;. depends on very few entries of
[Gorin-Lopez 2008] give formula to compute the integral of a
monomial over O(n) where the complexity depends only on
the entries and degrees of the integrand (not on n)

The implementation is work in progress



Thank you!



