# New bounds for spherical finite distance sets 

David de Laat (ICERM/MIT)<br>Fabrício Machado (Universidade de São Paulo)<br>Fernando Oliveira (TU Delft)<br>Frank Vallentin (Universität zu Köln)

Computation and Optimization of Energy, Packing, and Covering, 11 April 2018, ICERM

Packing problem 1: Independent sets in finite graphs

## Packing problem 1: Independent sets in finite graphs



Example: the Petersen graph

## Packing problem 1: Independent sets in finite graphs



Example: the Petersen graph

## Packing problem 1: Independent sets in finite graphs



Example: the Petersen graph

- In general difficult to solve to optimality (NP-hard)


## Packing problem 1: Independent sets in finite graphs



Example: the Petersen graph

- In general difficult to solve to optimality (NP-hard)
- The Lovász $\vartheta$-number upper bounds the independence number


## Packing problem 1: Independent sets in finite graphs



Example: the Petersen graph

- In general difficult to solve to optimality (NP-hard)
- The Lovász $\vartheta$-number upper bounds the independence number
- Can be computed through semidefinite programming (SDP)


## Packing problem 2: Topological packing graphs

Definition (L-Vallentin 2015)
A graph whose vertex set is a Hausdorff space is a topological packing graph if each finite clique is contained in an open clique

## Packing problem 2: Topological packing graphs

Definition (L-Vallentin 2015)
A graph whose vertex set is a Hausdorff space is a topological packing graph if each finite clique is contained in an open clique

Motivating example: The spherical cap packing problem

## Packing problem 2: Topological packing graphs

Definition (L-Vallentin 2015)
A graph whose vertex set is a Hausdorff space is a topological packing graph if each finite clique is contained in an open clique

Motivating example: The spherical cap packing problem

- As vertex set we take the unit sphere


## Packing problem 2: Topological packing graphs

Definition (L-Vallentin 2015)
A graph whose vertex set is a Hausdorff space is a topological packing graph if each finite clique is contained in an open clique

Motivating example: The spherical cap packing problem

- As vertex set we take the unit sphere
- Distinct vertices $x$ and $y$ are adjacent if the spherical caps centered about $x$ and $y$ intersect in their interiors:



## Packing problem 2: Topological packing graphs

Definition (L-Vallentin 2015)
A graph whose vertex set is a Hausdorff space is a topological packing graph if each finite clique is contained in an open clique

Motivating example: The spherical cap packing problem

- As vertex set we take the unit sphere
- Distinct vertices $x$ and $y$ are adjacent if the spherical caps centered about $x$ and $y$ intersect in their interiors:

- Optimal density given by the independence number $\alpha(G)$


## Packing problem 2: Topological packing graphs

Definition (L-Vallentin 2015)
A graph whose vertex set is a Hausdorff space is a topological packing graph if each finite clique is contained in an open clique

Motivating example: The spherical cap packing problem

- As vertex set we take the unit sphere
- Distinct vertices $x$ and $y$ are adjacent if the spherical caps centered about $x$ and $y$ intersect in their interiors:

- Optimal density given by the independence number $\alpha(G)$
- [Bachoc-Nebe-Oliveira-Vallentin 2009] showed the Delsarte bound can be interpreted as the $\vartheta$-number of this graph


## Packing problem 3: Almost finite graphs

- The symmetry group $\Gamma$ of a topological packing graph $G$ is the group of all autohomeomorphisms of the vertices preserving adjacencies and nonadjacencies


## Packing problem 3: Almost finite graphs

- The symmetry group $\Gamma$ of a topological packing graph $G$ is the group of all autohomeomorphisms of the vertices preserving adjacencies and nonadjacencies
- Let $I$ be the set of independent sets in the graph


## Packing problem 3: Almost finite graphs

- The symmetry group $\Gamma$ of a topological packing graph $G$ is the group of all autohomeomorphisms of the vertices preserving adjacencies and nonadjacencies
- Let $I$ be the set of independent sets in the graph
- Consider graphs where the quotient $I / \Gamma$ is finite


## Packing problem 3: Almost finite graphs

- The symmetry group $\Gamma$ of a topological packing graph $G$ is the group of all autohomeomorphisms of the vertices preserving adjacencies and nonadjacencies
- Let $I$ be the set of independent sets in the graph
- Consider graphs where the quotient $I / \Gamma$ is finite

Motivating example: Spherical finite distance graphs

## Packing problem 3: Almost finite graphs

- The symmetry group $\Gamma$ of a topological packing graph $G$ is the group of all autohomeomorphisms of the vertices preserving adjacencies and nonadjacencies
- Let $I$ be the set of independent sets in the graph
- Consider graphs where the quotient $I / \Gamma$ is finite

Motivating example: Spherical finite distance graphs

- Two vertices $x, y \in S^{n-1}$ are adjacent if $x \cdot y \notin\left\{1, a_{1}, \ldots, a_{r}\right\}$


## Packing problem 3: Almost finite graphs

- The symmetry group $\Gamma$ of a topological packing graph $G$ is the group of all autohomeomorphisms of the vertices preserving adjacencies and nonadjacencies
- Let $I$ be the set of independent sets in the graph
- Consider graphs where the quotient $I / \Gamma$ is finite

Motivating example: Spherical finite distance graphs

- Two vertices $x, y \in S^{n-1}$ are adjacent if $x \cdot y \notin\left\{1, a_{1}, \ldots, a_{r}\right\}$
- $|I / \Gamma|<\infty$ follows from the fact that any two isometric sets in $\mathbb{R}^{n}$ are related by an isometry of $\mathbb{R}^{n}$


## Packing problem 3: Almost finite graphs

- Can use bounds for spherical finite distance graphs to obtain bounds on the maximum number of equiangular lines and nonexistence proofs of strongly regular graphs


## Packing problem 3: Almost finite graphs

- Can use bounds for spherical finite distance graphs to obtain bounds on the maximum number of equiangular lines and nonexistence proofs of strongly regular graphs
- The Delsarte 2-point bound and Bachoc-Vallentin 3-point bound have been studied extensively in the context of spherical finite distance graphs and equiangular lines [Delsarte, Goethals, Seidel, Barg, Yu, King, Tang, Glazyrin]


## A hierarchy of $k$-point bounds for packing problems

- $I_{k-2}$ is the set of independent sets of cardinality $\leq k-2$


## A hierarchy of $k$-point bounds for packing problems

- $I_{k-2}$ is the set of independent sets of cardinality $\leq k-2$
- $\mathcal{C}\left(V^{2} \times I_{k-2}\right)_{\succeq 0}$ cone of continuous maps $T: V^{2} \times I_{k-2} \rightarrow \mathbb{R}$ where each $(x, y) \mapsto T(x, y, Q)$ is a positive kernel


## A hierarchy of $k$-point bounds for packing problems

- $I_{k-2}$ is the set of independent sets of cardinality $\leq k-2$
- $\mathcal{C}\left(V^{2} \times I_{k-2}\right)_{\succeq 0}$ cone of continuous maps $T: V^{2} \times I_{k-2} \rightarrow \mathbb{R}$ where each $(x, y) \mapsto T(x, y, Q)$ is a positive kernel

Definition (L-Machado-Oliveira-Vallentin 2018)

$$
\begin{array}{r}
\Delta_{k}(G)^{*}=\inf \left\{\alpha: \alpha \in \mathbb{R}, T \in \mathcal{C}\left(V^{2} \times I_{k-2}\right)_{\succeq 0}\right. \\
\left.B_{k} T \leq(\alpha-1) 1_{I_{=1}}-21_{I_{=2}}\right\}
\end{array}
$$

## A hierarchy of $k$-point bounds for packing problems

- $I_{k-2}$ is the set of independent sets of cardinality $\leq k-2$
- $\mathcal{C}\left(V^{2} \times I_{k-2}\right)_{\succeq 0}$ cone of continuous maps $T: V^{2} \times I_{k-2} \rightarrow \mathbb{R}$ where each $(x, y) \mapsto T(x, y, Q)$ is a positive kernel

Definition (L-Machado-Oliveira-Vallentin 2018)

$$
\begin{array}{r}
\Delta_{k}(G)^{*}=\inf \left\{\alpha: \alpha \in \mathbb{R}, T \in \mathcal{C}\left(V^{2} \times I_{k-2}\right)_{\succeq 0},\right. \\
B_{k} T \leq(\alpha-1) 1_{\left.I_{=1}-21_{I_{=2}}\right\}} \\
B_{k}: \mathcal{C}\left(I_{k} \backslash\{\emptyset\}\right) \rightarrow \mathcal{C}\left(V^{2} \times I_{k-2}\right), B_{k} T(S)=\sum_{\substack{Q \subseteq S: \\
|Q| \leq k-2}} \sum_{\substack{x, y \in S: \\
\{x, y\} \cup Q=S}} T(x, y, Q)
\end{array}
$$

## A hierarchy of $k$-point bounds for packing problems

- $I_{k-2}$ is the set of independent sets of cardinality $\leq k-2$
- $\mathcal{C}\left(V^{2} \times I_{k-2}\right)_{\succeq 0}$ cone of continuous maps $T: V^{2} \times I_{k-2} \rightarrow \mathbb{R}$ where each $(x, y) \mapsto T(x, y, Q)$ is a positive kernel

Definition (L-Machado-Oliveira-Vallentin 2018)

$$
\begin{array}{r}
\Delta_{k}(G)^{*}=\inf \left\{\alpha: \alpha \in \mathbb{R}, T \in \mathcal{C}\left(V^{2} \times I_{k-2}\right)_{\succeq 0},\right. \\
B_{k} T \leq(\alpha-1) 1_{\left.I_{=1}-21_{I_{=2}}\right\}} \\
B_{k}: \mathcal{C}\left(I_{k} \backslash\{\emptyset\}\right) \rightarrow \mathcal{C}\left(V^{2} \times I_{k-2}\right), B_{k} T(S)=\sum_{\substack{Q \subseteq S: \\
|Q| \leq k-2}} \sum_{\substack{x, y \in S: \\
\{x, y\} \cup Q=S}} T(x, y, Q)
\end{array}
$$

- $\alpha(G) \leq \Delta_{k}(G)^{*}$ for all compact topological packing graphs $G$


## A hierarchy of $k$-point bounds for packing problems

- $I_{k-2}$ is the set of independent sets of cardinality $\leq k-2$
- $\mathcal{C}\left(V^{2} \times I_{k-2}\right)_{\succeq 0}$ cone of continuous maps $T: V^{2} \times I_{k-2} \rightarrow \mathbb{R}$ where each $(x, y) \mapsto T(x, y, Q)$ is a positive kernel

Definition (L-Machado-Oliveira-Vallentin 2018)

$$
\begin{array}{r}
\Delta_{k}(G)^{*}=\inf \left\{\alpha: \alpha \in \mathbb{R}, T \in \mathcal{C}\left(V^{2} \times I_{k-2}\right)_{\succeq 0},\right. \\
\left.B_{k} T \leq(\alpha-1) 1_{I_{=1}}-21_{I_{=2}}\right\} \\
B_{k}: \mathcal{C}\left(I_{k} \backslash\{\emptyset\}\right) \rightarrow \mathcal{C}\left(V^{2} \times I_{k-2}\right), B_{k} T(S)=\sum_{\substack{Q \subseteq S: \\
|Q| \leq k-2}} \sum_{\substack{x, y \in S: \\
\{x, y\} \cup Q=S}} T(x, y, Q)
\end{array}
$$

- $\alpha(G) \leq \Delta_{k}(G)^{*}$ for all compact topological packing graphs $G$
- $\Delta_{2}(G)$ is the Lovász $\vartheta$-number (Delsarte bound)


## A hierarchy of $k$-point bounds for packing problems

- $I_{k-2}$ is the set of independent sets of cardinality $\leq k-2$
- $\mathcal{C}\left(V^{2} \times I_{k-2}\right)_{\succeq 0}$ cone of continuous maps $T: V^{2} \times I_{k-2} \rightarrow \mathbb{R}$ where each $(x, y) \mapsto T(x, y, Q)$ is a positive kernel

Definition (L-Machado-Oliveira-Vallentin 2018)

$$
\begin{array}{r}
\Delta_{k}(G)^{*}=\inf \left\{\alpha: \alpha \in \mathbb{R}, T \in \mathcal{C}\left(V^{2} \times I_{k-2}\right)_{\succeq 0},\right. \\
\left.B_{k} T \leq(\alpha-1) 1_{I_{=1}}-21_{I_{=2}}\right\} \\
B_{k}: \mathcal{C}\left(I_{k} \backslash\{\emptyset\}\right) \rightarrow \mathcal{C}\left(V^{2} \times I_{k-2}\right), B_{k} T(S)=\sum_{\substack{Q \subseteq S: \\
|Q| \leq k-2}} \sum_{\substack{x, y \in S: \\
\{x, y\} \cup Q=S}} T(x, y, Q)
\end{array}
$$

- $\alpha(G) \leq \Delta_{k}(G)^{*}$ for all compact topological packing graphs $G$
- $\Delta_{2}(G)$ is the Lovász $\vartheta$-number (Delsarte bound)
- $\Delta_{3}(G)$ is essentially the Bachoc-Vallentin 3-point bound


## A hierarchy of $k$-point bounds for packing problems

- $I_{k-2}$ is the set of independent sets of cardinality $\leq k-2$
- $\mathcal{C}\left(V^{2} \times I_{k-2}\right)_{\succeq 0}$ cone of continuous maps $T: V^{2} \times I_{k-2} \rightarrow \mathbb{R}$ where each $(x, y) \mapsto T(x, y, Q)$ is a positive kernel

Definition (L-Machado-Oliveira-Vallentin 2018)

$$
\begin{array}{r}
\Delta_{k}(G)^{*}=\inf \left\{\alpha: \alpha \in \mathbb{R}, T \in \mathcal{C}\left(V^{2} \times I_{k-2}\right)_{\succeq 0},\right. \\
\left.B_{k} T \leq(\alpha-1) 1_{I_{=1}}-21_{I_{=2}}\right\} \\
B_{k}: \mathcal{C}\left(I_{k} \backslash\{\emptyset\}\right) \rightarrow \mathcal{C}\left(V^{2} \times I_{k-2}\right), B_{k} T(S)=\sum_{\substack{Q \subseteq S: \\
|Q| \leq k-2}} \sum_{\substack{x, y \in S: \\
\{x, y\} \cup Q=S}} T(x, y, Q)
\end{array}
$$

- $\alpha(G) \leq \Delta_{k}(G)^{*}$ for all compact topological packing graphs $G$
- $\Delta_{2}(G)$ is the Lovász $\vartheta$-number (Delsarte bound)
- $\Delta_{3}(G)$ is essentially the Bachoc-Vallentin 3-point bound
- Stabilization at $\Delta_{\alpha(G)+2}(G)$, but no convergence proof


## A hierarchy of $k$-point bounds for packing problems

- $I_{k-2}$ is the set of independent sets of cardinality $\leq k-2$
- $\mathcal{C}\left(V^{2} \times I_{k-2}\right)_{\succeq 0}$ cone of continuous maps $T: V^{2} \times I_{k-2} \rightarrow \mathbb{R}$ where each $(x, y) \mapsto T(x, y, Q)$ is a positive kernel

Definition (L-Machado-Oliveira-Vallentin 2018)

$$
\begin{gathered}
\Delta_{k}(G)^{*}=\inf \left\{\alpha: \alpha \in \mathbb{R}, T \in \mathcal{C}\left(V^{2} \times I_{k-2}\right)_{\succeq 0}^{\Gamma},\right. \\
\left.B_{k} T \leq(\alpha-1) 1_{I_{=1}}-21_{I_{=2}}\right\} \\
B_{k}: \mathcal{C}\left(I_{k} \backslash\{\emptyset\}\right) \rightarrow \mathcal{C}\left(V^{2} \times I_{k-2}\right), B_{k} T(S)=\sum_{\substack{Q \subseteq S: \\
|Q| \leq k-2}} \sum_{\substack{x, y \in S: \\
\{x, y\} \cup Q=S}} T(x, y, Q)
\end{gathered}
$$

- $\alpha(G) \leq \Delta_{k}(G)^{*}$ for all compact topological packing graphs $G$
- $\Delta_{2}(G)$ is the Lovász $\vartheta$-number (Delsarte bound)
- $\Delta_{3}(G)$ is essentially the Bachoc-Vallentin 3-point bound
- Stabilization at $\Delta_{\alpha(G)+2}(G)$, but no convergence proof
- $T(\gamma x, \gamma y, \gamma Q)=T(x, y, Q)$ for all $\gamma \in \Gamma$


## Symmetry reduction

Lemma (L-Machado-Oliveira-Vallentin 2018)
If $I_{k-2} / \Gamma$ is finite, then we have the homeomorphism

$$
\coprod_{R \in \mathcal{R}_{k-2}} V^{2} / \operatorname{Stab}_{\Gamma}(R) \simeq\left(V^{2} \times I_{k-2}\right) / \Gamma,
$$

where $\mathcal{R}_{k-2}$ a complete set of representatives of the orbits of $I_{k-2}$

## Symmetry reduction

Lemma (L-Machado-Oliveira-Vallentin 2018)
If $I_{k-2} / \Gamma$ is finite, then we have the homeomorphism

$$
\coprod_{R \in \mathcal{R}_{k-2}} V^{2} / \operatorname{Stab}_{\Gamma}(R) \simeq\left(V^{2} \times I_{k-2}\right) / \Gamma,
$$

where $\mathcal{R}_{k-2}$ a complete set of representatives of the orbits of $I_{k-2}$

- For $Q \in \Gamma R$, let $\gamma_{Q} \in \Gamma$ be an operation for which $\gamma_{Q} R=Q$


## Symmetry reduction

Lemma (L-Machado-Oliveira-Vallentin 2018)
If $I_{k-2} / \Gamma$ is finite, then we have the homeomorphism

$$
\coprod_{R \in \mathcal{R}_{k-2}} V^{2} / \operatorname{Stab}_{\Gamma}(R) \simeq\left(V^{2} \times I_{k-2}\right) / \Gamma,
$$

where $\mathcal{R}_{k-2}$ a complete set of representatives of the orbits of $I_{k-2}$

- For $Q \in \Gamma R$, let $\gamma_{Q} \in \Gamma$ be an operation for which $\gamma_{Q} R=Q$

Corollary
If $I_{k-2} / \Gamma$ is finite, then we have the isomorphism

$$
\Psi: \quad \bigoplus_{R \in \mathcal{R}_{k-2}} \mathcal{C}\left(V^{2}\right)^{\operatorname{Stab}_{\Gamma}(R)} \rightarrow \mathcal{C}\left(V^{2} \times I_{k-2}\right)^{\Gamma}
$$

given by $\Psi(K)(x, y, Q)=K_{\gamma_{Q}^{-1} Q}\left(\gamma_{Q}^{-1} x, \gamma_{Q}^{-1} y\right)$

## Stabilizer invariant kernels

- Let $R \in \mathcal{R}_{k-2}$ with $k \leq n$; assume vectors in $R$ independent


## Stabilizer invariant kernels

- Let $R \in \mathcal{R}_{k-2}$ with $k \leq n$; assume vectors in $R$ independent
- Let $A_{R}$ be an $n \times m$ matrix with the vectors of $R$ as columns


## Stabilizer invariant kernels

- Let $R \in \mathcal{R}_{k-2}$ with $k \leq n$; assume vectors in $R$ independent
- Let $A_{R}$ be an $n \times m$ matrix with the vectors of $R$ as columns
- Let $L_{A_{R}}=L^{-1} A_{R}^{\top}$, where $L$ is a matrix such that $L L^{\top}$ is the Cholesky factorization of $A_{R}^{\top} A_{R}$


## Stabilizer invariant kernels

- Let $R \in \mathcal{R}_{k-2}$ with $k \leq n$; assume vectors in $R$ independent
- Let $A_{R}$ be an $n \times m$ matrix with the vectors of $R$ as columns
- Let $L_{A_{R}}=L^{-1} A_{R}^{\top}$, where $L$ is a matrix such that $L L^{\top}$ is the Cholesky factorization of $A_{R}^{\top} A_{R}$

Theorem (Musin 2014 / Nonorthogonal extension LMOV 2018) Every

$$
K \in \mathcal{C}\left(S^{n-1} \times S^{n-1}\right)_{\succeq 0}^{\operatorname{Stab}_{O(n)}(\operatorname{span}(R))}
$$

can be approximated uniformly by kernels of the form

$$
K(x, y)=\sum_{l=0}^{d} \operatorname{trace}\left(F_{l} Y_{l}^{n, m}\left(x \cdot y, L_{A_{R}} x, L_{A_{R}} y\right)\right)
$$

where the matrices $F_{l}$ are positive semidefinite

## The cardinality of $I_{k-2} / \Gamma$

- We can write $\Delta_{k}(G)^{*}$ as an SDP when $I_{k-2} / \Gamma$ is finite


## The cardinality of $I_{k-2} / \Gamma$

- We can write $\Delta_{k}(G)^{*}$ as an SDP when $I_{k-2} / \Gamma$ is finite
- If $\Gamma$ acts transitively on $V$, then $I_{k-2} / \Gamma$ is finite for $k=2,3$


## The cardinality of $I_{k-2} / \Gamma$

- We can write $\Delta_{k}(G)^{*}$ as an SDP when $I_{k-2} / \Gamma$ is finite
- If $\Gamma$ acts transitively on $V$, then $I_{k-2} / \Gamma$ is finite for $k=2,3$
- Explains why the Delsarte and Bachoc-Vallentin bounds can be computed for spherical codes, and why it's not clear how to compute 4-point bounds for spherical codes via this approach


## The cardinality of $I_{k-2} / \Gamma$

- We can write $\Delta_{k}(G)^{*}$ as an SDP when $I_{k-2} / \Gamma$ is finite
- If $\Gamma$ acts transitively on $V$, then $I_{k-2} / \Gamma$ is finite for $k=2,3$
- Explains why the Delsarte and Bachoc-Vallentin bounds can be computed for spherical codes, and why it's not clear how to compute 4-point bounds for spherical codes via this approach
- For finite spherical distance graphs we do not need SOS techniques


## The cardinality of $I_{k-2} / \Gamma$

- We can write $\Delta_{k}(G)^{*}$ as an SDP when $I_{k-2} / \Gamma$ is finite
- If $\Gamma$ acts transitively on $V$, then $I_{k-2} / \Gamma$ is finite for $k=2,3$
- Explains why the Delsarte and Bachoc-Vallentin bounds can be computed for spherical codes, and why it's not clear how to compute 4-point bounds for spherical codes via this approach
- For finite spherical distance graphs we do not need SOS techniques
- Implementation of $\Delta_{k}(G)^{*}$ for finite spherical distance graphs for general $k$


## The cardinality of $I_{k-2} / \Gamma$

- We can write $\Delta_{k}(G)^{*}$ as an SDP when $I_{k-2} / \Gamma$ is finite
- If $\Gamma$ acts transitively on $V$, then $I_{k-2} / \Gamma$ is finite for $k=2,3$
- Explains why the Delsarte and Bachoc-Vallentin bounds can be computed for spherical codes, and why it's not clear how to compute 4-point bounds for spherical codes via this approach
- For finite spherical distance graphs we do not need SOS techniques
- Implementation of $\Delta_{k}(G)^{*}$ for finite spherical distance graphs for general $k$
- Currently computations for $k=4,5$


## Spherical finite distance graph with $a_{1}=a, a_{2}=-a$



## Adaptation of the Lasserre hierarchy for packing

Definition (L-Vallentin 2015):

$$
\begin{aligned}
\operatorname{las}_{t}(G)^{*}=\inf \{K(\emptyset, \emptyset): & K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0} \\
& \left.A_{t} K(S) \leq-1_{I_{=1}}(S) \text { for } S \in I_{2 t}^{\prime}\right\}
\end{aligned}
$$

## Adaptation of the Lasserre hierarchy for packing

Definition (L-Vallentin 2015):

$$
\begin{aligned}
& \operatorname{las}_{t}(G)^{*}=\inf \{K(\emptyset, \emptyset): K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0} \\
&\left.A_{t} K(S) \leq-1_{I_{=1}}(S) \text { for } S \in I_{2 t}^{\prime}\right\} \\
& A_{t}: \mathcal{C}\left(I_{t} \times I_{t}\right) \rightarrow \mathcal{C}\left(I_{2 t}\right), A_{t} K(S)=\sum_{J, J^{\prime} \in I_{t}: J \cup J^{\prime}=S} K\left(J, J^{\prime}\right)
\end{aligned}
$$

## Adaptation of the Lasserre hierarchy for packing

Definition (L-Vallentin 2015):

$$
\begin{aligned}
& \operatorname{las}_{t}(G)^{*}=\inf \{K(\emptyset, \emptyset): K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0} \\
&\left.A_{t} K(S) \leq-1_{I_{=1}}(S) \text { for } S \in I_{2 t}^{\prime}\right\} \\
& A_{t}: \mathcal{C}\left(I_{t} \times I_{t}\right) \rightarrow \mathcal{C}\left(I_{2 t}\right), A_{t} K(S)=\sum_{J, J^{\prime} \in I_{t}: J \cup J^{\prime}=S} K\left(J, J^{\prime}\right)
\end{aligned}
$$

- $\alpha(G) \leq \operatorname{las}_{t}(G)^{*}$ for all compact topological packing graphs $G$


## Adaptation of the Lasserre hierarchy for packing

Definition (L-Vallentin 2015):

$$
\begin{aligned}
& \operatorname{las}_{t}(G)^{*}=\inf \{K(\emptyset, \emptyset): K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0} \\
&\left.A_{t} K(S) \leq-1_{I_{=1}}(S) \text { for } S \in I_{2 t}^{\prime}\right\} \\
& A_{t}: \mathcal{C}\left(I_{t} \times I_{t}\right) \rightarrow \mathcal{C}\left(I_{2 t}\right), A_{t} K(S)=\sum_{J, J^{\prime} \in I_{t}: J \cup J^{\prime}=S} K\left(J, J^{\prime}\right)
\end{aligned}
$$

- $\alpha(G) \leq \operatorname{las}_{t}(G)^{*}$ for all compact topological packing graphs $G$
- $\operatorname{las}_{t}(G)^{*}$ is a $2 t$-point bound


## Adaptation of the Lasserre hierarchy for packing

Definition (L-Vallentin 2015):

$$
\begin{aligned}
& \operatorname{las}_{t}(G)^{*}=\inf \{K(\emptyset, \emptyset): K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0} \\
&\left.A_{t} K(S) \leq-1_{I_{=1}}(S) \text { for } S \in I_{2 t}^{\prime}\right\} \\
& A_{t}: \mathcal{C}\left(I_{t} \times I_{t}\right) \rightarrow \mathcal{C}\left(I_{2 t}\right), A_{t} K(S)=\sum_{J, J^{\prime} \in I_{t}: J \cup J^{\prime}=S} K\left(J, J^{\prime}\right)
\end{aligned}
$$

- $\alpha(G) \leq \operatorname{las}_{t}(G)^{*}$ for all compact topological packing graphs $G$
- $\operatorname{las}_{t}(G)^{*}$ is a $2 t$-point bound

Theorem
Convergence: $\operatorname{las}_{\alpha(G)}(G)^{*}=\alpha(G)$

## Adaptation of the Lasserre hierarchy for packing

Definition (L-Vallentin 2015):

$$
\begin{aligned}
& \operatorname{las}_{t}(G)^{*}=\inf \{K(\emptyset, \emptyset): K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}, \\
&\left.A_{t} K(S) \leq-1_{I_{=1}}(S) \text { for } S \in I_{2 t}^{\prime}\right\} \\
& A_{t}: \mathcal{C}\left(I_{t} \times I_{t}\right) \rightarrow \mathcal{C}\left(I_{2 t}\right), A_{t} K(S)=\sum_{J, J^{\prime} \in I_{t}: J \cup J^{\prime}=S} K\left(J, J^{\prime}\right)
\end{aligned}
$$

- $\alpha(G) \leq \operatorname{las}_{t}(G)^{*}$ for all compact topological packing graphs $G$
- $\operatorname{las}_{t}(G)^{*}$ is a $2 t$-point bound

Theorem
Convergence: $\operatorname{las}_{\alpha(G)}(G)^{*}=\alpha(G)$
(The proof uses the primal)

## Adaptation to energy minimization (L-2016)

The following optimization problem gives a lower bound on the ground state energy of $N$ particles in $V$ with pair potential $f$ :

$$
\begin{array}{r}
E_{t}^{*}=\sup \left\{\sum_{i=0}^{2 t}\binom{N}{i} a_{i}: a \in \mathbb{R}^{\{0, \ldots, 2 t\}}, K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}\right. \\
a_{i}+A_{t} K(S) \leq f(S) \\
\\
\text { for } \left.S \in I_{=i} \text { and } i=0, \ldots, 2 t\right\}
\end{array}
$$

## Adaptation to energy minimization (L-2016)

The following optimization problem gives a lower bound on the ground state energy of $N$ particles in $V$ with pair potential $f$ :

$$
\begin{array}{r}
E_{t}^{*}=\sup \left\{\sum_{i=0}^{2 t}\binom{N}{i} a_{i}: a \in \mathbb{R}^{\{0, \ldots, 2 t\}}, K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}\right. \\
a_{i}+A_{t} K(S) \leq f(S) \\
\\
\text { for } \left.S \in I_{=i} \text { and } i=0, \ldots, 2 t\right\}
\end{array}
$$

- Finite convergence: $E_{N}^{*}$ is equal to the ground state energy


## Adaptation to energy minimization (L-2016)

The following optimization problem gives a lower bound on the ground state energy of $N$ particles in $V$ with pair potential $f$ :

$$
\begin{array}{r}
E_{t}^{*}=\sup \left\{\sum_{i=0}^{2 t}\binom{N}{i} a_{i}: a \in \mathbb{R}^{\{0, \ldots, 2 t\}}, K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}\right. \\
a_{i}+A_{t} K(S) \leq f(S) \\
\\
\text { for } \left.S \in I_{=i} \text { and } i=0, \ldots, 2 t\right\}
\end{array}
$$

- Finite convergence: $E_{N}^{*}$ is equal to the ground state energy
- $E_{1}^{*}$ is essentially the Yudin bound


## Adaptation to energy minimization (L-2016)

The following optimization problem gives a lower bound on the ground state energy of $N$ particles in $V$ with pair potential $f$ :

$$
\begin{array}{r}
E_{t}^{*}=\sup \left\{\sum_{i=0}^{2 t}\binom{N}{i} a_{i}: a \in \mathbb{R}^{\{0, \ldots, 2 t\}}, K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}\right. \\
a_{i}+A_{t} K(S) \leq f(S) \\
\\
\left.\quad \text { for } S \in I_{=i} \text { and } i=0, \ldots, 2 t\right\}
\end{array}
$$

- Finite convergence: $E_{N}^{*}$ is equal to the ground state energy
- $E_{1}^{*}$ is essentially the Yudin bound
- $E_{2}^{*}$ conjectured to be universally sharp for $N=5$ on $S^{2}$


## Adaptation to energy minimization (L-2016)

The following optimization problem gives a lower bound on the ground state energy of $N$ particles in $V$ with pair potential $f$ :

$$
\begin{array}{r}
E_{t}^{*}=\sup \left\{\sum_{i=0}^{2 t}\binom{N}{i} a_{i}: a \in \mathbb{R}^{\{0, \ldots, 2 t\}}, K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}\right. \\
a_{i}+A_{t} K(S) \leq f(S) \\
\\
\text { for } \left.S \in I_{=i} \text { and } i=0, \ldots, 2 t\right\}
\end{array}
$$

- Finite convergence: $E_{N}^{*}$ is equal to the ground state energy
- $E_{1}^{*}$ is essentially the Yudin bound
- $E_{2}^{*}$ conjectured to be universally sharp for $N=5$ on $S^{2}$
- Computational approach: Harmonic Analysis/SOS/SDP


## Adaptation to energy minimization (L-2016)

The following optimization problem gives a lower bound on the ground state energy of $N$ particles in $V$ with pair potential $f$ :

$$
\begin{array}{r}
E_{t}^{*}=\sup \left\{\sum_{i=0}^{2 t}\binom{N}{i} a_{i}: a \in \mathbb{R}^{\{0, \ldots, 2 t\}}, K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}\right. \\
a_{i}+A_{t} K(S) \leq f(S) \\
\\
\text { for } \left.S \in I_{=i} \text { and } i=0, \ldots, 2 t\right\}
\end{array}
$$

- Finite convergence: $E_{N}^{*}$ is equal to the ground state energy
- $E_{1}^{*}$ is essentially the Yudin bound
- $E_{2}^{*}$ conjectured to be universally sharp for $N=5$ on $S^{2}$
- Computational approach: Harmonic Analysis/SOS/SDP
- Numerically verified with high precision SDP solver for, e.g., the Riesz $s$-potentials with $s=1, \ldots, 7$


## Adaptation to energy minimization (L-2016)

The following optimization problem gives a lower bound on the ground state energy of $N$ particles in $V$ with pair potential $f$ :

$$
\begin{array}{r}
E_{t}^{*}=\sup \left\{\sum_{i=0}^{2 t}\binom{N}{i} a_{i}: a \in \mathbb{R}^{\{0, \ldots, 2 t\}}, K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}\right. \\
a_{i}+A_{t} K(S) \leq f(S) \\
\\
\text { for } \left.S \in I_{=i} \text { and } i=0, \ldots, 2 t\right\}
\end{array}
$$

- Finite convergence: $E_{N}^{*}$ is equal to the ground state energy
- $E_{1}^{*}$ is essentially the Yudin bound
- $E_{2}^{*}$ conjectured to be universally sharp for $N=5$ on $S^{2}$
- Computational approach: Harmonic Analysis/SOS/SDP
- Numerically verified with high precision SDP solver for, e.g., the Riesz $s$-potentials with $s=1, \ldots, 7$
- $N=5$ particularly interesting because of the phase transition


## Adaptation to energy minimization (L-2016)

The following optimization problem gives a lower bound on the ground state energy of $N$ particles in $V$ with pair potential $f$ :

$$
\begin{array}{r}
E_{t}^{*}=\sup \left\{\sum_{i=0}^{2 t}\binom{N}{i} a_{i}: a \in \mathbb{R}^{\{0, \ldots, 2 t\}}, K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}\right. \\
a_{i}+A_{t} K(S) \leq f(S) \\
\\
\text { for } \left.S \in I_{=i} \text { and } i=0, \ldots, 2 t\right\}
\end{array}
$$

- Finite convergence: $E_{N}^{*}$ is equal to the ground state energy
- $E_{1}^{*}$ is essentially the Yudin bound
- $E_{2}^{*}$ conjectured to be universally sharp for $N=5$ on $S^{2}$
- Computational approach: Harmonic Analysis/SOS/SDP
- Numerically verified with high precision SDP solver for, e.g., the Riesz $s$-potentials with $s=1, \ldots, 7$
- $N=5$ particularly interesting because of the phase transition
- See Schwartz' talk on Friday for his approach that solves this problem for all $s$ in an interval containing the phase transition


## Specialization to finite distance graphs (LMOV 2018)

$$
\begin{aligned}
\operatorname{las}_{t}(G)^{*}=\inf \{K(\emptyset, \emptyset): & K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}, \\
& \left.A_{t} K(S) \leq-1_{I_{=1}}(S) \text { for } S \in I_{2 t}^{\prime}\right\}
\end{aligned}
$$

## Specialization to finite distance graphs (LMOV 2018)

$$
\begin{aligned}
\operatorname{las}_{t}(G)^{*}=\inf \{K(\emptyset, \emptyset): & K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}, \\
& \left.A_{t} K(S) \leq-1_{I_{=1}}(S) \text { for } S \in I_{2 t}^{\prime}\right\}
\end{aligned}
$$

- May assume $K$ is $O(n)$-invariant


## Specialization to finite distance graphs (LMOV 2018)

$$
\begin{aligned}
\operatorname{las}_{t}(G)^{*}=\inf \{K(\emptyset, \emptyset): & K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}, \\
& \left.A_{t} K(S) \leq-1_{I_{=1}}(S) \text { for } S \in I_{2 t}^{\prime}\right\}
\end{aligned}
$$

- May assume $K$ is $O(n)$-invariant
- Again only finitely many linear constraints (one for each orbit)


## Specialization to finite distance graphs (LMOV 2018)

$$
\begin{aligned}
\operatorname{las}_{t}(G)^{*}=\inf \{K(\emptyset, \emptyset): & K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}, \\
& \left.A_{t} K(S) \leq-1_{I_{=1}}(S) \text { for } S \in I_{2 t}^{\prime}\right\}
\end{aligned}
$$

- May assume $K$ is $O(n)$-invariant
- Again only finitely many linear constraints (one for each orbit)
- Need to describe the cone $\mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}^{O(n)}$


## Specialization to finite distance graphs (LMOV 2018)

$$
\begin{aligned}
\operatorname{las}_{t}(G)^{*}=\inf \{K(\emptyset, \emptyset): & K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}, \\
& \left.A_{t} K(S) \leq-1_{I_{=1}}(S) \text { for } S \in I_{2 t}^{\prime}\right\}
\end{aligned}
$$

- May assume $K$ is $O(n)$-invariant
- Again only finitely many linear constraints (one for each orbit)
- Need to describe the cone $\mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}^{O(n)}$
- Fourier inversion: $K\left(J, J^{\prime}\right)=\sum_{\pi} \operatorname{trace}\left(F_{\pi} Z_{\pi}\left(J, J^{\prime}\right)\right)$


## Specialization to finite distance graphs (LMOV 2018)

$$
\begin{aligned}
\operatorname{las}_{t}(G)^{*}=\inf \{K(\emptyset, \emptyset): & K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}, \\
& \left.A_{t} K(S) \leq-1_{I_{=1}}(S) \text { for } S \in I_{2 t}^{\prime}\right\}
\end{aligned}
$$

- May assume $K$ is $O(n)$-invariant
- Again only finitely many linear constraints (one for each orbit)
- Need to describe the cone $\mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}^{O(n)}$
- Fourier inversion: $K\left(J, J^{\prime}\right)=\sum_{\pi} \operatorname{trace}\left(F_{\pi} Z_{\pi}\left(J, J^{\prime}\right)\right)$
- Need to compute the zonal matrices $Z_{\pi}\left(J, J^{\prime}\right)$


## Approach via the addition formula

- Decompose into $O(n)$-irreducibles: $\mathcal{C}\left(I_{t}\right)=\bigoplus_{\pi} \bigoplus_{i=1}^{m_{\pi}} H_{\pi, i}$


## Approach via the addition formula

- Decompose into $O(n)$-irreducibles: $\mathcal{C}\left(I_{t}\right)=\bigoplus_{\pi} \bigoplus_{i=1}^{m_{\pi}} H_{\pi, i}$
- Compatible orthonormal bases: $H_{\pi, i}=\operatorname{span}\left\{e_{\pi, i, 1}, \ldots, e_{\pi, i, d_{\pi}}\right\}$


## Approach via the addition formula

- Decompose into $O(n)$-irreducibles: $\mathcal{C}\left(I_{t}\right)=\bigoplus_{\pi} \bigoplus_{i=1}^{m_{\pi}} H_{\pi, i}$
- Compatible orthonormal bases: $H_{\pi, i}=\operatorname{span}\left\{e_{\pi, i, 1}, \ldots, e_{\pi, i, d_{\pi}}\right\}$
- Addition formula:

$$
Z_{\pi}\left(J, J^{\prime}\right)_{i, i^{\prime}}=\sum_{j} e_{\pi, i, j}(J) \overline{e_{\pi, i, j}\left(J^{\prime}\right)}
$$

## Approach via the addition formula

- Decompose into $O(n)$-irreducibles: $\mathcal{C}\left(I_{t}\right)=\bigoplus_{\pi} \bigoplus_{i=1}^{m_{\pi}} H_{\pi, i}$
- Compatible orthonormal bases: $H_{\pi, i}=\operatorname{span}\left\{e_{\pi, i, 1}, \ldots, e_{\pi, i, d_{\pi}}\right\}$
- Addition formula:

$$
Z_{\pi}\left(J, J^{\prime}\right)_{i, i^{\prime}}=\sum_{j} e_{\pi, i, j}(J) \overline{e_{\pi, i, j}\left(J^{\prime}\right)}
$$

- Can automate this using integration over compact groups


## Approach via the addition formula

- Decompose into $O(n)$-irreducibles: $\mathcal{C}\left(I_{t}\right)=\bigoplus_{\pi} \bigoplus_{i=1}^{m_{\pi}} H_{\pi, i}$
- Compatible orthonormal bases: $H_{\pi, i}=\operatorname{span}\left\{e_{\pi, i, 1}, \ldots, e_{\pi, i, d_{\pi}}\right\}$
- Addition formula:

$$
Z_{\pi}\left(J, J^{\prime}\right)_{i, i^{\prime}}=\sum_{j} e_{\pi, i, j}(J) \overline{e_{\pi, i, j}\left(J^{\prime}\right)}
$$

- Can automate this using integration over compact groups
- Slow for large $n$


## Approach via the addition formula

- Decompose into $O(n)$-irreducibles: $\mathcal{C}\left(I_{t}\right)=\bigoplus_{\pi} \bigoplus_{i=1}^{m_{\pi}} H_{\pi, i}$
- Compatible orthonormal bases: $H_{\pi, i}=\operatorname{span}\left\{e_{\pi, i, 1}, \ldots, e_{\pi, i, d_{\pi}}\right\}$
- Addition formula:

$$
Z_{\pi}\left(J, J^{\prime}\right)_{i, i^{\prime}}=\sum_{j} e_{\pi, i, j}(J) \overline{e_{\pi, i, j}\left(J^{\prime}\right)}
$$

- Can automate this using integration over compact groups
- Slow for large $n$
- This is like generating all spherical harmonics if you only need the Jacobi polynomials


## Connection to the Stiefel harmonics

- Let $\operatorname{Hom}_{O(n)}\left(I_{t}, H_{\pi}\right)$ be the space of continuous $O(n)$-equivariant maps $I_{t} \rightarrow H_{\pi}$


## Connection to the Stiefel harmonics

- Let $\operatorname{Hom}_{O(n)}\left(I_{t}, H_{\pi}\right)$ be the space of continuous $O(n)$-equivariant maps $I_{t} \rightarrow H_{\pi}$
- Let $\left\{\varphi_{i}^{\pi}\right\}$ be a basis of this space


## Connection to the Stiefel harmonics

- Let $\operatorname{Hom}_{O(n)}\left(I_{t}, H_{\pi}\right)$ be the space of continuous $O(n)$-equivariant maps $I_{t} \rightarrow H_{\pi}$
- Let $\left\{\varphi_{i}^{\pi}\right\}$ be a basis of this space
- Then, $Z_{\pi}\left(J, J^{\prime}\right)_{i, i^{\prime}}=\left\langle\varphi_{i}^{\pi}(J), \varphi_{i^{\prime}}^{\pi}\left(J^{\prime}\right)\right\rangle$


## Connection to the Stiefel harmonics

- Let $\operatorname{Hom}_{O(n)}\left(I_{t}, H_{\pi}\right)$ be the space of continuous $O(n)$-equivariant maps $I_{t} \rightarrow H_{\pi}$
- Let $\left\{\varphi_{i}^{\pi}\right\}$ be a basis of this space
- Then, $Z_{\pi}\left(J, J^{\prime}\right)_{i, i^{\prime}}=\left\langle\varphi_{i}^{\pi}(J), \varphi_{i^{\prime}}^{\pi}\left(J^{\prime}\right)\right\rangle$
- We have

$$
\operatorname{Hom}_{O(n)}\left(I_{t}, H_{\pi}\right) \simeq \bigoplus_{R \in \mathcal{R}_{t}} H_{\pi}^{\operatorname{Stab}_{O(n)}(R)}
$$

where $\mathcal{R}_{t}$ is a complete set of representatives of the orbits

## Connection to the Stiefel harmonics

- Let $\operatorname{Hom}_{O(n)}\left(I_{t}, H_{\pi}\right)$ be the space of continuous $O(n)$-equivariant maps $I_{t} \rightarrow H_{\pi}$
- Let $\left\{\varphi_{i}^{\pi}\right\}$ be a basis of this space
- Then, $Z_{\pi}\left(J, J^{\prime}\right)_{i, i^{\prime}}=\left\langle\varphi_{i}^{\pi}(J), \varphi_{i^{\prime}}^{\pi}\left(J^{\prime}\right)\right\rangle$
- We have

$$
\operatorname{Hom}_{O(n)}\left(I_{t}, H_{\pi}\right) \simeq \bigoplus_{R \in \mathcal{R}_{t}} H_{\pi}^{\operatorname{Stab}_{O(n)}(R)}
$$

where $\mathcal{R}_{t}$ is a complete set of representatives of the orbits

- Find the right representations $H_{\pi}$ of $O(n)$


## Connection to the Stiefel harmonics

- Let $\operatorname{Hom}_{O(n)}\left(I_{t}, H_{\pi}\right)$ be the space of continuous $O(n)$-equivariant maps $I_{t} \rightarrow H_{\pi}$
- Let $\left\{\varphi_{i}^{\pi}\right\}$ be a basis of this space
- Then, $Z_{\pi}\left(J, J^{\prime}\right)_{i, i^{\prime}}=\left\langle\varphi_{i}^{\pi}(J), \varphi_{i^{\prime}}^{\pi}\left(J^{\prime}\right)\right\rangle$
- We have

$$
\operatorname{Hom}_{O(n)}\left(I_{t}, H_{\pi}\right) \simeq \bigoplus_{R \in \mathcal{R}_{t}} H_{\pi}^{\operatorname{Stab}_{O(n)}(R)}
$$

where $\mathcal{R}_{t}$ is a complete set of representatives of the orbits

- Find the right representations $H_{\pi}$ of $O(n)$
- We are essentially interested in

$$
H_{\pi}^{S O(n-i)} \quad \text { for } \quad i=0, \ldots, t
$$

where $\pi$ is a representation of $S O(n)$

## Connection to the Stiefel harmonics

- By Frobenius reciprocity we have

$$
\operatorname{dim}\left(H_{\pi}^{S O(n-t)}\right)=\operatorname{mult}\left(H_{\pi}, L^{2}(S O(n) / S O(n-t))\right)=: m_{\pi}
$$

## Connection to the Stiefel harmonics

- By Frobenius reciprocity we have

$$
\operatorname{dim}\left(H_{\pi}^{S O(n-t)}\right)=\operatorname{mult}\left(H_{\pi}, L^{2}(S O(n) / S O(n-t))\right)=: m_{\pi}
$$

- $S O(n) / S O(n-t)$ is a Stiefel manifold


## Connection to the Stiefel harmonics

- By Frobenius reciprocity we have

$$
\operatorname{dim}\left(H_{\pi}^{S O(n-t)}\right)=\operatorname{mult}\left(H_{\pi}, L^{2}(S O(n) / S O(n-t))\right)=: m_{\pi}
$$

- $S O(n) / S O(n-t)$ is a Stiefel manifold
- Using the branching rules of the special orthogonal groups we see that for $2 t<n$ we can index the representations $\pi$ with $m_{\pi} \neq 0$ by nonincreasing vectors $\lambda \in \mathbb{N}_{0}^{t}$


## Connection to the Stiefel harmonics

- By Frobenius reciprocity we have

$$
\operatorname{dim}\left(H_{\pi}^{S O(n-t)}\right)=\operatorname{mult}\left(H_{\pi}, L^{2}(S O(n) / S O(n-t))\right)=: m_{\pi}
$$

- $S O(n) / S O(n-t)$ is a Stiefel manifold
- Using the branching rules of the special orthogonal groups we see that for $2 t<n$ we can index the representations $\pi$ with $m_{\pi} \neq 0$ by nonincreasing vectors $\lambda \in \mathbb{N}_{0}^{t}$
- The polynomial representations $\rho$ of $\mathrm{GL}(t)$ can also be indexed by such vectors!


## Connection to the Stiefel harmonics

- By Frobenius reciprocity we have

$$
\operatorname{dim}\left(H_{\pi}^{S O(n-t)}\right)=\operatorname{mult}\left(H_{\pi}, L^{2}(S O(n) / S O(n-t))\right)=: m_{\pi}
$$

- $S O(n) / S O(n-t)$ is a Stiefel manifold
- Using the branching rules of the special orthogonal groups we see that for $2 t<n$ we can index the representations $\pi$ with $m_{\pi} \neq 0$ by nonincreasing vectors $\lambda \in \mathbb{N}_{0}^{t}$
- The polynomial representations $\rho$ of $\mathrm{GL}(t)$ can also be indexed by such vectors!
- [Gelbart 1974] showed $m_{\pi_{\lambda}}=\operatorname{dim}\left(\rho_{\lambda}\right)$


## Connection to the Stiefel harmonics

- By Frobenius reciprocity we have

$$
\operatorname{dim}\left(H_{\pi}^{S O(n-t)}\right)=\operatorname{mult}\left(H_{\pi}, L^{2}(S O(n) / S O(n-t))\right)=: m_{\pi}
$$

- $S O(n) / S O(n-t)$ is a Stiefel manifold
- Using the branching rules of the special orthogonal groups we see that for $2 t<n$ we can index the representations $\pi$ with $m_{\pi} \neq 0$ by nonincreasing vectors $\lambda \in \mathbb{N}_{0}^{t}$
- The polynomial representations $\rho$ of $\mathrm{GL}(t)$ can also be indexed by such vectors!
- [Gelbart 1974] showed $m_{\pi_{\lambda}}=\operatorname{dim}\left(\rho_{\lambda}\right)$
"seems to be an act of providence"


## Connection to the Stiefel harmonics

- [Gross-Kunze 1977] give two isomorphisms $H_{\rho_{\lambda}} \rightarrow H_{\pi_{\lambda}}^{S O(n-t)}$


## Connection to the Stiefel harmonics

- [Gross-Kunze 1977] give two isomorphisms $H_{\rho_{\lambda}} \rightarrow H_{\pi_{\lambda}}^{S O(n-t)}$
- The first maps a vector in $H_{\rho_{\lambda}}$ to a function $O(n) \rightarrow H_{\rho_{\lambda}}$


## Connection to the Stiefel harmonics

- [Gross-Kunze 1977] give two isomorphisms $H_{\rho_{\lambda}} \rightarrow H_{\pi_{\lambda}}^{S O(n-t)}$
- The first maps a vector in $H_{\rho_{\lambda}}$ to a function $O(n) \rightarrow H_{\rho_{\lambda}}$
- Construct $H_{\rho_{\lambda}}$ as polynomials $\operatorname{GL}(t) \rightarrow \mathbb{C}$


## Connection to the Stiefel harmonics

- [Gross-Kunze 1977] give two isomorphisms $H_{\rho_{\lambda}} \rightarrow H_{\pi_{\lambda}}^{S O(n-t)}$
- The first maps a vector in $H_{\rho_{\lambda}}$ to a function $O(n) \rightarrow H_{\rho_{\lambda}}$
- Construct $H_{\rho_{\lambda}}$ as polynomials $\operatorname{GL}(t) \rightarrow \mathbb{C}$
- By choosing subspaces of $H_{\rho_{\lambda}}$ we can also describe $H_{\pi_{\lambda}}^{S O(n-i)}$ for $0 \leq i<t$


## Connection to the Stiefel harmonics

- [Gross-Kunze 1977] give two isomorphisms $H_{\rho_{\lambda}} \rightarrow H_{\pi_{\lambda}}^{S O(n-t)}$
- The first maps a vector in $H_{\rho_{\lambda}}$ to a function $O(n) \rightarrow H_{\rho_{\lambda}}$
- Construct $H_{\rho_{\lambda}}$ as polynomials $\mathrm{GL}(t) \rightarrow \mathbb{C}$
- By choosing subspaces of $H_{\rho_{\lambda}}$ we can also describe $H_{\pi_{\lambda}}^{S O(n-i)}$ for $0 \leq i<t$
- Combining this gives

$$
Z_{\pi}\left(J, J^{\prime}\right)_{i, i^{\prime}}=\int_{O(n)} \int_{U(t)} p_{\pi, i, i^{\prime}, J, J^{\prime}}(\gamma, \xi) d \xi d \gamma
$$

where $p_{\pi, i, i^{\prime}, J, J^{\prime}}$ is some explicitly computable polynomial

## Connection to the Stiefel harmonics

- [Gross-Kunze 1977] give two isomorphisms $H_{\rho_{\lambda}} \rightarrow H_{\pi_{\lambda}}^{S O(n-t)}$
- The first maps a vector in $H_{\rho_{\lambda}}$ to a function $O(n) \rightarrow H_{\rho_{\lambda}}$
- Construct $H_{\rho_{\lambda}}$ as polynomials $\mathrm{GL}(t) \rightarrow \mathbb{C}$
- By choosing subspaces of $H_{\rho_{\lambda}}$ we can also describe $H_{\pi_{\lambda}}^{S O(n-i)}$ for $0 \leq i<t$
- Combining this gives

$$
Z_{\pi}\left(J, J^{\prime}\right)_{i, i^{\prime}}=\int_{O(n)} \int_{U(t)} p_{\pi, i, i^{\prime}, J, J^{\prime}}(\gamma, \xi) d \xi d \gamma
$$

where $p_{\pi, i, i^{\prime}, J, J^{\prime}}$ is some explicitly computable polynomial

- Outer integral is difficult in general since $n$ is large


## Connection to the Stiefel harmonics

- [Gross-Kunze 1977] give two isomorphisms $H_{\rho_{\lambda}} \rightarrow H_{\pi_{\lambda}}^{S O(n-t)}$
- The first maps a vector in $H_{\rho_{\lambda}}$ to a function $O(n) \rightarrow H_{\rho_{\lambda}}$
- Construct $H_{\rho_{\lambda}}$ as polynomials $\mathrm{GL}(t) \rightarrow \mathbb{C}$
- By choosing subspaces of $H_{\rho_{\lambda}}$ we can also describe $H_{\pi_{\lambda}}^{S O(n-i)}$ for $0 \leq i<t$
- Combining this gives

$$
Z_{\pi}\left(J, J^{\prime}\right)_{i, i^{\prime}}=\int_{O(n)} \int_{U(t)} p_{\pi, i, i^{\prime}, J, J^{\prime}}(\gamma, \xi) d \xi d \gamma
$$

where $p_{\pi, i, i^{\prime}, J, J^{\prime}}$ is some explicitly computable polynomial

- Outer integral is difficult in general since $n$ is large
- $Z_{\pi}$ is $O(n-t)$-invariant, so we only need to evaluate $Z_{\pi}$ at sets $J, J^{\prime}$ for which $p_{\pi, i, i^{\prime}, J, J^{\prime}}$ depends on very few entries of $\gamma$


## Connection to the Stiefel harmonics

- [Gross-Kunze 1977] give two isomorphisms $H_{\rho_{\lambda}} \rightarrow H_{\pi_{\lambda}}^{S O(n-t)}$
- The first maps a vector in $H_{\rho_{\lambda}}$ to a function $O(n) \rightarrow H_{\rho_{\lambda}}$
- Construct $H_{\rho_{\lambda}}$ as polynomials $\mathrm{GL}(t) \rightarrow \mathbb{C}$
- By choosing subspaces of $H_{\rho_{\lambda}}$ we can also describe $H_{\pi_{\lambda}}^{S O(n-i)}$ for $0 \leq i<t$
- Combining this gives

$$
Z_{\pi}\left(J, J^{\prime}\right)_{i, i^{\prime}}=\int_{O(n)} \int_{U(t)} p_{\pi, i, i^{\prime}, J, J^{\prime}}(\gamma, \xi) d \xi d \gamma
$$

where $p_{\pi, i, i^{\prime}, J, J^{\prime}}$ is some explicitly computable polynomial

- Outer integral is difficult in general since $n$ is large
- $Z_{\pi}$ is $O(n-t)$-invariant, so we only need to evaluate $Z_{\pi}$ at sets $J, J^{\prime}$ for which $p_{\pi, i, i^{\prime}, J, J^{\prime}}$ depends on very few entries of $\gamma$
- [Gorin-Lopez 2008] give formula to compute the integral of a monomial over $O(n)$ where the complexity depends only on the entries and degrees of the integrand (not on $n$ )


## Connection to the Stiefel harmonics

- [Gross-Kunze 1977] give two isomorphisms $H_{\rho_{\lambda}} \rightarrow H_{\pi_{\lambda}}^{S O(n-t)}$
- The first maps a vector in $H_{\rho_{\lambda}}$ to a function $O(n) \rightarrow H_{\rho_{\lambda}}$
- Construct $H_{\rho_{\lambda}}$ as polynomials $\mathrm{GL}(t) \rightarrow \mathbb{C}$
- By choosing subspaces of $H_{\rho_{\lambda}}$ we can also describe $H_{\pi_{\lambda}}^{S O(n-i)}$ for $0 \leq i<t$
- Combining this gives

$$
Z_{\pi}\left(J, J^{\prime}\right)_{i, i^{\prime}}=\int_{O(n)} \int_{U(t)} p_{\pi, i, i^{\prime}, J, J^{\prime}}(\gamma, \xi) d \xi d \gamma
$$

where $p_{\pi, i, i^{\prime}, J, J^{\prime}}$ is some explicitly computable polynomial

- Outer integral is difficult in general since $n$ is large
- $Z_{\pi}$ is $O(n-t)$-invariant, so we only need to evaluate $Z_{\pi}$ at sets $J, J^{\prime}$ for which $p_{\pi, i, i^{\prime}, J, J^{\prime}}$ depends on very few entries of $\gamma$
- [Gorin-Lopez 2008] give formula to compute the integral of a monomial over $O(n)$ where the complexity depends only on the entries and degrees of the integrand (not on $n$ )
- The implementation is work in progress

Thank you!

