Moment methods in energy minimization

David de Laat

CWI Amsterdam

Andrejewski-Tage
Moment problems in theoretical physics
Konstanz, 9 April 2016

Packing and energy minimization

Sphere packing
Kepler conjecture (1611)

Energy minimization
Thomson problem (1904)

Packing and energy minimization

Sphere packing
Kepler conjecture (1611)

Energy minimization
Thomson problem (1904)

Spherical cap packing
Tammes problem (1930)

- Typically difficult to prove optimality of constructions

Packing and energy minimization

- Typically difficult to prove optimality of constructions
- This talk: Methods to find obstructions

The maximum independent set problem

Example: the Petersen graph

The maximum independent set problem

Example: the Petersen graph

The maximum independent set problem

Example: the Petersen graph

- In general difficult to solve to optimality (NP-hard)

The maximum independent set problem

Example: the Petersen graph

- In general difficult to solve to optimality (NP-hard)
- The Lovász ϑ-number upper bounds the independence number

The maximum independent set problem

Example: the Petersen graph

- In general difficult to solve to optimality (NP-hard)
- The Lovász ϑ-number upper bounds the independence number
- Efficiently computable through semidefinite programming

The maximum independent set problem

Example: the Petersen graph

- In general difficult to solve to optimality (NP-hard)
- The Lovász ϑ-number upper bounds the independence number
- Efficiently computable through semidefinite programming
- Semidefinite program: optimize a linear functional over the intersection of an affine space with the cone of $n \times n$ positive semidefinite matrices

The maximum independent set problem

Example: the Petersen graph

- In general difficult to solve to optimality (NP-hard)
- The Lovász ϑ-number upper bounds the independence number
- Efficiently computable through semidefinite programming
- Semidefinite program: optimize a linear functional over the intersection of an affine space with the cone of $n \times n$ positive semidefinite matrices
3×3 positive semidefinite matrices with unit diagonal:

Model packing problems as independent set problems

Model packing problems as independent set problems

- Example: the spherical cap packing problem

Model packing problems as independent set problems

- Example: the spherical cap packing problem
- As vertex set we take the unit sphere

Model packing problems as independent set problems

- Example: the spherical cap packing problem
- As vertex set we take the unit sphere
- Two distinct vertices x and y are adjacent if the spherical caps centered about x and y intersect in their interiors:

Model packing problems as independent set problems

- Example: the spherical cap packing problem
- As vertex set we take the unit sphere
- Two distinct vertices x and y are adjacent if the spherical caps centered about x and y intersect in their interiors:

- Optimal density is proportional to the independence number

Model packing problems as independent set problems

- Example: the spherical cap packing problem
- As vertex set we take the unit sphere
- Two distinct vertices x and y are adjacent if the spherical caps centered about x and y intersect in their interiors:

- Optimal density is proportional to the independence number
- ϑ generalizes to an infinite dimensional maximization problem

Model packing problems as independent set problems

- Example: the spherical cap packing problem
- As vertex set we take the unit sphere
- Two distinct vertices x and y are adjacent if the spherical caps centered about x and y intersect in their interiors:

- Optimal density is proportional to the independence number
- ϑ generalizes to an infinite dimensional maximization problem
- Use optimization duality, harmonic analysis, and real algebraic geometry to approximate ϑ by a semidefinite program

Model packing problems as independent set problems

- Example: the spherical cap packing problem
- As vertex set we take the unit sphere
- Two distinct vertices x and y are adjacent if the spherical caps centered about x and y intersect in their interiors:

- Optimal density is proportional to the independence number
- ϑ generalizes to an infinite dimensional maximization problem
- Use optimization duality, harmonic analysis, and real algebraic geometry to approximate ϑ by a semidefinite program
- Using symmetry reduction this reduces to a linear program known as the Delsarte LP bound

Bounds for binary packings [L-Oliveira-Vallentin 2014]

Sodium Chloride

Bounds for binary packings [L-Oliveira-Vallentin 2014]

Density: $79.3 \ldots \%$

Sodium Chloride

Bounds for binary packings [L-Oliveira-Vallentin 2014]

Density: 79.3... \%
Our upper bound: $81.3 \ldots \%$

Sodium Chloride

Bounds for binary packings [L-Oliveira-Vallentin 2014]

Density: 79.3... \%
Our upper bound: $81.3 \ldots \%$

Sodium Chloride

- Question 1: Can we use this method for optimality proofs?

Bounds for binary packings [L-Oliveira-Vallentin 2014]

Density: 79.3... \%
Our upper bound: $81.3 \ldots \%$

Sodium Chloride

- Question 1: Can we use this method for optimality proofs?
- Florian and Heppes prove optimality of the following packing:

Bounds for binary packings [L-Oliveira-Vallentin 2014]

Density: 79.3... \%
Our upper bound: $81.3 \ldots \%$

Sodium Chloride

- Question 1: Can we use this method for optimality proofs?
- Florian and Heppes prove optimality of the following packing:

- We prove ϑ is sharp for this problem, which gives a simple optimality proof

Bounds for binary packings [L-Oliveira-Vallentin 2014]

Density: 79.3... \%
Our upper bound: $81.3 \ldots \%$

Sodium Chloride

- Question 1: Can we use this method for optimality proofs?
- Florian and Heppes prove optimality of the following packing:

- We prove ϑ is sharp for this problem, which gives a simple optimality proof
- We slightly improve the Cohn-Elkies bound to give the best known bounds for sphere packing in dimensions $4-7$ and 9

Bounds for binary packings [L-Oliveira-Vallentin 2014]

Density: 79.3... \%
Our upper bound: $81.3 \ldots \%$

Sodium Chloride

- Question 1: Can we use this method for optimality proofs?
- Florian and Heppes prove optimality of the following packing:

- We prove ϑ is sharp for this problem, which gives a simple optimality proof
- We slightly improve the Cohn-Elkies bound to give the best known bounds for sphere packing in dimensions $4-7$ and 9
- Question 2: Can we obtain arbitrarily good bounds?

Energy minimization

- Goal: Find the ground state energy of a system of N particles in a compact container (V, d) with pair potential h

Energy minimization

- Goal: Find the ground state energy of a system of N particles in a compact container (V, d) with pair potential h
- Example: In the Thomson problem we minimize

$$
\sum_{1 \leq i<j \leq N} \frac{1}{\left\|x_{i}-x_{j}\right\|_{2}}
$$

over all sets $\left\{x_{1}, \ldots, x_{N}\right\}$ of N distinct points in $S^{2} \subseteq \mathbb{R}^{3}$

Energy minimization

- Goal: Find the ground state energy of a system of N particles in a compact container (V, d) with pair potential h
- Example: In the Thomson problem we minimize

$$
\sum_{1 \leq i<j \leq N} \frac{1}{\left\|x_{i}-x_{j}\right\|_{2}}
$$

over all sets $\left\{x_{1}, \ldots, x_{N}\right\}$ of N distinct points in $S^{2} \subseteq \mathbb{R}^{3}$

- Here $V=S^{2}, d(x, y)=\left\|x_{i}-x_{j}\right\|_{2}$, and $h(w)=1 / w$

Setup

- Goal: Find the ground state energy E of a system of N particles in a compact container (V, d) with pair potential h

Setup

- Goal: Find the ground state energy E of a system of N particles in a compact container (V, d) with pair potential h
- Assume $h(s) \rightarrow \infty$ as $s \rightarrow 0$

Setup

- Goal: Find the ground state energy E of a system of N particles in a compact container (V, d) with pair potential h
- Assume $h(s) \rightarrow \infty$ as $s \rightarrow 0$
- Define a graph with vertex set V where two distinct vertices x and y are adjacent if $h(d(x, y))$ is large

Setup

- Goal: Find the ground state energy E of a system of N particles in a compact container (V, d) with pair potential h
- Assume $h(s) \rightarrow \infty$ as $s \rightarrow 0$
- Define a graph with vertex set V where two distinct vertices x and y are adjacent if $h(d(x, y))$ is large
- Let I_{t} be the set of independent sets with $\leq t$ elements

Setup

- Goal: Find the ground state energy E of a system of N particles in a compact container (V, d) with pair potential h
- Assume $h(s) \rightarrow \infty$ as $s \rightarrow 0$
- Define a graph with vertex set V where two distinct vertices x and y are adjacent if $h(d(x, y))$ is large
- Let I_{t} be the set of independent sets with $\leq t$ elements
- Let $I_{=t}$ be the set of independent sets with t elements

Setup

- Goal: Find the ground state energy E of a system of N particles in a compact container (V, d) with pair potential h
- Assume $h(s) \rightarrow \infty$ as $s \rightarrow 0$
- Define a graph with vertex set V where two distinct vertices x and y are adjacent if $h(d(x, y))$ is large
- Let I_{t} be the set of independent sets with $\leq t$ elements
- Let $I_{=t}$ be the set of independent sets with t elements
- These sets are compact metric spaces

Setup

- Goal: Find the ground state energy E of a system of N particles in a compact container (V, d) with pair potential h
- Assume $h(s) \rightarrow \infty$ as $s \rightarrow 0$
- Define a graph with vertex set V where two distinct vertices x and y are adjacent if $h(d(x, y))$ is large
- Let I_{t} be the set of independent sets with $\leq t$ elements
- Let $I_{=t}$ be the set of independent sets with t elements
- These sets are compact metric spaces
- Define $f \in \mathcal{C}\left(I_{N}\right)$ by

$$
f(S)= \begin{cases}h(d(x, y)) & \text { if } S=\{x, y\} \text { with } x \neq y \\ 0 & \text { otherwise }\end{cases}
$$

Setup

- Goal: Find the ground state energy E of a system of N particles in a compact container (V, d) with pair potential h
- Assume $h(s) \rightarrow \infty$ as $s \rightarrow 0$
- Define a graph with vertex set V where two distinct vertices x and y are adjacent if $h(d(x, y))$ is large
- Let I_{t} be the set of independent sets with $\leq t$ elements
- Let $I_{=t}$ be the set of independent sets with t elements
- These sets are compact metric spaces
- Define $f \in \mathcal{C}\left(I_{N}\right)$ by

$$
f(S)= \begin{cases}h(d(x, y)) & \text { if } S=\{x, y\} \text { with } x \neq y \\ 0 & \text { otherwise }\end{cases}
$$

- Minimal energy:

$$
E=\min _{S \in I_{=N}} \sum_{P \subseteq S} f(P)
$$

Moment methods in energy minimization

- For $S \in I_{=N}$, define the measure $\chi_{S}=\sum_{R \subseteq S} \delta_{R}$

Moment methods in energy minimization

- For $S \in I_{=N}$, define the measure $\chi_{S}=\sum_{R \subseteq S} \delta_{R}$
- We can use this measure to compute the energy of S

Moment methods in energy minimization

- For $S \in I_{=N}$, define the measure $\chi_{S}=\sum_{R \subseteq S} \delta_{R}$
- We can use this measure to compute the energy of S
- The energy of S is given by

$$
\chi_{S}(f)=\int f(P) d \chi_{S}(P)=\sum_{R \subseteq S} f(R)
$$

Moment methods in energy minimization

- For $S \in I_{=N}$, define the measure $\chi_{S}=\sum_{R \subseteq S} \delta_{R}$
- We can use this measure to compute the energy of S
- The energy of S is given by

$$
\chi_{S}(f)=\int f(P) d \chi_{S}(P)=\sum_{R \subseteq S} f(R)
$$

- This measure satisfies the following 3 properties:

Moment methods in energy minimization

- For $S \in I_{=N}$, define the measure $\chi_{S}=\sum_{R \subseteq S} \delta_{R}$
- We can use this measure to compute the energy of S
- The energy of S is given by

$$
\chi_{S}(f)=\int f(P) d \chi_{S}(P)=\sum_{R \subseteq S} f(R)
$$

- This measure satisfies the following 3 properties:
- χ_{S} is a positive measure

Moment methods in energy minimization

- For $S \in I_{=N}$, define the measure $\chi_{S}=\sum_{R \subseteq S} \delta_{R}$
- We can use this measure to compute the energy of S
- The energy of S is given by

$$
\chi_{S}(f)=\int f(P) d \chi_{S}(P)=\sum_{R \subseteq S} f(R)
$$

- This measure satisfies the following 3 properties:
- χ_{S} is a positive measure
- χ_{S} satisfies $\lambda\left(I_{=i}\right)=\binom{N}{i}$ for all i

Moment methods in energy minimization

- For $S \in I_{=N}$, define the measure $\chi_{S}=\sum_{R \subseteq S} \delta_{R}$
- We can use this measure to compute the energy of S
- The energy of S is given by

$$
\chi_{S}(f)=\int f(P) d \chi_{S}(P)=\sum_{R \subseteq S} f(R)
$$

- This measure satisfies the following 3 properties:
- χ_{S} is a positive measure
- χ_{S} satisfies $\lambda\left(I_{=i}\right)=\binom{N}{i}$ for all i
- χ_{S} is a measure of positive type (see next slide)

Moment methods in energy minimization

- For $S \in I_{=N}$, define the measure $\chi_{S}=\sum_{R \subseteq S} \delta_{R}$
- We can use this measure to compute the energy of S
- The energy of S is given by

$$
\chi_{S}(f)=\int f(P) d \chi_{S}(P)=\sum_{R \subseteq S} f(R)
$$

- This measure satisfies the following 3 properties:
- χ_{S} is a positive measure
- χ_{S} satisfies $\lambda\left(I_{=i}\right)=\binom{N}{i}$ for all i
- χ_{S} is a measure of positive type (see next slide)
- Relaxations: For $t=1, \ldots, N$,
$E_{t}=\min \left\{\lambda(f): \lambda \in \mathcal{M}\left(I_{2 t}\right)\right.$ positive measure of positive type,

$$
\left.\lambda\left(I_{=i}\right)=\binom{N}{i} \text { for all } 0 \leq i \leq 2 t\right\}
$$

Moment methods in energy minimization

- For $S \in I_{=N}$, define the measure $\chi_{S}=\sum_{R \subseteq S} \delta_{R}$
- We can use this measure to compute the energy of S
- The energy of S is given by

$$
\chi_{S}(f)=\int f(P) d \chi_{S}(P)=\sum_{R \subseteq S} f(R)
$$

- This measure satisfies the following 3 properties:
- χ_{S} is a positive measure
- χ_{S} satisfies $\lambda\left(I_{=i}\right)=\binom{N}{i}$ for all i
- χ_{S} is a measure of positive type (see next slide)
- Relaxations: For $t=1, \ldots, N$,
$E_{t}=\min \left\{\lambda(f): \lambda \in \mathcal{M}\left(I_{2 t}\right)\right.$ positive measure of positive type,

$$
\left.\lambda\left(I_{=i}\right)=\binom{N}{i} \text { for all } 0 \leq i \leq 2 t\right\}
$$

- E_{t} is a $\min \{2 t, N\}$-point bound

Moment methods in energy minimization

- For $S \in I_{=N}$, define the measure $\chi_{S}=\sum_{R \subseteq S} \delta_{R}$
- We can use this measure to compute the energy of S
- The energy of S is given by

$$
\chi_{S}(f)=\int f(P) d \chi_{S}(P)=\sum_{R \subseteq S} f(R)
$$

- This measure satisfies the following 3 properties:
- χ_{S} is a positive measure
- χ_{S} satisfies $\lambda\left(I_{=i}\right)=\binom{N}{i}$ for all i
- χ_{S} is a measure of positive type (see next slide)
- Relaxations: For $t=1, \ldots, N$,
$E_{t}=\min \left\{\lambda(f): \lambda \in \mathcal{M}\left(I_{2 t}\right)\right.$ positive measure of positive type,

$$
\left.\lambda\left(I_{=i}\right)=\binom{N}{i} \text { for all } 0 \leq i \leq 2 t\right\}
$$

- E_{t} is a $\min \{2 t, N\}$-point bound

$$
E_{1} \leq E_{2} \leq \cdots \leq E_{N}
$$

Moment methods in energy minimization

- For $S \in I_{=N}$, define the measure $\chi_{S}=\sum_{R \subseteq S} \delta_{R}$
- We can use this measure to compute the energy of S
- The energy of S is given by

$$
\chi_{S}(f)=\int f(P) d \chi_{S}(P)=\sum_{R \subseteq S} f(R)
$$

- This measure satisfies the following 3 properties:
- χ_{S} is a positive measure
- χ_{S} satisfies $\lambda\left(I_{=i}\right)=\binom{N}{i}$ for all i
- χ_{S} is a measure of positive type (see next slide)
- Relaxations: For $t=1, \ldots, N$,
$E_{t}=\min \left\{\lambda(f): \lambda \in \mathcal{M}\left(I_{2 t}\right)\right.$ positive measure of positive type,

$$
\left.\lambda\left(I_{=i}\right)=\binom{N}{i} \text { for all } 0 \leq i \leq 2 t\right\}
$$

- E_{t} is a $\min \{2 t, N\}$-point bound

$$
E_{1} \leq E_{2} \leq \cdots \leq E_{N}=E
$$

Measures of positive type [L-Vallentin 2015]

- Operator:

$$
A_{t}: \mathcal{C}\left(I_{t} \times I_{t}\right)_{\mathrm{sym}} \rightarrow \mathcal{C}\left(I_{2 t}\right), A_{t} K(S)=\sum_{J, J^{\prime} \in I_{t}: J \cup J^{\prime}=S} K\left(J, J^{\prime}\right)
$$

Measures of positive type [L-Vallentin 2015]

- Operator:

$$
A_{t}: \mathcal{C}\left(I_{t} \times I_{t}\right)_{\mathrm{sym}} \rightarrow \mathcal{C}\left(I_{2 t}\right), A_{t} K(S)=\sum_{J, J^{\prime} \in I_{t}: J \cup J^{\prime}=S} K\left(J, J^{\prime}\right)
$$

- This is an infinite dimensional version of the adjoint of the opererator $y \mapsto M(y)$ that maps a moment sequence to a moment matrix

Measures of positive type [L-Vallentin 2015]

- Operator:

$$
A_{t}: \mathcal{C}\left(I_{t} \times I_{t}\right)_{\mathrm{sym}} \rightarrow \mathcal{C}\left(I_{2 t}\right), A_{t} K(S)=\sum_{J, J^{\prime} \in I_{t}: J \cup J^{\prime}=S} K\left(J, J^{\prime}\right)
$$

- This is an infinite dimensional version of the adjoint of the opererator $y \mapsto M(y)$ that maps a moment sequence to a moment matrix
- Dual operator

$$
A_{t}^{*}: \mathcal{M}\left(I_{2 t}\right) \rightarrow \mathcal{M}\left(I_{t} \times I_{t}\right)_{\mathrm{sym}}
$$

Measures of positive type [L-Vallentin 2015]

- Operator:

$$
A_{t}: \mathcal{C}\left(I_{t} \times I_{t}\right)_{\mathrm{sym}} \rightarrow \mathcal{C}\left(I_{2 t}\right), A_{t} K(S)=\sum_{J, J^{\prime} \in I_{t}: J \cup J^{\prime}=S} K\left(J, J^{\prime}\right)
$$

- This is an infinite dimensional version of the adjoint of the opererator $y \mapsto M(y)$ that maps a moment sequence to a moment matrix
- Dual operator

$$
A_{t}^{*}: \mathcal{M}\left(I_{2 t}\right) \rightarrow \mathcal{M}\left(I_{t} \times I_{t}\right)_{\mathrm{sym}}
$$

- Cone of positive definite kernels: $\mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}$

Measures of positive type [L-Vallentin 2015]

- Operator:

$$
A_{t}: \mathcal{C}\left(I_{t} \times I_{t}\right)_{\mathrm{sym}} \rightarrow \mathcal{C}\left(I_{2 t}\right), A_{t} K(S)=\sum_{J, J^{\prime} \in I_{t}: J \cup J^{\prime}=S} K\left(J, J^{\prime}\right)
$$

- This is an infinite dimensional version of the adjoint of the opererator $y \mapsto M(y)$ that maps a moment sequence to a moment matrix
- Dual operator

$$
A_{t}^{*}: \mathcal{M}\left(I_{2 t}\right) \rightarrow \mathcal{M}\left(I_{t} \times I_{t}\right)_{\mathrm{sym}}
$$

- Cone of positive definite kernels: $\mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}$
- Dual cone:

$$
\mathcal{M}\left(I_{t} \times I_{t}\right)_{\succeq 0}=\left\{\mu \in \mathcal{M}\left(I_{t} \times I_{t}\right)_{\text {sym }}: \mu(K) \geq 0 \text { for all } K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}\right\}
$$

Measures of positive type [L-Vallentin 2015]

- Operator:

$$
A_{t}: \mathcal{C}\left(I_{t} \times I_{t}\right)_{\mathrm{sym}} \rightarrow \mathcal{C}\left(I_{2 t}\right), A_{t} K(S)=\sum_{J, J^{\prime} \in I_{t}: J \cup J^{\prime}=S} K\left(J, J^{\prime}\right)
$$

- This is an infinite dimensional version of the adjoint of the opererator $y \mapsto M(y)$ that maps a moment sequence to a moment matrix
- Dual operator

$$
A_{t}^{*}: \mathcal{M}\left(I_{2 t}\right) \rightarrow \mathcal{M}\left(I_{t} \times I_{t}\right)_{\mathrm{sym}}
$$

- Cone of positive definite kernels: $\mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}$
- Dual cone:

$$
\mathcal{M}\left(I_{t} \times I_{t}\right)_{\succeq 0}=\left\{\mu \in \mathcal{M}\left(I_{t} \times I_{t}\right)_{\text {sym }}: \mu(K) \geq 0 \text { for all } K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}\right\}
$$

- A measure $\lambda \in \mathcal{M}\left(I_{2 t}\right)$ is of positive type if

$$
A_{t}^{*} \lambda \in \mathcal{M}\left(I_{t} \times I_{t}\right)_{\succeq 0}
$$

Flat extensions

- Recall: $E_{1} \leq E_{2} \leq \cdots \leq E_{N}=E$

Flat extensions

- Recall: $E_{1} \leq E_{2} \leq \cdots \leq E_{N}=E$
- Sufficient condition for the existence of an extension of a feasible solution $\lambda \in \mathcal{M}\left(I_{2 t}\right)$ of E_{t} to a feasible solution of E_{N}

Flat extensions

- Recall: $E_{1} \leq E_{2} \leq \cdots \leq E_{N}=E$
- Sufficient condition for the existence of an extension of a feasible solution $\lambda \in \mathcal{M}\left(I_{2 t}\right)$ of E_{t} to a feasible solution of E_{N}
- Positive semidefinite form $\langle f, g\rangle=A_{t}^{*} \lambda(f \otimes g)$ on $\mathcal{C}\left(I_{t}\right)$

Flat extensions

- Recall: $E_{1} \leq E_{2} \leq \cdots \leq E_{N}=E$
- Sufficient condition for the existence of an extension of a feasible solution $\lambda \in \mathcal{M}\left(I_{2 t}\right)$ of E_{t} to a feasible solution of E_{N}
- Positive semidefinite form $\langle f, g\rangle=A_{t}^{*} \lambda(f \otimes g)$ on $\mathcal{C}\left(I_{t}\right)$
- Define $\mathcal{N}_{t}(\lambda)=\left\{f \in \mathcal{C}\left(I_{t}\right):\langle f, f\rangle=0\right\}$

Flat extensions

- Recall: $E_{1} \leq E_{2} \leq \cdots \leq E_{N}=E$
- Sufficient condition for the existence of an extension of a feasible solution $\lambda \in \mathcal{M}\left(I_{2 t}\right)$ of E_{t} to a feasible solution of E_{N}
- Positive semidefinite form $\langle f, g\rangle=A_{t}^{*} \lambda(f \otimes g)$ on $\mathcal{C}\left(I_{t}\right)$
- Define $\mathcal{N}_{t}(\lambda)=\left\{f \in \mathcal{C}\left(I_{t}\right):\langle f, f\rangle=0\right\}$

Flat extensions

- Recall: $E_{1} \leq E_{2} \leq \cdots \leq E_{N}=E$
- Sufficient condition for the existence of an extension of a feasible solution $\lambda \in \mathcal{M}\left(I_{2 t}\right)$ of E_{t} to a feasible solution of E_{N}
- Positive semidefinite form $\langle f, g\rangle=A_{t}^{*} \lambda(f \otimes g)$ on $\mathcal{C}\left(I_{t}\right)$
- Define $\mathcal{N}_{t}(\lambda)=\left\{f \in \mathcal{C}\left(I_{t}\right):\langle f, f\rangle=0\right\}$
- If $\lambda \in \mathcal{M}\left(I_{2 t}\right)$ is of positive type and

$$
\mathcal{C}\left(I_{t}\right)=\mathcal{C}\left(I_{t-1}\right)+\mathcal{N}_{t}(\lambda),
$$

then we can extend λ to a measure $\lambda^{\prime} \in \mathcal{M}\left(I_{N}\right)$ that is of positive type

Flat extensions

- Recall: $E_{1} \leq E_{2} \leq \cdots \leq E_{N}=E$
- Sufficient condition for the existence of an extension of a feasible solution $\lambda \in \mathcal{M}\left(I_{2 t}\right)$ of E_{t} to a feasible solution of E_{N}
- Positive semidefinite form $\langle f, g\rangle=A_{t}^{*} \lambda(f \otimes g)$ on $\mathcal{C}\left(I_{t}\right)$
- Define $\mathcal{N}_{t}(\lambda)=\left\{f \in \mathcal{C}\left(I_{t}\right):\langle f, f\rangle=0\right\}$
- If $\lambda \in \mathcal{M}\left(I_{2 t}\right)$ is of positive type and

$$
\mathcal{C}\left(I_{t}\right)=\mathcal{C}\left(I_{t-1}\right)+\mathcal{N}_{t}(\lambda),
$$

then we can extend λ to a measure $\lambda^{\prime} \in \mathcal{M}\left(I_{N}\right)$ that is of positive type

- $\lambda\left(I_{=i}\right)=\binom{N}{i}$ for $0 \leq i \leq 2 t \Rightarrow \lambda^{\prime}\left(I_{=i}\right)=\binom{N}{i}$ for $0 \leq i \leq N$

Flat extensions

- Recall: $E_{1} \leq E_{2} \leq \cdots \leq E_{N}=E$
- Sufficient condition for the existence of an extension of a feasible solution $\lambda \in \mathcal{M}\left(I_{2 t}\right)$ of E_{t} to a feasible solution of E_{N}
- Positive semidefinite form $\langle f, g\rangle=A_{t}^{*} \lambda(f \otimes g)$ on $\mathcal{C}\left(I_{t}\right)$
- Define $\mathcal{N}_{t}(\lambda)=\left\{f \in \mathcal{C}\left(I_{t}\right):\langle f, f\rangle=0\right\}$
- If $\lambda \in \mathcal{M}\left(I_{2 t}\right)$ is of positive type and

$$
\mathcal{C}\left(I_{t}\right)=\mathcal{C}\left(I_{t-1}\right)+\mathcal{N}_{t}(\lambda),
$$

then we can extend λ to a measure $\lambda^{\prime} \in \mathcal{M}\left(I_{N}\right)$ that is of positive type

- $\lambda\left(I_{=i}\right)=\binom{N}{i}$ for $0 \leq i \leq 2 t \Rightarrow \lambda^{\prime}\left(I_{=i}\right)=\binom{N}{i}$ for $0 \leq i \leq N$

If an optimal solution λ of E_{t} satisfies $\mathcal{C}\left(I_{t}\right)=\mathcal{C}\left(I_{t-1}\right)+\mathcal{N}_{t}(\lambda)$, then $E_{t}=E_{N}=E$

Computations using the dual hierarchy

1
0

Computations using the dual hierarchy

Strong duality holds: $E_{t}=E_{t}^{*}$

Computations using the dual hierarchy

Strong duality holds: $E_{t}=E_{t}^{*}$

- In E_{t}^{*} we optimize over kernels $K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}$

Computations using the dual hierarchy

Strong duality holds: $E_{t}=E_{t}^{*}$

- In E_{t}^{*} we optimize over kernels $K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}$
- Idea:

Computations using the dual hierarchy

Strong duality holds: $E_{t}=E_{t}^{*}$

- In E_{t}^{*} we optimize over kernels $K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}$
- Idea:

1. Express K in terms of its Fourier coefficients

Computations using the dual hierarchy

Strong duality holds: $E_{t}=E_{t}^{*}$

- In E_{t}^{*} we optimize over kernels $K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}$
- Idea:

1. Express K in terms of its Fourier coefficients
2. Set all but finitely many of these coefficients to 0

Computations using the dual hierarchy

Strong duality holds: $E_{t}=E_{t}^{*}$

- In E_{t}^{*} we optimize over kernels $K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}$
- Idea:

1. Express K in terms of its Fourier coefficients
2. Set all but finitely many of these coefficients to 0
3. Optimize over the remaining coefficients

Computations using the dual hierarchy

Strong duality holds: $E_{t}=E_{t}^{*}$

- In E_{t}^{*} we optimize over kernels $K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}$
- Idea:

1. Express K in terms of its Fourier coefficients
2. Set all but finitely many of these coefficients to 0
3. Optimize over the remaining coefficients

- To do this we need a group Γ with an action on I_{t}

Computations using the dual hierarchy

Strong duality holds: $E_{t}=E_{t}^{*}$

- In E_{t}^{*} we optimize over kernels $K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}$
- Idea:

1. Express K in terms of its Fourier coefficients
2. Set all but finitely many of these coefficients to 0
3. Optimize over the remaining coefficients

- To do this we need a group Γ with an action on I_{t}
- In principle this can be the trivial group, but for symmetry reduction a bigger group is better

Harmonic analysis on subset spaces

- Let Γ be compact group with an action on V

Harmonic analysis on subset spaces

- Let Γ be compact group with an action on V
- Example: $\Gamma=O(3)$ and $V=S^{2} \subseteq \mathbb{R}^{3}$

Harmonic analysis on subset spaces

- Let Γ be compact group with an action on V
- Example: $\Gamma=O(3)$ and $V=S^{2} \subseteq \mathbb{R}^{3}$
- Assume the metric is Γ-invariant:

$$
d(\gamma x, \gamma y)=d(x, y) \text { for all } x, y \in V \text { and } \gamma \in \Gamma
$$

Harmonic analysis on subset spaces

- Let Γ be compact group with an action on V
- Example: $\Gamma=O(3)$ and $V=S^{2} \subseteq \mathbb{R}^{3}$
- Assume the metric is Γ-invariant: $d(\gamma x, \gamma y)=d(x, y)$ for all $x, y \in V$ and $\gamma \in \Gamma$
- Then the action extends to an action on I_{t} by $\gamma \emptyset=\emptyset$ and $\gamma\left\{x_{1}, \ldots, x_{t}\right\}=\left\{\gamma x_{1}, \ldots, \gamma x_{t}\right\}$

Harmonic analysis on subset spaces

- Let Γ be compact group with an action on V
- Example: $\Gamma=O(3)$ and $V=S^{2} \subseteq \mathbb{R}^{3}$
- Assume the metric is Γ-invariant: $d(\gamma x, \gamma y)=d(x, y)$ for all $x, y \in V$ and $\gamma \in \Gamma$
- Then the action extends to an action on I_{t} by $\gamma \emptyset=\emptyset$ and $\gamma\left\{x_{1}, \ldots, x_{t}\right\}=\left\{\gamma x_{1}, \ldots, \gamma x_{t}\right\}$
- By an "averaging argument" we may assume $K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}$ to be Γ-invariant: $K\left(\gamma J, \gamma J^{\prime}\right)=K\left(J, J^{\prime}\right)$ for all $\gamma \in \Gamma$ and $J, J^{\prime} \in I_{t}$

Harmonic analysis on subset spaces

- Fourier inversion formula:

$$
K(x, y)=\sum_{\pi \in \hat{\Gamma}} \sum_{i, j=1}^{m_{\pi}} \hat{K}(\pi)_{i, j} Z_{\pi}(x, y)_{i, j}
$$

Harmonic analysis on subset spaces

- Fourier inversion formula:

$$
K(x, y)=\sum_{\pi \in \hat{\Gamma}} \sum_{i, j=1}^{m_{\pi}} \hat{K}(\pi)_{i, j} Z_{\pi}(x, y)_{i, j}
$$

- The Fourier matrices $\hat{K}(\pi)$ are positive semidefinite

Harmonic analysis on subset spaces

- Fourier inversion formula:

$$
K(x, y)=\sum_{\pi \in \hat{\Gamma}} \sum_{i, j=1}^{m_{\pi}} \hat{K}(\pi)_{i, j} Z_{\pi}(x, y)_{i, j}
$$

- The Fourier matrices $\hat{K}(\pi)$ are positive semidefinite
- The zonal matrices $Z_{\pi}(x, y)$ are fixed matrices that depend on I_{t} and Γ

Harmonic analysis on subset spaces

- Fourier inversion formula:

$$
K(x, y)=\sum_{\pi \in \hat{\Gamma}} \sum_{i, j=1}^{m_{\pi}} \hat{K}(\pi)_{i, j} Z_{\pi}(x, y)_{i, j}
$$

- The Fourier matrices $\hat{K}(\pi)$ are positive semidefinite
- The zonal matrices $Z_{\pi}(x, y)$ are fixed matrices that depend on I_{t} and Γ (These matrices take the role of the exponential functions in the familiar Fourier transform)

Harmonic analysis on subset spaces

- Fourier inversion formula:

$$
K(x, y)=\sum_{\pi \in \hat{\Gamma}} \sum_{i, j=1}^{m_{\pi}} \hat{K}(\pi)_{i, j} Z_{\pi}(x, y)_{i, j}
$$

- The Fourier matrices $\hat{K}(\pi)$ are positive semidefinite
- The zonal matrices $Z_{\pi}(x, y)$ are fixed matrices that depend on I_{t} and Γ (These matrices take the role of the exponential functions in the familiar Fourier transform)
- To construct the matrices $Z_{\pi}(x, y)$ we need to "perform the harmonic analysis of I_{t} with respect to $\Gamma^{\prime \prime}$

Harmonic analysis on subset spaces

- The action of Γ on I_{t} extends to a linear action of Γ on $\mathcal{C}\left(I_{t}\right)$ by $\gamma f(S)=f\left(\gamma^{-1} S\right)$

Harmonic analysis on subset spaces

- The action of Γ on I_{t} extends to a linear action of Γ on $\mathcal{C}\left(I_{t}\right)$ by $\gamma f(S)=f\left(\gamma^{-1} S\right)$
- By performing the harmonic analysis of I_{t} with respect to Γ we mean: Decompose $\mathcal{C}\left(I_{t}\right)$ as a direct sum of irreducible (smallest possible) Γ-invariant subspaces

Harmonic analysis on subset spaces

- The action of Γ on I_{t} extends to a linear action of Γ on $\mathcal{C}\left(I_{t}\right)$ by $\gamma f(S)=f\left(\gamma^{-1} S\right)$
- By performing the harmonic analysis of I_{t} with respect to Γ we mean: Decompose $\mathcal{C}\left(I_{t}\right)$ as a direct sum of irreducible (smallest possible) Γ-invariant subspaces
- We give a procedure to perform the harmonic analysis of I_{t} with respect to Γ given that we know enough about the harmonic analysis of V.

Harmonic analysis on subset spaces

- The action of Γ on I_{t} extends to a linear action of Γ on $\mathcal{C}\left(I_{t}\right)$ by $\gamma f(S)=f\left(\gamma^{-1} S\right)$
- By performing the harmonic analysis of I_{t} with respect to Γ we mean: Decompose $\mathcal{C}\left(I_{t}\right)$ as a direct sum of irreducible (smallest possible) Γ-invariant subspaces
- We give a procedure to perform the harmonic analysis of I_{t} with respect to Γ given that we know enough about the harmonic analysis of V. In particular we must know how to decompose tensor products of irreducible subspaces of $\mathcal{C}(V)$ into irreducibles

Harmonic analysis on subset spaces

- The action of Γ on I_{t} extends to a linear action of Γ on $\mathcal{C}\left(I_{t}\right)$ by $\gamma f(S)=f\left(\gamma^{-1} S\right)$
- By performing the harmonic analysis of I_{t} with respect to Γ we mean: Decompose $\mathcal{C}\left(I_{t}\right)$ as a direct sum of irreducible (smallest possible) Γ-invariant subspaces
- We give a procedure to perform the harmonic analysis of I_{t} with respect to Γ given that we know enough about the harmonic analysis of V. In particular we must know how to decompose tensor products of irreducible subspaces of $\mathcal{C}(V)$ into irreducibles
- We do this explicitly for $V=S^{2}, \Gamma=O(3)$, and $t=2$ (by using Clebsch-Gordan coefficients)

Harmonic analysis on subset spaces

- The action of Γ on I_{t} extends to a linear action of Γ on $\mathcal{C}\left(I_{t}\right)$ by $\gamma f(S)=f\left(\gamma^{-1} S\right)$
- By performing the harmonic analysis of I_{t} with respect to Γ we mean: Decompose $\mathcal{C}\left(I_{t}\right)$ as a direct sum of irreducible (smallest possible) Γ-invariant subspaces
- We give a procedure to perform the harmonic analysis of I_{t} with respect to Γ given that we know enough about the harmonic analysis of V. In particular we must know how to decompose tensor products of irreducible subspaces of $\mathcal{C}(V)$ into irreducibles
- We do this explicitly for $V=S^{2}, \Gamma=O(3)$, and $t=2$ (by using Clebsch-Gordan coefficients)
- We use this to lower bound E_{2}^{*} by maximization problems that have finitely many positive semidefinite matrix variables (but still infinitely many constraints)

Invariant theory

- These constraints are of the form

$$
p\left(x_{1}, \ldots, x_{4}\right) \geq 0 \quad \text { for } \quad\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \in I_{=4}
$$

where p is a polynomial whose coefficients depend linearly on the entries of the matrix variables

Invariant theory

- These constraints are of the form

$$
p\left(x_{1}, \ldots, x_{4}\right) \geq 0 \quad \text { for } \quad\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \in I_{=4}
$$

where p is a polynomial whose coefficients depend linearly on the entries of the matrix variables

- These polynomials satisfy

$$
p\left(\gamma x_{1}, \ldots, \gamma x_{4}\right)=p\left(x_{1}, \ldots, x_{4}\right) \text { for } x_{1}, \ldots, x_{4} \in S^{2} \text { and } \gamma \in O(3)
$$

Invariant theory

- These constraints are of the form

$$
p\left(x_{1}, \ldots, x_{4}\right) \geq 0 \quad \text { for } \quad\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \in I_{=4}
$$

where p is a polynomial whose coefficients depend linearly on the entries of the matrix variables

- These polynomials satisfy
$p\left(\gamma x_{1}, \ldots, \gamma x_{4}\right)=p\left(x_{1}, \ldots, x_{4}\right)$ for $x_{1}, \ldots, x_{4} \in S^{2}$ and $\gamma \in O(3)$
- By a theorem of invariant theory we can write p as a polynomial in the inner products:

$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=q\left(x_{1} \cdot x_{2}, \ldots, x_{3} \cdot x_{4}\right)
$$

Invariant theory

- These constraints are of the form

$$
p\left(x_{1}, \ldots, x_{4}\right) \geq 0 \quad \text { for } \quad\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \in I_{=4}
$$

where p is a polynomial whose coefficients depend linearly on the entries of the matrix variables

- These polynomials satisfy
$p\left(\gamma x_{1}, \ldots, \gamma x_{4}\right)=p\left(x_{1}, \ldots, x_{4}\right)$ for $x_{1}, \ldots, x_{4} \in S^{2}$ and $\gamma \in O(3)$
- By a theorem of invariant theory we can write p as a polynomial in the inner products:

$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=q\left(x_{1} \cdot x_{2}, \ldots, x_{3} \cdot x_{4}\right)
$$

- This theorem is nonconstructive \rightarrow We solve large sparse linear systems to perform this transformation explicitly

Invariant theory

- These constraints are of the form

$$
p\left(x_{1}, \ldots, x_{4}\right) \geq 0 \quad \text { for } \quad\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \in I_{=4}
$$

where p is a polynomial whose coefficients depend linearly on the entries of the matrix variables

- These polynomials satisfy
$p\left(\gamma x_{1}, \ldots, \gamma x_{4}\right)=p\left(x_{1}, \ldots, x_{4}\right)$ for $x_{1}, \ldots, x_{4} \in S^{2}$ and $\gamma \in O(3)$
- By a theorem of invariant theory we can write p as a polynomial in the inner products:

$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=q\left(x_{1} \cdot x_{2}, \ldots, x_{3} \cdot x_{4}\right)
$$

- This theorem is nonconstructive \rightarrow We solve large sparse linear systems to perform this transformation explicitly
- Now we have constraints of the form
$q\left(u_{1}, \ldots, u_{l}\right) \geq 0 \quad$ for $\quad\left(u_{1}, \ldots, u_{l}\right) \in$ some semialgebraic set

Sums of squares characterizations

- Putinar: Every positive polynomial on a compact set $S=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}$, where the set $\left\{g_{1}, \ldots, g_{m}\right\}$ has the Archimedean property, is of the form

$$
f(x)=\sum_{i=0}^{m} g_{i}(x) s_{i}(x), \quad \text { where } \quad g_{0}:=1
$$

Sums of squares characterizations

- Putinar: Every positive polynomial on a compact set $S=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}$, where the set $\left\{g_{1}, \ldots, g_{m}\right\}$ has the Archimedean property, is of the form

$$
f(x)=\sum_{i=0}^{m} g_{i}(x) s_{i}(x), \quad \text { where } \quad g_{0}:=1
$$

- The sum of squares s_{i} can be modeled using positive semidefinite matrices

Sums of squares characterizations

- Putinar: Every positive polynomial on a compact set $S=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}$, where the set $\left\{g_{1}, \ldots, g_{m}\right\}$ has the Archimedean property, is of the form

$$
f(x)=\sum_{i=0}^{m} g_{i}(x) s_{i}(x), \quad \text { where } \quad g_{0}:=1
$$

- The sum of squares s_{i} can be modeled using positive semidefinite matrices
- We use this to go from infinitely many constraints to finitely many semidefinite constraints

Sums of squares characterizations

- Putinar: Every positive polynomial on a compact set $S=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}$, where the set $\left\{g_{1}, \ldots, g_{m}\right\}$ has the Archimedean property, is of the form

$$
f(x)=\sum_{i=0}^{m} g_{i}(x) s_{i}(x), \quad \text { where } \quad g_{0}:=1
$$

- The sum of squares s_{i} can be modeled using positive semidefinite matrices
- We use this to go from infinitely many constraints to finitely many semidefinite constraints
- In energy minimization the particles are interchangeable

Sums of squares characterizations

- Putinar: Every positive polynomial on a compact set $S=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}$, where the set $\left\{g_{1}, \ldots, g_{m}\right\}$ has the Archimedean property, is of the form

$$
f(x)=\sum_{i=0}^{m} g_{i}(x) s_{i}(x), \quad \text { where } \quad g_{0}:=1
$$

- The sum of squares s_{i} can be modeled using positive semidefinite matrices
- We use this to go from infinitely many constraints to finitely many semidefinite constraints
- In energy minimization the particles are interchangeable
- This means

$$
p\left(x_{\sigma(1)}, \ldots, x_{\sigma(4)}\right)=p\left(x_{1}, \ldots, x_{4}\right) \quad \text { for all } \quad \sigma \in S_{4}
$$

Sums of squares characterizations

- Putinar: Every positive polynomial on a compact set $S=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}$, where the set $\left\{g_{1}, \ldots, g_{m}\right\}$ has the Archimedean property, is of the form

$$
f(x)=\sum_{i=0}^{m} g_{i}(x) s_{i}(x), \quad \text { where } \quad g_{0}:=1
$$

- The sum of squares s_{i} can be modeled using positive semidefinite matrices
- We use this to go from infinitely many constraints to finitely many semidefinite constraints
- In energy minimization the particles are interchangeable
- This means

$$
p\left(x_{\sigma(1)}, \ldots, x_{\sigma(4)}\right)=p\left(x_{1}, \ldots, x_{4}\right) \quad \text { for all } \quad \sigma \in S_{4}
$$

- This translates into interesting symmetries of the $q\left(u_{1}, \ldots, u_{l}\right)$ polynomials

Sums of squares characterizations

- Symmetrization of Putinar's theorem to exploit the symmetry in the particles

Sums of squares characterizations

- Symmetrization of Putinar's theorem to exploit the symmetry in the particles
- Assume the set $\left\{g_{0}, \ldots, g_{m}\right\}$ is Γ-invariant

Sums of squares characterizations

- Symmetrization of Putinar's theorem to exploit the symmetry in the particles
- Assume the set $\left\{g_{0}, \ldots, g_{m}\right\}$ is Γ-invariant
- Denote by $\Gamma_{g_{i}}$ the stabilizer subgroup of Γ with respect to g_{i}

Sums of squares characterizations

- Symmetrization of Putinar's theorem to exploit the symmetry in the particles
- Assume the set $\left\{g_{0}, \ldots, g_{m}\right\}$ is Γ-invariant
- Denote by $\Gamma_{g_{i}}$ the stabilizer subgroup of Γ with respect to g_{i}

A Γ-invariant polynomial that has a Putinar representation can be written as $p=\sum_{i=0}^{m} g_{i} s_{i}$, where s_{i} is a $\Gamma_{g_{i}}$-invariant sum of squares polynomial

Sums of squares characterizations

- Symmetrization of Putinar's theorem to exploit the symmetry in the particles
- Assume the set $\left\{g_{0}, \ldots, g_{m}\right\}$ is Γ-invariant
- Denote by $\Gamma_{g_{i}}$ the stabilizer subgroup of Γ with respect to g_{i}

A Γ-invariant polynomial that has a Putinar representation can be written as $p=\sum_{i=0}^{m} g_{i} s_{i}$, where s_{i} is a $\Gamma_{g_{i}}$-invariant sum of squares polynomial

- We can represent the $\Gamma_{g_{i}}$-invariant sum of squares polynomials s_{i} using block diagonalized positive semidefinite matrices [Gatermann-Parillo 2004]

Sums of squares characterizations

- Symmetrization of Putinar's theorem to exploit the symmetry in the particles
- Assume the set $\left\{g_{0}, \ldots, g_{m}\right\}$ is Γ-invariant
- Denote by $\Gamma_{g_{i}}$ the stabilizer subgroup of Γ with respect to g_{i}

A Γ-invariant polynomial that has a Putinar representation can be written as $p=\sum_{i=0}^{m} g_{i} s_{i}$, where s_{i} is a $\Gamma_{g_{i}}$-invariant sum of squares polynomial

- We can represent the $\Gamma_{g_{i}}$-invariant sum of squares polynomials s_{i} using block diagonalized positive semidefinite matrices [Gatermann-Parillo 2004]
- This gives significant computational savings for our problems

Computational results for the Thomson problem

- In the Thomson problem we take

$$
V=S^{2}, \quad d(x, y)=\|x-y\|_{2}, \quad \text { and } \quad h(w)=\frac{1}{w}
$$

Computational results for the Thomson problem

- In the Thomson problem we take

$$
V=S^{2}, \quad d(x, y)=\|x-y\|_{2}, \quad \text { and } \quad h(w)=\frac{1}{w}
$$

- The Thomson problem has been solved for: 3 (1912), 4, 6 (1992), 12 (1996), and 5 (2010) particles

Computational results for the Thomson problem

- In the Thomson problem we take

$$
V=S^{2}, \quad d(x, y)=\|x-y\|_{2}, \quad \text { and } \quad h(w)=\frac{1}{w}
$$

- The Thomson problem has been solved for: 3 (1912), 4, 6 (1992), 12 (1996), and 5 (2010) particles
- E_{1}^{*} is sharp for $3,4,6$, and 12 particles (Yudin's LP bound)

Computational results for the Thomson problem

- In the Thomson problem we take

$$
V=S^{2}, \quad d(x, y)=\|x-y\|_{2}, \quad \text { and } \quad h(w)=\frac{1}{w}
$$

- The Thomson problem has been solved for: 3 (1912), 4, 6 (1992), 12 (1996), and 5 (2010) particles
- E_{1}^{*} is sharp for $3,4,6$, and 12 particles (Yudin's LP bound)
- We compute E_{2}^{*} using a semidefinite programming solver

Computational results for the Thomson problem

- In the Thomson problem we take

$$
V=S^{2}, \quad d(x, y)=\|x-y\|_{2}, \quad \text { and } \quad h(w)=\frac{1}{w}
$$

- The Thomson problem has been solved for: 3 (1912), 4, 6 (1992), 12 (1996), and 5 (2010) particles
- E_{1}^{*} is sharp for $3,4,6$, and 12 particles (Yudin's LP bound)
- We compute E_{2}^{*} using a semidefinite programming solver
- This is the first time a four 4 -bound has been computed for a continuous problem

Computational results for the Thomson problem

- In the Thomson problem we take

$$
V=S^{2}, \quad d(x, y)=\|x-y\|_{2}, \quad \text { and } \quad h(w)=\frac{1}{w}
$$

- The Thomson problem has been solved for: 3 (1912), 4, 6 (1992), 12 (1996), and 5 (2010) particles
- E_{1}^{*} is sharp for $3,4,6$, and 12 particles (Yudin's LP bound)
- We compute E_{2}^{*} using a semidefinite programming solver
- This is the first time a four 4 -bound has been computed for a continuous problem
- We show E_{2}^{*} is sharp for 5 particles on S^{2} (up to solver precision), which suggests we can use E_{2}^{*} to derive a small proof of optimality for this problem

Phase transitions

- The Riesz s-energy of a configuration $\left\{x_{1}, \ldots, x_{N}\right\} \subseteq S^{2}$:

$$
\sum_{1 \leq i<j \leq N} \frac{1}{\left\|x_{i}-x_{j}\right\|_{2}^{s}}
$$

Phase transitions

- The Riesz s-energy of a configuration $\left\{x_{1}, \ldots, x_{N}\right\} \subseteq S^{2}$:

$$
\sum_{1 \leq i<j \leq N} \frac{1}{\left\|x_{i}-x_{j}\right\|_{2}^{s}}
$$

- It is believed that the system of 5 particles on S^{2} admits a phase transition at $s \approx 15.05$

Phase transitions

- The Riesz s-energy of a configuration $\left\{x_{1}, \ldots, x_{N}\right\} \subseteq S^{2}$:

$$
\sum_{1 \leq i<j \leq N} \frac{1}{\left\|x_{i}-x_{j}\right\|_{2}^{s}}
$$

- It is believed that the system of 5 particles on S^{2} admits a phase transition at $s \approx 15.05$
- For small s the triangular bipyramid is believed to be optimal

Phase transitions

- The Riesz s-energy of a configuration $\left\{x_{1}, \ldots, x_{N}\right\} \subseteq S^{2}$:

$$
\sum_{1 \leq i<j \leq N} \frac{1}{\left\|x_{i}-x_{j}\right\|_{2}^{s}}
$$

- It is believed that the system of 5 particles on S^{2} admits a phase transition at $s \approx 15.05$
- For small s the triangular bipyramid is believed to be optimal
- For large s the square pyramid is believed to be optimal

Phase transitions

- The Riesz s-energy of a configuration $\left\{x_{1}, \ldots, x_{N}\right\} \subseteq S^{2}$:

$$
\sum_{1 \leq i<j \leq N} \frac{1}{\left\|x_{i}-x_{j}\right\|_{2}^{s}}
$$

- It is believed that the system of 5 particles on S^{2} admits a phase transition at $s \approx 15.05$
- For small s the triangular bipyramid is believed to be optimal
- For large s the square pyramid is believed to be optimal
- We show E_{2}^{*} is sharp for $s=1,2,3,4$ (up to solver precision)

Phase transitions

- The Riesz s-energy of a configuration $\left\{x_{1}, \ldots, x_{N}\right\} \subseteq S^{2}$:

$$
\sum_{1 \leq i<j \leq N} \frac{1}{\left\|x_{i}-x_{j}\right\|_{2}^{s}}
$$

- It is believed that the system of 5 particles on S^{2} admits a phase transition at $s \approx 15.05$
- For small s the triangular bipyramid is believed to be optimal
- For large s the square pyramid is believed to be optimal
- We show E_{2}^{*} is sharp for $s=1,2,3,4$ (up to solver precision)
- It would be very interesting if E_{2}^{*} is sharp for all s
- Lower bound that stays sharp throughout a phase transition
- Local-to-global behaviour in confined geometries

Thank you!

- D. de Laat, Moment methods in energy minimization: New bounds for Riesz minimal energy problems, In preparation.
- D. de Laat, Moment methods in extremal geometry, PhD thesis, Delft University of Technology, 2016.
- D. de Laat, F. Vallentin, A semidefinite programming hierarchy for packing problems in discrete geometry, Math. Program., Ser. B 151 (2015), 529-553.
- D. de Laat, F.M. Oliveira, F. Vallentin, Upper bounds for packings of spheres of several radii, Forum Math. Sigma 2 (2014), e23 (42 pages).

Image credits:
Sphere packing: Grek L
Elliptope: Philipp Rostalski
Sodium Chloride: Ben Mills

