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The maximum independent set problem

Example: the Petersen graph

I In general difficult to solve to optimality (NP-hard)
I The Lovász ϑ-number upper bounds the independence number
I Efficiently computable through semidefinite programming
I Semidefinite program: optimize a linear functional over the

intersection of an affine space with the cone of n× n positive
semidefinite matrices

3× 3 positive semidefinite matrices

with unit diagonal:
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Model packing problems as independent set problems

I Example: the spherical cap packing problem
I As vertex set we take the unit sphere
I Two distinct vertices x and y are adjacent if the spherical caps

centered about x and y intersect in their interiors:
x

y

I Optimal density is proportional to the independence number

I ϑ generalizes to an infinite dimensional maximization problem

I Use optimization duality, harmonic analysis, and real algebraic
geometry to approximate ϑ by a semidefinite program

I Using symmetry reduction this reduces to a linear program
known as the Delsarte LP bound
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Bounds for binary packings [L–Oliveira–Vallentin 2014]

Sodium Chloride

I Question 1: Can we use this method for optimality proofs?
I Florian and Heppes prove optimality of the following packing:

I We prove ϑ is sharp for this problem, which gives a simple
optimality proof

I We slightly improve the Cohn-Elkies bound to give the best
known bounds for sphere packing in dimensions 4− 7 and 9

I Question 2: Can we obtain arbitrarily good bounds?
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Energy minimization

I Goal: Find the ground state energy of a system of N particles
in a compact container (V, d) with pair potential h

I Example: In the Thomson problem we minimize∑
1≤i<j≤N

1

‖xi − xj‖2

over all sets {x1, . . . , xN} of N distinct points in S2 ⊆ R3

I Here V = S2, d(x, y) = ‖xi − xj‖2, and h(w) = 1/w
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Setup

I Goal: Find the ground state energy E of a system of N
particles in a compact container (V, d) with pair potential h

I Assume h(s)→∞ as s→ 0

I Define a graph with vertex set V where two distinct vertices x
and y are adjacent if h(d(x, y)) is large

I Let It be the set of independent sets with ≤ t elements

I Let I=t be the set of independent sets with t elements

I These sets are compact metric spaces

I Define f ∈ C(IN ) by

f(S) =

{
h(d(x, y)) if S = {x, y} with x 6= y,

0 otherwise

I Minimal energy:

E = min
S∈I=N

∑
P⊆S

f(P )
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Moment methods in energy minimization
I For S ∈ I=N , define the measure χS =

∑
R⊆S δR

I We can use this measure to compute the energy of S
I The energy of S is given by

χS(f) =

∫
f(P ) dχS(P ) =

∑
R⊆S

f(R)

I This measure satisfies the following 3 properties:
I χS is a positive measure
I χS satisfies λ(I=i) =

(
N
i

)
for all i

I χS is a measure of positive type (see next slide)
I Relaxations: For t = 1, . . . , N ,

Et = min
{
λ(f) : λ ∈M(I2t) positive measure of positive type,

λ(I=i) =
(
N
i

)
for all 0 ≤ i ≤ 2t

}
I Et is a min{2t,N}-point bound

E1 ≤ E2 ≤ · · · ≤ EN = E
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I χS is a positive measure
I χS satisfies λ(I=i) =

(
N
i

)
for all i

I χS is a measure of positive type (see next slide)
I Relaxations: For t = 1, . . . , N ,

Et = min
{
λ(f) : λ ∈M(I2t) positive measure of positive type,

λ(I=i) =
(
N
i

)
for all 0 ≤ i ≤ 2t

}
I Et is a min{2t,N}-point bound

E1 ≤ E2 ≤ · · · ≤ EN = E



Measures of positive type [L–Vallentin 2015]
I Operator:

At : C(It× It)sym → C(I2t), AtK(S) =
∑

J,J ′∈It:J∪J ′=S

K(J, J ′)

I This is an infinite dimensional version of the adjoint of the
opererator y 7→M(y) that maps a moment sequence to a
moment matrix

I Dual operator

A∗t : M(I2t)→M(It × It)sym

I Cone of positive definite kernels: C(It × It)�0

I Dual cone:

M(It×It)�0 = {µ ∈M(It×It)sym : µ(K) ≥ 0 for all K ∈ C(It×It)�0}

I A measure λ ∈M(I2t) is of positive type if

A∗tλ ∈M(It × It)�0
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Flat extensions

I Recall: E1 ≤ E2 ≤ · · · ≤ EN = E

I Sufficient condition for the existence of an extension of a
feasible solution λ ∈M(I2t) of Et to a feasible solution of EN

I Positive semidefinite form 〈f, g〉 = A∗tλ(f ⊗ g) on C(It)
I Define Nt(λ) = {f ∈ C(It) : 〈f, f〉 = 0}
I If λ ∈M(I2t) is of positive type and

C(It) = C(It−1) +Nt(λ),

then we can extend λ to a measure λ′ ∈M(IN ) that is of
positive type

I λ(I=i) =
(
N
i

)
for 0 ≤ i ≤ 2t ⇒ λ′(I=i) =

(
N
i

)
for 0 ≤ i ≤ N

If an optimal solution λ of Et satisfies C(It) = C(It−1)+Nt(λ),
then Et = EN = E
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Computations using the dual hierarchy

0

Strong duality holds: Et = E∗t

I In E∗t we optimize over kernels K ∈ C(It × It)�0

I Idea:

1. Express K in terms of its Fourier coefficients
2. Set all but finitely many of these coefficients to 0
3. Optimize over the remaining coefficients

I To do this we need a group Γ with an action on It
I In principle this can be the trivial group, but for symmetry

reduction a bigger group is better
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Harmonic analysis on subset spaces

I Let Γ be compact group with an action on V

I Example: Γ = O(3) and V = S2 ⊆ R3

I Assume the metric is Γ-invariant:
d(γx, γy) = d(x, y) for all x, y ∈ V and γ ∈ Γ

I Then the action extends to an action on It by
γ∅ = ∅ and γ{x1, . . . , xt} = {γx1, . . . , γxt}

I By an “averaging argument” we may assume
K ∈ C(It × It)�0 to be Γ-invariant:
K(γJ, γJ ′) = K(J, J ′) for all γ ∈ Γ and J, J ′ ∈ It
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Harmonic analysis on subset spaces

I Fourier inversion formula:

K(x, y) =
∑
π∈Γ̂

mπ∑
i,j=1

K̂(π)i,jZπ(x, y)i,j

I The Fourier matrices K̂(π) are positive semidefinite

I The zonal matrices Zπ(x, y) are fixed matrices that depend on
It and Γ (These matrices take the role of the exponential
functions in the familiar Fourier transform)

I To construct the matrices Zπ(x, y) we need to “perform the
harmonic analysis of It with respect to Γ”
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Harmonic analysis on subset spaces

I The action of Γ on It extends to a linear action of Γ on C(It)
by γf(S) = f(γ−1S)

I By performing the harmonic analysis of It with respect to Γ
we mean: Decompose C(It) as a direct sum of irreducible
(smallest possible) Γ-invariant subspaces

I We give a procedure to perform the harmonic analysis of It
with respect to Γ given that we know enough about the
harmonic analysis of V . In particular we must know how to
decompose tensor products of irreducible subspaces of C(V )
into irreducibles

I We do this explicitly for V = S2, Γ = O(3), and t = 2
(by using Clebsch–Gordan coefficients)

I We use this to lower bound E∗2 by maximization problems
that have finitely many positive semidefinite matrix variables
(but still infinitely many constraints)
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into irreducibles

I We do this explicitly for V = S2, Γ = O(3), and t = 2
(by using Clebsch–Gordan coefficients)

I We use this to lower bound E∗2 by maximization problems
that have finitely many positive semidefinite matrix variables
(but still infinitely many constraints)
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Invariant theory

I These constraints are of the form

p(x1, . . . , x4) ≥ 0 for {x1, x2, x3, x4} ∈ I=4,

where p is a polynomial whose coefficients depend linearly on
the entries of the matrix variables

I These polynomials satisfy

p(γx1, . . . , γx4) = p(x1, . . . , x4) for x1, . . . , x4 ∈ S2 and γ ∈ O(3)

I By a theorem of invariant theory we can write p as a
polynomial in the inner products:

p(x1, x2, x3, x4) = q(x1 · x2, . . . , x3 · x4)

I This theorem is nonconstructive → We solve large sparse
linear systems to perform this transformation explicitly

I Now we have constraints of the form

q(u1, . . . , ul) ≥ 0 for (u1, . . . , ul) ∈ some semialgebraic set
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Sums of squares characterizations

I Putinar: Every positive polynomial on a compact set
S = {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥ 0}, where the set
{g1, . . . , gm} has the Archimedean property, is of the form

f(x) =

m∑
i=0

gi(x)si(x), where g0 := 1

I The sum of squares si can be modeled using positive
semidefinite matrices

I We use this to go from infinitely many constraints to finitely
many semidefinite constraints

I In energy minimization the particles are interchangeable

I This means

p(xσ(1), . . . , xσ(4)) = p(x1, . . . , x4) for all σ ∈ S4

I This translates into interesting symmetries of the
q(u1, . . . , ul) polynomials
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Sums of squares characterizations

I Symmetrization of Putinar’s theorem to exploit the symmetry
in the particles

I Assume the set {g0, . . . , gm} is Γ-invariant

I Denote by Γgi the stabilizer subgroup of Γ with respect to gi

A Γ-invariant polynomial that has a Putinar representation
can be written as p =

∑m
i=0 gisi, where si is a Γgi-invariant

sum of squares polynomial

I We can represent the Γgi-invariant sum of squares
polynomials si using block diagonalized positive semidefinite
matrices [Gatermann–Parillo 2004]

I This gives significant computational savings for our problems
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Computational results for the Thomson problem

I In the Thomson problem we take

V = S2, d(x, y) = ‖x− y‖2, and h(w) =
1

w

I The Thomson problem has been solved for:
3 (1912), 4, 6 (1992), 12 (1996), and 5 (2010) particles

I E∗1 is sharp for 3, 4, 6, and 12 particles (Yudin’s LP bound)

I We compute E∗2 using a semidefinite programming solver

I This is the first time a four 4-bound has been computed for a
continuous problem

I We show E∗2 is sharp for 5 particles on S2 (up to solver
precision), which suggests we can use E∗2 to derive a small
proof of optimality for this problem
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Phase transitions

I The Riesz s-energy of a configuration {x1, . . . , xN} ⊆ S2:∑
1≤i<j≤N

1

‖xi − xj‖s2

I It is believed that the system of 5 particles on S2 admits a
phase transition at s ≈ 15.05

I For small s the triangular bipyramid is believed to be optimal
I For large s the square pyramid is believed to be optimal

I We show E∗2 is sharp for s = 1, 2, 3, 4 (up to solver precision)
I It would be very interesting if E∗2 is sharp for all s

I Lower bound that stays sharp throughout a phase transition
I Local-to-global behaviour in confined geometries
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Thank you!
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