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Kepler conjecture (1611)

Spherical cap packing
Tammes problem (1930)

» Typically difficult to prove optimality of constructions
» This talk: Methods to find obstructions
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Example: the Petersen graph

In general difficult to solve to optimality (NP-hard)

The Lovéasz ¥-number upper bounds the independence number
Efficiently computable through semidefinite programming
Semidefinite program: optimize a linear functional over the
intersection of an affine space with the cone of n x n positive
semidefinite matrices

3 x 3 positive semidefinite matrices
with unit diagonal:
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Model packing problems as independent set problems

» Example: the spherical cap packing problem
» As vertex set we take the unit sphere
» Two distinct vertices x and y are adjacent if the spherical caps
centered about x and y intersect in their interiors:

v

Optimal density is proportional to the independence number

v

1 generalizes to an infinite dimensional maximization problem

v

Use optimization duality, harmonic analysis, and real algebraic
geometry to approximate ¢ by a semidefinite program

v

Using symmetry reduction this reduces to a linear program
known as the Delsarte LP bound
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Density: 79.3...%
Our upper bound: 81.3...%

Sodium Chloride

Question 1: Can we use this method for optimality proofs?
Florian and Heppes prove optimality of the following packing:

¢

We prove 9 is sharp for this problem, which gives a simple
optimality proof

We slightly improve the Cohn-Elkies bound to give the best
known bounds for sphere packing in dimensions 4 — 7 and 9

v
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Density: 79.3...%
Our upper bound: 81.3...%

Sodium Chloride

v

Question 1: Can we use this method for optimality proofs?

v

Florian and Heppes prove optimality of the following packing:

v

We prove 9 is sharp for this problem, which gives a simple
optimality proof

We slightly improve the Cohn-Elkies bound to give the best
known bounds for sphere packing in dimensions 4 — 7 and 9
» Question 2: Can we obtain arbitrarily good bounds?

v
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Energy minimization

» Goal: Find the ground state energy of a system of N particles
in a compact container (V,d) with pair potential h

» Example: In the Thomson problem we minimize

> o

1<i<j<N 177 zjll2

over all sets {z1,...,xx} of N distinct points in S? C R3
» Here V =52, d(z,y) = ||lz; — 2|2, and h(w) = 1/w
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Setup

Goal: Find the ground state energy E of a system of N
particles in a compact container (V,d) with pair potential A

» Assume h(s) — oo as s — 0

v
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Define a graph with vertex set V' where two distinct vertices x
and y are adjacent if h(d(z,y)) is large

Let I; be the set of independent sets with < ¢ elements

Let I_; be the set of independent sets with ¢ elements

These sets are compact metric spaces

Define f € C(In) by

£(8) = {h<d<w’ y) if S ={wy} with z £y,

0 otherwise

Minimal energy:
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For S € I_y, define the measure x5 = > g dr
We can use this measure to compute the energy of S
The energy of S is given by

n= [ 1) = 3 5w

RCS

vy
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This measure satisfies the following 3 properties:
> Xs is a positive measure
> Xg satisfies A\(I—;) = (]:f) for all
> Xs is a measure of positive type (see next slide)
Relaxations: Fort=1,..., N,

v

E; = min {)\(f) : A € M(Is;) positive measure of positive type,
A1) = () for all 0 <i < 2t}

v

E; is a min{2¢, N }-point bound

EL<BE<---<Ey=F
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Measures of positive type [L—Vallentin 2015]
» Operator:
Ap: C(I X I)sym — C(Iot), ALK (S) = Y K(J,.J)
JJ'el: JuJ'=S

» This is an infinite dimensional version of the adjoint of the
opererator y — M (y) that maps a moment sequence to a
moment matrix

» Dual operator
A:: M(IQt) — M(It X It)sym

» Cone of positive definite kernels: C(I; x I;)=o
» Dual cone:

M(ItXIt)EO = {M € M(ItXIt)Sym : ,LL(K) >0 for all K € C(ItXIt)EO}
» A measure A € M(Iy) is of positive type if
AIA € M(It X It)tO



Flat extensions

» Recall: F1 < FEy<.--<Ey=F



Flat extensions

» Recall: E1 < FEy<---<Ey=F

» Sufficient condition for the existence of an extension of a
feasible solution A € M(Iy;) of E; to a feasible solution of Enx



Flat extensions

» Recall: E1 < FEy<---<Ey=F
» Sufficient condition for the existence of an extension of a
feasible solution A € M(Iy;) of E; to a feasible solution of Enx

» Positive semidefinite form (f, g) = A;A(f ® g) on C(I})



Flat extensions

» Recall: E1 < FEy<---<Ey=F

» Sufficient condition for the existence of an extension of a
feasible solution A € M(Iy;) of E; to a feasible solution of Enx

» Positive semidefinite form (f, g) = A;A(f ® g) on C(I})
» Define Ny(A\) = {f € C(Ly) : (f, f) =0}



Flat extensions

» Recall: E1 < FEy<---<Ey=F

» Sufficient condition for the existence of an extension of a
feasible solution A € M(Iy;) of E; to a feasible solution of Enx

» Positive semidefinite form (f, g) = A;A(f ® g) on C(I})
» Define Ny(A\) = {f € C(Ly) : (f, f) =0}



Flat extensions

» Recall: £F1 < FEy<---<Exy=F

» Sufficient condition for the existence of an extension of a
feasible solution A € M(Iy;) of E; to a feasible solution of Enx

» Positive semidefinite form (f, g) = A;A(f ® g) on C(I})
» Define Ny(A\) ={f € C(L) : (f, f) =0}
> If A € M(Is) is of positive type and

C(I;) = C(It—1) + Ni(N),

then we can extend \ to a measure \' € M(Iy) that is of
positive type



Flat extensions

v

Recall: £F1 < FEy<---<Exy=F

Sufficient condition for the existence of an extension of a
feasible solution A € M(Iy;) of E; to a feasible solution of Enx

Positive semidefinite form (f, g) = AfA(f ® g) on C(I})
Define Ny(\) ={f € C(Ly) : {f, f) =0}
If A € M(Iy) is of positive type and

C(I;) = C(It—1) + Ni(N),

then we can extend \ to a measure \' € M(Iy) that is of
positive type
M=) = (T)foro<i<2t = N(I_)=(})for0<i<N



Flat extensions

» Recall: £F1 < FEy<---<Exy=F

» Sufficient condition for the existence of an extension of a
feasible solution A € M(Iy;) of E; to a feasible solution of Enx

» Positive semidefinite form (f, g) = A;A(f ® g) on C(I})
» Define Ny(A\) ={f € C(L) : (f, f) =0}
> If A € M(Is) is of positive type and

C(I;) = C(It—1) + Ni(N),

then we can extend \ to a measure \' € M(Iy) that is of
positive type
A=) = (M) foro<i<2t = N(I)=(])for0<i< N

v

If an optimal solution \ of E satisfies C(I;) = C(I;—1)+N;(\),
then B, = Exy = FE
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Dual maximization problem

) E} E E

Strong duality holds: E; = Ef

v

In E} we optimize over kernels K € C(I; X I;)»o
Idea:

1. Express K in terms of its Fourier coefficients
2. Set all but finitely many of these coefficients to 0
3. Optimize over the remaining coefficients

v

v

To do this we need a group I'" with an action on I;

v

In principle this can be the trivial group, but for symmetry
reduction a bigger group is better
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Let I' be compact group with an action on V
Example: T' = O(3) and V = S2 C R3
Assume the metric is I'-invariant:
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Harmonic analysis on subset spaces

» Let I' be compact group with an action on V
» Example: T =0O(3) and V = S2 CR3
> Assume the metric is [-invariant:
d(yx,vy) = d(x,y) for all z,y € Vand y € T
» Then the action extends to an action on I; by
Y0 =0 and v{x1,..., 21} = {yx1,. .., y21}
» By an “averaging argument” we may assume
K € C(I; x It)=0 to be I'-invariant:
K(yJ,vJ")Y=K(J,J") forally €T and J,J € I
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Fourier inversion formula:

v

K ) =3 S Km)is Zelwv)iy

71'61:‘ 4,j=1

The Fourier matrices K () are positive semidefinite

v

v

The zonal matrices Z(x,y) are fixed matrices that depend on
I; and ' (These matrices take the role of the exponential
functions in the familiar Fourier transform)

» To construct the matrices Z(z,y) we need to “perform the
harmonic analysis of I; with respect to I'”
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» By performing the harmonic analysis of I; with respect to I’
we mean: Decompose C(I;) as a direct sum of irreducible
(smallest possible) I'-invariant subspaces

> We give a procedure to perform the harmonic analysis of I;
with respect to I' given that we know enough about the
harmonic analysis of V. In particular we must know how to
decompose tensor products of irreducible subspaces of C(V')
into irreducibles

» We do this explicitly for V' = 82, I' = O(3), and t = 2
(by using Clebsch—Gordan coefficients)



Harmonic analysis on subset spaces

» The action of T" on I; extends to a linear action of " on C(1)
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» By performing the harmonic analysis of I; with respect to I’
we mean: Decompose C(I;) as a direct sum of irreducible
(smallest possible) I'-invariant subspaces

> We give a procedure to perform the harmonic analysis of I;
with respect to I' given that we know enough about the
harmonic analysis of V. In particular we must know how to
decompose tensor products of irreducible subspaces of C(V')
into irreducibles

» We do this explicitly for V' = 82, I' = O(3), and t = 2
(by using Clebsch—Gordan coefficients)

» We use this to lower bound E3 by maximization problems
that have finitely many positive semidefinite matrix variables
(but still infinitely many constraints)
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Invariant theory

» These constraints are of the form
p($1, ... ,1‘4) >0 for {:Ul, X2, T3, 1'4} S I:4,

where p is a polynomial whose coefficients depend linearly on
the entries of the matrix variables

» These polynomials satisfy
p(v1, ... yxs) = play, ... x4) forzy, ..., x4 € S* and v € O(3)
» By a theorem of invariant theory we can write p as a
polynomial in the inner products:
p(x1, 22, T3, 74) = q(1 - T2,..., T3 - T4)

» This theorem is nonconstructive — We solve large sparse
linear systems to perform this transformation explicitly

» Now we have constraints of the form

q(ur,...,u) >0 for (u1,...,u;) € some semialgebraic set
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Sums of squares characterizations

>

Putinar: Every positive polynomial on a compact set
S={zeR":gi1(x) >0,...,9m(x) > 0}, where the set
{91, -.,9m} has the Archimedean property, is of the form

m

f@) =Y gi(x)si(x), where go:=1

i=0
The sum of squares s; can be modeled using positive
semidefinite matrices

We use this to go from infinitely many constraints to finitely
many semidefinite constraints

In energy minimization the particles are interchangeable
This means

P(To(1)s -+ Toa)) = P(T1,. .., 24) forall o €8,

This translates into interesting symmetries of the
q(ui,...,u;) polynomials
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Sums of squares characterizations

» Symmetrization of Putinar's theorem to exploit the symmetry
in the particles

» Assume the set {go, ..., gm} is [-invariant

> Denote by I'y, the stabilizer subgroup of I" with respect to g;

A T-invariant polynomial that has a Putinar representation

can be written as p = " | g;si, where s; is a I'g,-invariant
sum of squares polynomial

» We can represent the I'g,-invariant sum of squares

polynomials s; using block diagonalized positive semidefinite
matrices [Gatermann—Parillo 2004]

» This gives significant computational savings for our problems
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Computational results for the Thomson problem

> In the Thomson problem we take
1
V=5 d@y) =z -yl and h(w)=—

» The Thomson problem has been solved for:
3 (1912), 4, 6 (1992), 12 (1996), and 5 (2010) particles

» E7} is sharp for 3, 4, 6, and 12 particles (Yudin's LP bound)
» We compute E3 using a semidefinite programming solver

» This is the first time a four 4-bound has been computed for a
continuous problem

» We show E is sharp for 5 particles on S? (up to solver
precision), which suggests we can use Ej to derive a small
proof of optimality for this problem
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Phase

v

v
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transitions

The Riesz s-energy of a configuration {x1,...,zy} C S%:
> Tl
P LS
reigren lzi =253

It is believed that the system of 5 particles on S? admits a
phase transition at s ~ 15.05

» For small s the triangular bipyramid is believed to be optimal
» For large s the square pyramid is believed to be optimal
We show E3 is sharp for s = 1,2,3,4 (up to solver precision)
It would be very interesting if E3 is sharp for all s

» Lower bound that stays sharp throughout a phase transition
» Local-to-global behaviour in confined geometries



Thank you!
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