Moment methods in energy minimization

David de Laat

CWI Amsterdam

Andrejewski-Tage Moment problems in theoretical physics Konstanz, 9 April 2016

Packing and energy minimization

Sphere packing Kepler conjecture (1611)

Energy minimization Thomson problem (1904)

Spherical cap packing Tammes problem (1930)

Packing and energy minimization

Sphere packing Kepler conjecture (1611)

Energy minimization Thomson problem (1904)

Spherical cap packing Tammes problem (1930)

Typically difficult to prove optimality of constructions

Packing and energy minimization

Sphere packing Kepler conjecture (1611)

Energy minimization Thomson problem (1904)

Spherical cap packing Tammes problem (1930)

- Typically difficult to prove optimality of constructions
- This talk: Methods to find obstructions

Example: the Petersen graph

In general difficult to solve to optimality (NP-hard)

- In general difficult to solve to optimality (NP-hard)
- The Lovász ϑ -number upper bounds the independence number

- In general difficult to solve to optimality (NP-hard)
- The Lovász ϑ -number upper bounds the independence number
- Efficiently computable through semidefinite programming

- In general difficult to solve to optimality (NP-hard)
- The Lovász ϑ -number upper bounds the independence number
- Efficiently computable through semidefinite programming
- Semidefinite program: optimize a linear functional over the intersection of an affine space with the cone of $n \times n$ positive semidefinite matrices

- In general difficult to solve to optimality (NP-hard)
- The Lovász ϑ -number upper bounds the independence number
- Efficiently computable through semidefinite programming
- Semidefinite program: optimize a linear functional over the intersection of an affine space with the cone of $n \times n$ positive semidefinite matrices
 - 3×3 positive semidefinite matrices with unit diagonal:

Example: the spherical cap packing problem

- Example: the spherical cap packing problem
 - As vertex set we take the unit sphere

- Example: the spherical cap packing problem
 - As vertex set we take the unit sphere
 - ► Two distinct vertices x and y are adjacent if the spherical caps centered about x and y intersect in their interiors:

- Example: the spherical cap packing problem
 - As vertex set we take the unit sphere
 - Two distinct vertices x and y are adjacent if the spherical caps centered about x and y intersect in their interiors:

Optimal density is proportional to the independence number

- Example: the spherical cap packing problem
 - As vertex set we take the unit sphere
 - Two distinct vertices x and y are adjacent if the spherical caps centered about x and y intersect in their interiors:

- Optimal density is proportional to the independence number
- \blacktriangleright ϑ generalizes to an infinite dimensional maximization problem

- Example: the spherical cap packing problem
 - As vertex set we take the unit sphere
 - Two distinct vertices x and y are adjacent if the spherical caps centered about x and y intersect in their interiors:

- Optimal density is proportional to the independence number
- \blacktriangleright ϑ generalizes to an infinite dimensional maximization problem
- ► Use optimization duality, harmonic analysis, and real algebraic geometry to approximate ϑ by a semidefinite program

- Example: the spherical cap packing problem
 - As vertex set we take the unit sphere
 - ► Two distinct vertices x and y are adjacent if the spherical caps centered about x and y intersect in their interiors:

- Optimal density is proportional to the independence number
- ϑ generalizes to an infinite dimensional maximization problem
- ► Use optimization duality, harmonic analysis, and real algebraic geometry to approximate ϑ by a semidefinite program
- Using symmetry reduction this reduces to a linear program known as the Delsarte LP bound

Density: 79.3...%

Density: 79.3...% Our upper bound: 81.3...%

Sodium Chloride

Density: 79.3...%Our upper bound: 81.3...%

Sodium Chloride

Question 1: Can we use this method for optimality proofs?

Density: 79.3...%Our upper bound: 81.3...%

Sodium Chloride

- Question 1: Can we use this method for optimality proofs?
- Florian and Heppes prove optimality of the following packing:

Density: 79.3...%Our upper bound: 81.3...%

Sodium Chloride

- Question 1: Can we use this method for optimality proofs?
- Florian and Heppes prove optimality of the following packing:

► We prove ϑ is sharp for this problem, which gives a simple optimality proof

Density: 79.3...%Our upper bound: 81.3...%

Sodium Chloride

- Question 1: Can we use this method for optimality proofs?
- Florian and Heppes prove optimality of the following packing:

- ► We prove ϑ is sharp for this problem, which gives a simple optimality proof
- ► We slightly improve the Cohn-Elkies bound to give the best known bounds for sphere packing in dimensions 4 - 7 and 9

Density: 79.3...%Our upper bound: 81.3...%

Sodium Chloride

- Question 1: Can we use this method for optimality proofs?
- Florian and Heppes prove optimality of the following packing:

- ► We prove ϑ is sharp for this problem, which gives a simple optimality proof
- ► We slightly improve the Cohn-Elkies bound to give the best known bounds for sphere packing in dimensions 4 - 7 and 9
- Question 2: Can we obtain arbitrarily good bounds?

Energy minimization

• Goal: Find the ground state energy of a system of N particles in a compact container (V, d) with pair potential h

Energy minimization

- ▶ Goal: Find the ground state energy of a system of N particles in a compact container (V, d) with pair potential h
- Example: In the Thomson problem we minimize

1

$$\sum_{\leq i < j \le N} \frac{1}{\|x_i - x_j\|_2}$$

over all sets $\{x_1,\ldots,x_N\}$ of N distinct points in $S^2\subseteq \mathbb{R}^3$

Energy minimization

- ▶ Goal: Find the ground state energy of a system of N particles in a compact container (V, d) with pair potential h
- Example: In the Thomson problem we minimize

1

$$\sum_{\leq i < j \le N} \frac{1}{\|x_i - x_j\|_2}$$

over all sets $\{x_1, \ldots, x_N\}$ of N distinct points in $S^2 \subseteq \mathbb{R}^3$ • Here $V = S^2$, $d(x, y) = ||x_i - x_j||_2$, and h(w) = 1/w

▶ Goal: Find the ground state energy E of a system of N particles in a compact container (V, d) with pair potential h

▶ Goal: Find the ground state energy E of a system of N particles in a compact container (V, d) with pair potential h

• Assume $h(s) \to \infty$ as $s \to 0$

- ▶ Goal: Find the ground state energy E of a system of N particles in a compact container (V, d) with pair potential h
- Assume $h(s) \to \infty$ as $s \to 0$
- ▶ Define a graph with vertex set V where two distinct vertices x and y are adjacent if h(d(x, y)) is large

- ▶ Goal: Find the ground state energy E of a system of N particles in a compact container (V, d) with pair potential h
- Assume $h(s) \to \infty$ as $s \to 0$
- ▶ Define a graph with vertex set V where two distinct vertices x and y are adjacent if h(d(x, y)) is large
- Let I_t be the set of independent sets with $\leq t$ elements

- ▶ Goal: Find the ground state energy E of a system of N particles in a compact container (V, d) with pair potential h
- Assume $h(s) \to \infty$ as $s \to 0$
- ▶ Define a graph with vertex set V where two distinct vertices x and y are adjacent if h(d(x, y)) is large
- Let I_t be the set of independent sets with $\leq t$ elements
- Let $I_{=t}$ be the set of independent sets with t elements

- ▶ Goal: Find the ground state energy E of a system of N particles in a compact container (V, d) with pair potential h
- Assume $h(s) \to \infty$ as $s \to 0$
- ▶ Define a graph with vertex set V where two distinct vertices x and y are adjacent if h(d(x, y)) is large
- Let I_t be the set of independent sets with $\leq t$ elements
- Let $I_{=t}$ be the set of independent sets with t elements
- These sets are compact metric spaces

Setup

- ▶ Goal: Find the ground state energy E of a system of N particles in a compact container (V, d) with pair potential h
- Assume $h(s) \to \infty$ as $s \to 0$
- ▶ Define a graph with vertex set V where two distinct vertices x and y are adjacent if h(d(x, y)) is large
- Let I_t be the set of independent sets with $\leq t$ elements
- Let $I_{=t}$ be the set of independent sets with t elements
- These sets are compact metric spaces
- Define $f \in \mathcal{C}(I_N)$ by

$$f(S) = \begin{cases} h(d(x,y)) & \text{if } S = \{x,y\} \text{ with } x \neq y, \\ 0 & \text{otherwise} \end{cases}$$

Setup

▶ Goal: Find the ground state energy E of a system of N particles in a compact container (V, d) with pair potential h

• Assume
$$h(s) \to \infty$$
 as $s \to 0$

- ▶ Define a graph with vertex set V where two distinct vertices x and y are adjacent if h(d(x, y)) is large
- Let I_t be the set of independent sets with $\leq t$ elements
- Let $I_{=t}$ be the set of independent sets with t elements
- These sets are compact metric spaces
- Define $f \in \mathcal{C}(I_N)$ by

$$f(S) = \begin{cases} h(d(x,y)) & \text{if } S = \{x,y\} \text{ with } x \neq y, \\ 0 & \text{otherwise} \end{cases}$$

Minimal energy:

$$E = \min_{S \in I_{=N}} \sum_{P \subseteq S} f(P)$$

• For
$$S \in I_{=N}$$
, define the measure $\chi_S = \sum_{R \subseteq S} \delta_R$

- For $S \in I_{=N}$, define the measure $\chi_S = \sum_{R \subseteq S} \delta_R$
- ▶ We can use this measure to compute the energy of S

• For $S \in I_{=N}$, define the measure $\chi_S = \sum_{R \subseteq S} \delta_R$

- ▶ We can use this measure to compute the energy of S
- The energy of S is given by

$$\chi_S(f) = \int f(P) \, d\chi_S(P) = \sum_{R \subseteq S} f(R)$$

- For $S \in I_{=N}$, define the measure $\chi_S = \sum_{R \subset S} \delta_R$
- ▶ We can use this measure to compute the energy of S
- The energy of S is given by

$$\chi_S(f) = \int f(P) \, d\chi_S(P) = \sum_{R \subseteq S} f(R)$$

This measure satisfies the following 3 properties:

- For $S \in I_{=N}$, define the measure $\chi_S = \sum_{R \subseteq S} \delta_R$
- ▶ We can use this measure to compute the energy of S
- The energy of S is given by

$$\chi_S(f) = \int f(P) \, d\chi_S(P) = \sum_{R \subseteq S} f(R)$$

- This measure satisfies the following 3 properties:
 - χ_S is a positive measure

- For $S \in I_{=N}$, define the measure $\chi_S = \sum_{R \subseteq S} \delta_R$
- ▶ We can use this measure to compute the energy of S
- The energy of S is given by

$$\chi_S(f) = \int f(P) \, d\chi_S(P) = \sum_{R \subseteq S} f(R)$$

- This measure satisfies the following 3 properties:
 - χ_S is a positive measure
 - χ_S satisfies $\lambda(I_{=i}) = \binom{N}{i}$ for all i

- For $S \in I_{=N}$, define the measure $\chi_S = \sum_{R \subseteq S} \delta_R$
- ▶ We can use this measure to compute the energy of S
- The energy of S is given by

$$\chi_S(f) = \int f(P) \, d\chi_S(P) = \sum_{R \subseteq S} f(R)$$

- This measure satisfies the following 3 properties:
 - χ_S is a positive measure
 - χ_S satisfies $\lambda(I_{=i}) = \binom{N}{i}$ for all i
 - χ_S is a measure of positive type (see next slide)

- For $S \in I_{=N}$, define the measure $\chi_S = \sum_{R \subseteq S} \delta_R$
- ▶ We can use this measure to compute the energy of S
- The energy of S is given by

$$\chi_S(f) = \int f(P) \, d\chi_S(P) = \sum_{R \subseteq S} f(R)$$

- This measure satisfies the following 3 properties:
 - χ_S is a positive measure
 - χ_S satisfies $\lambda(I_{=i}) = \binom{N}{i}$ for all i
 - χ_S is a measure of positive type (see next slide)

• Relaxations: For $t = 1, \ldots, N$,

 $E_t = \min \left\{ \lambda(f) : \lambda \in \mathcal{M}(I_{2t}) \text{ positive measure of positive type,} \\ \lambda(I_{=i}) = \binom{N}{i} \text{ for all } 0 \le i \le 2t \right\}$

- For $S \in I_{=N}$, define the measure $\chi_S = \sum_{R \subseteq S} \delta_R$
- ▶ We can use this measure to compute the energy of S
- The energy of S is given by

$$\chi_S(f) = \int f(P) \, d\chi_S(P) = \sum_{R \subseteq S} f(R)$$

- This measure satisfies the following 3 properties:
 - χ_S is a positive measure
 - χ_S satisfies $\lambda(I_{=i}) = \binom{N}{i}$ for all i
 - χ_S is a measure of positive type (see next slide)
- Relaxations: For $t = 1, \ldots, N$,

 $E_t = \min \left\{ \lambda(f) : \lambda \in \mathcal{M}(I_{2t}) \text{ positive measure of positive type,} \\ \lambda(I_{=i}) = \binom{N}{i} \text{ for all } 0 \le i \le 2t \right\}$

• E_t is a min $\{2t, N\}$ -point bound

- For $S \in I_{=N}$, define the measure $\chi_S = \sum_{R \subseteq S} \delta_R$
- ▶ We can use this measure to compute the energy of S
- The energy of S is given by

$$\chi_S(f) = \int f(P) \, d\chi_S(P) = \sum_{R \subseteq S} f(R)$$

- This measure satisfies the following 3 properties:
 - χ_S is a positive measure
 - χ_S satisfies $\lambda(I_{=i}) = \binom{N}{i}$ for all i
 - χ_S is a measure of positive type (see next slide)
- Relaxations: For $t = 1, \ldots, N$,

 $E_t = \min \left\{ \lambda(f) : \lambda \in \mathcal{M}(I_{2t}) \text{ positive measure of positive type}, \\ \lambda(I_{=i}) = \binom{N}{i} \text{ for all } 0 \le i \le 2t \right\}$

• E_t is a min $\{2t, N\}$ -point bound

$$E_1 \leq E_2 \leq \cdots \leq E_N$$

- For $S \in I_{=N}$, define the measure $\chi_S = \sum_{R \subseteq S} \delta_R$
- ▶ We can use this measure to compute the energy of S
- The energy of S is given by

$$\chi_S(f) = \int f(P) \, d\chi_S(P) = \sum_{R \subseteq S} f(R)$$

- This measure satisfies the following 3 properties:
 - χ_S is a positive measure
 - χ_S satisfies $\lambda(I_{=i}) = \binom{N}{i}$ for all i
 - χ_S is a measure of positive type (see next slide)
- Relaxations: For $t = 1, \ldots, N$,

 $E_t = \min \left\{ \lambda(f) : \lambda \in \mathcal{M}(I_{2t}) \text{ positive measure of positive type}, \\ \lambda(I_{=i}) = \binom{N}{i} \text{ for all } 0 \le i \le 2t \right\}$

• E_t is a min $\{2t, N\}$ -point bound

$$E_1 \le E_2 \le \dots \le E_N = E$$

Operator:

$$A_t \colon \mathcal{C}(I_t \times I_t)_{\text{sym}} \to \mathcal{C}(I_{2t}), \ A_t K(S) = \sum_{J, J' \in I_t : J \cup J' = S} K(J, J')$$

Operator:

$$A_t \colon \mathcal{C}(I_t \times I_t)_{\text{sym}} \to \mathcal{C}(I_{2t}), \ A_t K(S) = \sum_{J, J' \in I_t : J \cup J' = S} K(J, J')$$

 \blacktriangleright This is an infinite dimensional version of the adjoint of the opererator $y\mapsto M(y)$ that maps a moment sequence to a moment matrix

Operator:

$$A_t \colon \mathcal{C}(I_t \times I_t)_{\text{sym}} \to \mathcal{C}(I_{2t}), \ A_t K(S) = \sum_{J, J' \in I_t : J \cup J' = S} K(J, J')$$

- \blacktriangleright This is an infinite dimensional version of the adjoint of the opererator $y\mapsto M(y)$ that maps a moment sequence to a moment matrix
- Dual operator

$$A_t^* \colon \mathcal{M}(I_{2t}) \to \mathcal{M}(I_t \times I_t)_{\text{sym}}$$

Operator:

$$A_t \colon \mathcal{C}(I_t \times I_t)_{\text{sym}} \to \mathcal{C}(I_{2t}), \ A_t K(S) = \sum_{J, J' \in I_t : J \cup J' = S} K(J, J')$$

- \blacktriangleright This is an infinite dimensional version of the adjoint of the opererator $y\mapsto M(y)$ that maps a moment sequence to a moment matrix
- Dual operator

$$A_t^* \colon \mathcal{M}(I_{2t}) \to \mathcal{M}(I_t \times I_t)_{\text{sym}}$$

• Cone of positive definite kernels: $C(I_t \times I_t)_{\succeq 0}$

Operator:

$$A_t \colon \mathcal{C}(I_t \times I_t)_{\text{sym}} \to \mathcal{C}(I_{2t}), \ A_t K(S) = \sum_{J, J' \in I_t : J \cup J' = S} K(J, J')$$

- \blacktriangleright This is an infinite dimensional version of the adjoint of the opererator $y\mapsto M(y)$ that maps a moment sequence to a moment matrix
- Dual operator

$$A_t^* \colon \mathcal{M}(I_{2t}) \to \mathcal{M}(I_t \times I_t)_{\text{sym}}$$

- Cone of positive definite kernels: $C(I_t \times I_t)_{\succeq 0}$
- Dual cone:

 $\mathcal{M}(I_t \times I_t)_{\succeq 0} = \{ \mu \in \mathcal{M}(I_t \times I_t)_{\mathrm{sym}} : \mu(K) \ge 0 \text{ for all } K \in \mathcal{C}(I_t \times I_t)_{\succeq 0} \}$

Operator:

$$A_t \colon \mathcal{C}(I_t \times I_t)_{\text{sym}} \to \mathcal{C}(I_{2t}), \ A_t K(S) = \sum_{J, J' \in I_t : J \cup J' = S} K(J, J')$$

- \blacktriangleright This is an infinite dimensional version of the adjoint of the opererator $y\mapsto M(y)$ that maps a moment sequence to a moment matrix
- Dual operator

$$A_t^* \colon \mathcal{M}(I_{2t}) \to \mathcal{M}(I_t \times I_t)_{\text{sym}}$$

- Cone of positive definite kernels: $C(I_t \times I_t)_{\succeq 0}$
- Dual cone:

 $\mathcal{M}(I_t \times I_t)_{\succeq 0} = \{ \mu \in \mathcal{M}(I_t \times I_t)_{\text{sym}} : \mu(K) \ge 0 \text{ for all } K \in \mathcal{C}(I_t \times I_t)_{\succeq 0} \}$

• A measure $\lambda \in \mathcal{M}(I_{2t})$ is of *positive type* if

 $A_t^* \lambda \in \mathcal{M}(I_t \times I_t)_{\succeq 0}$

• Recall:
$$E_1 \leq E_2 \leq \cdots \leq E_N = E$$

- Recall: $E_1 \leq E_2 \leq \cdots \leq E_N = E$
- ► Sufficient condition for the existence of an extension of a feasible solution λ ∈ M(I_{2t}) of E_t to a feasible solution of E_N

- Recall: $E_1 \leq E_2 \leq \cdots \leq E_N = E$
- ► Sufficient condition for the existence of an extension of a feasible solution λ ∈ M(I_{2t}) of E_t to a feasible solution of E_N
- Positive semidefinite form $\langle f,g \rangle = A_t^* \lambda(f \otimes g)$ on $\mathcal{C}(I_t)$

- Recall: $E_1 \leq E_2 \leq \cdots \leq E_N = E$
- ► Sufficient condition for the existence of an extension of a feasible solution λ ∈ M(I_{2t}) of E_t to a feasible solution of E_N
- Positive semidefinite form $\langle f,g \rangle = A_t^* \lambda(f \otimes g)$ on $\mathcal{C}(I_t)$
- Define $\mathcal{N}_t(\lambda) = \{f \in \mathcal{C}(I_t) : \langle f, f \rangle = 0\}$

- Recall: $E_1 \leq E_2 \leq \cdots \leq E_N = E$
- ► Sufficient condition for the existence of an extension of a feasible solution λ ∈ M(I_{2t}) of E_t to a feasible solution of E_N
- Positive semidefinite form $\langle f,g \rangle = A_t^* \lambda(f \otimes g)$ on $\mathcal{C}(I_t)$
- Define $\mathcal{N}_t(\lambda) = \{f \in \mathcal{C}(I_t) : \langle f, f \rangle = 0\}$

- Recall: $E_1 \leq E_2 \leq \cdots \leq E_N = E$
- ► Sufficient condition for the existence of an extension of a feasible solution λ ∈ M(I_{2t}) of E_t to a feasible solution of E_N
- Positive semidefinite form $\langle f,g \rangle = A_t^* \lambda(f \otimes g)$ on $\mathcal{C}(I_t)$
- Define $\mathcal{N}_t(\lambda) = \{ f \in \mathcal{C}(I_t) : \langle f, f \rangle = 0 \}$
- If $\lambda \in \mathcal{M}(I_{2t})$ is of positive type and

$$\mathcal{C}(I_t) = \mathcal{C}(I_{t-1}) + \mathcal{N}_t(\lambda),$$

then we can extend λ to a measure $\lambda' \in \mathcal{M}(I_N)$ that is of positive type

- Recall: $E_1 \leq E_2 \leq \cdots \leq E_N = E$
- ► Sufficient condition for the existence of an extension of a feasible solution λ ∈ M(I_{2t}) of E_t to a feasible solution of E_N
- Positive semidefinite form $\langle f,g \rangle = A_t^* \lambda(f \otimes g)$ on $\mathcal{C}(I_t)$
- Define $\mathcal{N}_t(\lambda) = \{ f \in \mathcal{C}(I_t) : \langle f, f \rangle = 0 \}$
- If $\lambda \in \mathcal{M}(I_{2t})$ is of positive type and

$$\mathcal{C}(I_t) = \mathcal{C}(I_{t-1}) + \mathcal{N}_t(\lambda),$$

then we can extend λ to a measure $\lambda' \in \mathcal{M}(I_N)$ that is of positive type

►
$$\lambda(I_{=i}) = {N \choose i}$$
 for $0 \le i \le 2t \Rightarrow \lambda'(I_{=i}) = {N \choose i}$ for $0 \le i \le N$

- Recall: $E_1 \leq E_2 \leq \cdots \leq E_N = E$
- ► Sufficient condition for the existence of an extension of a feasible solution λ ∈ M(I_{2t}) of E_t to a feasible solution of E_N
- Positive semidefinite form $\langle f,g \rangle = A_t^* \lambda(f \otimes g)$ on $\mathcal{C}(I_t)$
- Define $\mathcal{N}_t(\lambda) = \{f \in \mathcal{C}(I_t) : \langle f, f \rangle = 0\}$
- If $\lambda \in \mathcal{M}(I_{2t})$ is of positive type and

$$\mathcal{C}(I_t) = \mathcal{C}(I_{t-1}) + \mathcal{N}_t(\lambda),$$

then we can extend λ to a measure $\lambda' \in \mathcal{M}(I_N)$ that is of positive type

$$> \lambda(I_{=i}) = {N \choose i} \text{ for } 0 \le i \le 2t \Rightarrow \lambda'(I_{=i}) = {N \choose i} \text{ for } 0 \le i \le N$$

If an optimal solution λ of E_t satisfies $C(I_t) = C(I_{t-1}) + \mathcal{N}_t(\lambda)$, then $E_t = E_N = E$

▶ In E_t^* we optimize over kernels $K \in C(I_t \times I_t)_{\succeq 0}$

▶ In E_t^* we optimize over kernels $K \in C(I_t \times I_t)_{\succeq 0}$ ▶ Idea:

- ▶ In E_t^* we optimize over kernels $K \in C(I_t \times I_t)_{\succeq 0}$ ▶ Idea:
 - 1. Express K in terms of its Fourier coefficients

- ▶ In E_t^* we optimize over kernels $K \in \mathcal{C}(I_t \times I_t)_{\succeq 0}$
- Idea:
 - 1. Express K in terms of its Fourier coefficients
 - 2. Set all but finitely many of these coefficients to $\boldsymbol{0}$

Computations using the dual hierarchy

- ▶ In E_t^* we optimize over kernels $K \in C(I_t \times I_t)_{\succeq 0}$
- Idea:
 - 1. Express K in terms of its Fourier coefficients
 - 2. Set all but finitely many of these coefficients to 0
 - 3. Optimize over the remaining coefficients

Computations using the dual hierarchy

- ▶ In E_t^* we optimize over kernels $K \in C(I_t \times I_t)_{\succeq 0}$
- Idea:
 - 1. Express K in terms of its Fourier coefficients
 - 2. Set all but finitely many of these coefficients to 0
 - 3. Optimize over the remaining coefficients
- To do this we need a group Γ with an action on I_t

Computations using the dual hierarchy

- ▶ In E_t^* we optimize over kernels $K \in C(I_t \times I_t)_{\succeq 0}$
- Idea:
 - 1. Express K in terms of its Fourier coefficients
 - 2. Set all but finitely many of these coefficients to 0
 - 3. Optimize over the remaining coefficients
- \blacktriangleright To do this we need a group Γ with an action on I_t
- In principle this can be the trivial group, but for symmetry reduction a bigger group is better

 \blacktriangleright Let Γ be compact group with an action on V

• Let Γ be compact group with an action on V

• Example: $\Gamma = O(3)$ and $V = S^2 \subseteq \mathbb{R}^3$

- Let Γ be compact group with an action on V
- Example: $\Gamma = O(3)$ and $V = S^2 \subseteq \mathbb{R}^3$
- ► Assume the metric is Γ -invariant: $d(\gamma x, \gamma y) = d(x, y)$ for all $x, y \in V$ and $\gamma \in \Gamma$

- Let Γ be compact group with an action on V
- Example: $\Gamma = O(3)$ and $V = S^2 \subseteq \mathbb{R}^3$
- Assume the metric is $\Gamma\text{-invariant:}$ $d(\gamma x,\gamma y)=d(x,y) \text{ for all } x,y\in V \text{ and } \gamma\in \Gamma$
- ► Then the action extends to an action on I_t by $\gamma \emptyset = \emptyset$ and $\gamma \{x_1, \dots, x_t\} = \{\gamma x_1, \dots, \gamma x_t\}$

- Let Γ be compact group with an action on V
- Example: $\Gamma = O(3)$ and $V = S^2 \subseteq \mathbb{R}^3$
- Assume the metric is Γ -invariant: $d(\gamma x, \gamma y) = d(x, y)$ for all $x, y \in V$ and $\gamma \in \Gamma$
- ► Then the action extends to an action on I_t by $\gamma \emptyset = \emptyset$ and $\gamma \{x_1, \dots, x_t\} = \{\gamma x_1, \dots, \gamma x_t\}$
- ▶ By an "averaging argument" we may assume $K \in C(I_t \times I_t)_{\geq 0}$ to be Γ -invariant: $K(\gamma J, \gamma J') = K(J, J')$ for all $\gamma \in \Gamma$ and $J, J' \in I_t$

► Fourier inversion formula:

$$K(x,y) = \sum_{\pi \in \hat{\Gamma}} \sum_{i,j=1}^{m_{\pi}} \hat{K}(\pi)_{i,j} Z_{\pi}(x,y)_{i,j}$$

Fourier inversion formula:

$$K(x,y) = \sum_{\pi \in \hat{\Gamma}} \sum_{i,j=1}^{m_{\pi}} \hat{K}(\pi)_{i,j} Z_{\pi}(x,y)_{i,j}$$

• The Fourier matrices $\hat{K}(\pi)$ are positive semidefinite

Fourier inversion formula:

$$K(x,y) = \sum_{\pi \in \hat{\Gamma}} \sum_{i,j=1}^{m_{\pi}} \hat{K}(\pi)_{i,j} Z_{\pi}(x,y)_{i,j}$$

- The Fourier matrices $\hat{K}(\pi)$ are positive semidefinite
- \blacktriangleright The zonal matrices $Z_{\pi}(x,y)$ are fixed matrices that depend on I_t and Γ

Fourier inversion formula:

$$K(x,y) = \sum_{\pi \in \hat{\Gamma}} \sum_{i,j=1}^{m_{\pi}} \hat{K}(\pi)_{i,j} Z_{\pi}(x,y)_{i,j}$$

- The Fourier matrices $\hat{K}(\pi)$ are positive semidefinite
- The zonal matrices Z_π(x, y) are fixed matrices that depend on I_t and Γ (These matrices take the role of the exponential functions in the familiar Fourier transform)

Fourier inversion formula:

$$K(x,y) = \sum_{\pi \in \hat{\Gamma}} \sum_{i,j=1}^{m_{\pi}} \hat{K}(\pi)_{i,j} Z_{\pi}(x,y)_{i,j}$$

- The Fourier matrices $\hat{K}(\pi)$ are positive semidefinite
- The zonal matrices Z_π(x, y) are fixed matrices that depend on I_t and Γ (These matrices take the role of the exponential functions in the familiar Fourier transform)
- ► To construct the matrices Z_π(x, y) we need to "perform the harmonic analysis of I_t with respect to Γ"

► The action of Γ on I_t extends to a linear action of Γ on $C(I_t)$ by $\gamma f(S) = f(\gamma^{-1}S)$

- ▶ The action of Γ on I_t extends to a linear action of Γ on $C(I_t)$ by $\gamma f(S) = f(\gamma^{-1}S)$
- By performing the harmonic analysis of I_t with respect to Γ we mean: Decompose C(I_t) as a direct sum of irreducible (smallest possible) Γ-invariant subspaces

- ▶ The action of Γ on I_t extends to a linear action of Γ on $C(I_t)$ by $\gamma f(S) = f(\gamma^{-1}S)$
- By performing the harmonic analysis of I_t with respect to Γ we mean: Decompose C(I_t) as a direct sum of irreducible (smallest possible) Γ-invariant subspaces
- We give a procedure to perform the harmonic analysis of I_t with respect to Γ given that we know enough about the harmonic analysis of V.

- ▶ The action of Γ on I_t extends to a linear action of Γ on $C(I_t)$ by $\gamma f(S) = f(\gamma^{-1}S)$
- By performing the harmonic analysis of I_t with respect to Γ we mean: Decompose C(I_t) as a direct sum of irreducible (smallest possible) Γ-invariant subspaces
- We give a procedure to perform the harmonic analysis of I_t with respect to Γ given that we know enough about the harmonic analysis of V. In particular we must know how to decompose tensor products of irreducible subspaces of C(V) into irreducibles

- ▶ The action of Γ on I_t extends to a linear action of Γ on $C(I_t)$ by $\gamma f(S) = f(\gamma^{-1}S)$
- By performing the harmonic analysis of I_t with respect to Γ we mean: Decompose C(I_t) as a direct sum of irreducible (smallest possible) Γ-invariant subspaces
- We give a procedure to perform the harmonic analysis of I_t with respect to Γ given that we know enough about the harmonic analysis of V. In particular we must know how to decompose tensor products of irreducible subspaces of C(V) into irreducibles
- We do this explicitly for V = S², Γ = O(3), and t = 2 (by using Clebsch–Gordan coefficients)

- ▶ The action of Γ on I_t extends to a linear action of Γ on $C(I_t)$ by $\gamma f(S) = f(\gamma^{-1}S)$
- By performing the harmonic analysis of I_t with respect to Γ we mean: Decompose C(I_t) as a direct sum of irreducible (smallest possible) Γ-invariant subspaces
- We give a procedure to perform the harmonic analysis of I_t with respect to Γ given that we know enough about the harmonic analysis of V. In particular we must know how to decompose tensor products of irreducible subspaces of C(V) into irreducibles
- We do this explicitly for V = S², Γ = O(3), and t = 2 (by using Clebsch–Gordan coefficients)
- ► We use this to lower bound E₂^{*} by maximization problems that have finitely many positive semidefinite matrix variables (but still infinitely many constraints)

These constraints are of the form

 $p(x_1, \ldots, x_4) \ge 0$ for $\{x_1, x_2, x_3, x_4\} \in I_{=4}$,

where $p\ {\rm is}\ {\rm a}\ {\rm polynomial}\ {\rm whose}\ {\rm coefficients}\ {\rm depend}\ {\rm linearly}\ {\rm on}\ {\rm the}\ {\rm entries}\ {\rm of}\ {\rm the}\ {\rm matrix}\ {\rm variables}$

These constraints are of the form

 $p(x_1, \ldots, x_4) \ge 0$ for $\{x_1, x_2, x_3, x_4\} \in I_{=4}$,

where $p\ {\rm is}\ {\rm a}\ {\rm polynomial}\ {\rm whose}\ {\rm coefficients}\ {\rm depend}\ {\rm linearly}\ {\rm on}\ {\rm the}\ {\rm entries}\ {\rm of}\ {\rm the}\ {\rm matrix}\ {\rm variables}$

These polynomials satisfy

 $p(\gamma x_1, \ldots, \gamma x_4) = p(x_1, \ldots, x_4)$ for $x_1, \ldots, x_4 \in S^2$ and $\gamma \in O(3)$

These constraints are of the form

 $p(x_1, \ldots, x_4) \ge 0$ for $\{x_1, x_2, x_3, x_4\} \in I_{=4}$,

where $p\ {\rm is}\ {\rm a}\ {\rm polynomial}\ {\rm whose}\ {\rm coefficients}\ {\rm depend}\ {\rm linearly}\ {\rm on}\ {\rm the}\ {\rm entries}\ {\rm of}\ {\rm the}\ {\rm matrix}\ {\rm variables}$

These polynomials satisfy

 $p(\gamma x_1, \ldots, \gamma x_4) = p(x_1, \ldots, x_4)$ for $x_1, \ldots, x_4 \in S^2$ and $\gamma \in O(3)$

By a theorem of invariant theory we can write p as a polynomial in the inner products:

$$p(x_1, x_2, x_3, x_4) = q(x_1 \cdot x_2, \dots, x_3 \cdot x_4)$$

These constraints are of the form

 $p(x_1, \ldots, x_4) \ge 0$ for $\{x_1, x_2, x_3, x_4\} \in I_{=4}$,

where $p\ {\rm is}\ {\rm a}\ {\rm polynomial}\ {\rm whose}\ {\rm coefficients}\ {\rm depend}\ {\rm linearly}\ {\rm on}\ {\rm the}\ {\rm entries}\ {\rm of}\ {\rm the}\ {\rm matrix}\ {\rm variables}$

These polynomials satisfy

 $p(\gamma x_1, \ldots, \gamma x_4) = p(x_1, \ldots, x_4)$ for $x_1, \ldots, x_4 \in S^2$ and $\gamma \in O(3)$

By a theorem of invariant theory we can write p as a polynomial in the inner products:

$$p(x_1, x_2, x_3, x_4) = q(x_1 \cdot x_2, \dots, x_3 \cdot x_4)$$

► This theorem is nonconstructive → We solve large sparse linear systems to perform this transformation explicitly

These constraints are of the form

 $p(x_1, \ldots, x_4) \ge 0$ for $\{x_1, x_2, x_3, x_4\} \in I_{=4}$,

where $p\ {\rm is}\ {\rm a}\ {\rm polynomial}\ {\rm whose}\ {\rm coefficients}\ {\rm depend}\ {\rm linearly}\ {\rm on}\ {\rm the}\ {\rm entries}\ {\rm of}\ {\rm the}\ {\rm matrix}\ {\rm variables}$

These polynomials satisfy

 $p(\gamma x_1, \ldots, \gamma x_4) = p(x_1, \ldots, x_4)$ for $x_1, \ldots, x_4 \in S^2$ and $\gamma \in O(3)$

By a theorem of invariant theory we can write p as a polynomial in the inner products:

$$p(x_1, x_2, x_3, x_4) = q(x_1 \cdot x_2, \dots, x_3 \cdot x_4)$$

- ► This theorem is nonconstructive → We solve large sparse linear systems to perform this transformation explicitly
- ▶ Now we have constraints of the form $q(u_1, \dots, u_l) \ge 0 \quad \text{for} \quad (u_1, \dots, u_l) \in \text{some semialgebraic set}$

$$f(x) = \sum_{i=0}^{m} g_i(x) s_i(x), \quad \text{where} \quad g_0 := 1$$

▶ Putinar: Every positive polynomial on a compact set $S = \{x \in \mathbb{R}^n : g_1(x) \ge 0, \dots, g_m(x) \ge 0\}$, where the set $\{g_1, \dots, g_m\}$ has the Archimedean property, is of the form

$$f(x) = \sum_{i=0}^{m} g_i(x) s_i(x), \quad \text{where} \quad g_0 := 1$$

The sum of squares s_i can be modeled using positive semidefinite matrices

$$f(x) = \sum_{i=0}^{m} g_i(x) s_i(x), \quad \text{where} \quad g_0 := 1$$

- The sum of squares s_i can be modeled using positive semidefinite matrices
- We use this to go from infinitely many constraints to finitely many semidefinite constraints

$$f(x) = \sum_{i=0}^{m} g_i(x) s_i(x), \quad \text{where} \quad g_0 := 1$$

- The sum of squares s_i can be modeled using positive semidefinite matrices
- We use this to go from infinitely many constraints to finitely many semidefinite constraints
- In energy minimization the particles are interchangeable

$$f(x) = \sum_{i=0}^{m} g_i(x) s_i(x), \quad \text{where} \quad g_0 := 1$$

- The sum of squares s_i can be modeled using positive semidefinite matrices
- We use this to go from infinitely many constraints to finitely many semidefinite constraints
- In energy minimization the particles are interchangeable
- This means

$$p(x_{\sigma(1)},\ldots,x_{\sigma(4)})=p(x_1,\ldots,x_4)$$
 for all $\sigma\in S_4$

▶ Putinar: Every positive polynomial on a compact set $S = \{x \in \mathbb{R}^n : g_1(x) \ge 0, \dots, g_m(x) \ge 0\}$, where the set $\{g_1, \dots, g_m\}$ has the Archimedean property, is of the form

$$f(x) = \sum_{i=0}^{m} g_i(x) s_i(x), \quad \text{where} \quad g_0 := 1$$

- The sum of squares s_i can be modeled using positive semidefinite matrices
- We use this to go from infinitely many constraints to finitely many semidefinite constraints
- In energy minimization the particles are interchangeable
- This means

$$p(x_{\sigma(1)},\ldots,x_{\sigma(4)}) = p(x_1,\ldots,x_4)$$
 for all $\sigma \in S_4$

• This translates into interesting symmetries of the $q(u_1, \ldots, u_l)$ polynomials

 Symmetrization of Putinar's theorem to exploit the symmetry in the particles

- Symmetrization of Putinar's theorem to exploit the symmetry in the particles
- Assume the set $\{g_0, \ldots, g_m\}$ is Γ -invariant

- Symmetrization of Putinar's theorem to exploit the symmetry in the particles
- Assume the set $\{g_0, \ldots, g_m\}$ is Γ -invariant
- Denote by Γ_{g_i} the stabilizer subgroup of Γ with respect to g_i

- Symmetrization of Putinar's theorem to exploit the symmetry in the particles
- Assume the set $\{g_0, \ldots, g_m\}$ is Γ -invariant
- Denote by Γ_{g_i} the stabilizer subgroup of Γ with respect to g_i

A Γ -invariant polynomial that has a Putinar representation can be written as $p=\sum_{i=0}^m g_i s_i$, where s_i is a Γ_{g_i} -invariant sum of squares polynomial

- Symmetrization of Putinar's theorem to exploit the symmetry in the particles
- Assume the set $\{g_0, \ldots, g_m\}$ is Γ -invariant
- Denote by Γ_{g_i} the stabilizer subgroup of Γ with respect to g_i

A Γ -invariant polynomial that has a Putinar representation can be written as $p=\sum_{i=0}^m g_i s_i$, where s_i is a Γ_{g_i} -invariant sum of squares polynomial

 We can represent the Γ_{gi}-invariant sum of squares polynomials s_i using block diagonalized positive semidefinite matrices [Gatermann–Parillo 2004]

- Symmetrization of Putinar's theorem to exploit the symmetry in the particles
- Assume the set $\{g_0, \ldots, g_m\}$ is Γ -invariant
- Denote by Γ_{g_i} the stabilizer subgroup of Γ with respect to g_i

A Γ -invariant polynomial that has a Putinar representation can be written as $p=\sum_{i=0}^m g_i s_i$, where s_i is a Γ_{g_i} -invariant sum of squares polynomial

- We can represent the Γ_{gi}-invariant sum of squares polynomials s_i using block diagonalized positive semidefinite matrices [Gatermann–Parillo 2004]
- This gives significant computational savings for our problems

$$V = S^2$$
, $d(x, y) = ||x - y||_2$, and $h(w) = \frac{1}{w}$

In the Thomson problem we take

$$V = S^2$$
, $d(x, y) = ||x - y||_2$, and $h(w) = \frac{1}{w}$

The Thomson problem has been solved for:
 3 (1912), 4, 6 (1992), 12 (1996), and 5 (2010) particles

$$V = S^2$$
, $d(x, y) = ||x - y||_2$, and $h(w) = \frac{1}{w}$

- The Thomson problem has been solved for:
 3 (1912), 4, 6 (1992), 12 (1996), and 5 (2010) particles
- E_1^* is sharp for 3, 4, 6, and 12 particles (Yudin's LP bound)

$$V = S^2$$
, $d(x, y) = ||x - y||_2$, and $h(w) = \frac{1}{w}$

- The Thomson problem has been solved for:
 3 (1912), 4, 6 (1992), 12 (1996), and 5 (2010) particles
- E_1^* is sharp for 3, 4, 6, and 12 particles (Yudin's LP bound)
- \blacktriangleright We compute E_2^* using a semidefinite programming solver

$$V = S^2$$
, $d(x, y) = ||x - y||_2$, and $h(w) = \frac{1}{w}$

- The Thomson problem has been solved for:
 3 (1912), 4, 6 (1992), 12 (1996), and 5 (2010) particles
- E_1^* is sharp for 3, 4, 6, and 12 particles (Yudin's LP bound)
- \blacktriangleright We compute E_2^* using a semidefinite programming solver
- This is the first time a four 4-bound has been computed for a continuous problem

$$V = S^2$$
, $d(x, y) = ||x - y||_2$, and $h(w) = \frac{1}{w}$

- The Thomson problem has been solved for:
 3 (1912), 4, 6 (1992), 12 (1996), and 5 (2010) particles
- E_1^* is sharp for 3, 4, 6, and 12 particles (Yudin's LP bound)
- We compute E_2^* using a semidefinite programming solver
- This is the first time a four 4-bound has been computed for a continuous problem
- ► We show E₂^{*} is sharp for 5 particles on S² (up to solver precision), which suggests we can use E₂^{*} to derive a small proof of optimality for this problem

$$\sum_{1 \le i < j \le N} \frac{1}{\|x_i - x_j\|_2^s}$$

• The Riesz s-energy of a configuration $\{x_1, \ldots, x_N\} \subseteq S^2$:

$$\sum_{1 \le i < j \le N} \frac{1}{\|x_i - x_j\|_2^s}$$

 \blacktriangleright It is believed that the system of 5 particles on S^2 admits a phase transition at $s\approx 15.05$

$$\sum_{1 \le i < j \le N} \frac{1}{\|x_i - x_j\|_2^s}$$

- \blacktriangleright It is believed that the system of 5 particles on S^2 admits a phase transition at $s\approx 15.05$
 - ▶ For small *s* the triangular bipyramid is believed to be optimal

$$\sum_{1 \le i < j \le N} \frac{1}{\|x_i - x_j\|_2^s}$$

- ▶ It is believed that the system of 5 particles on S^2 admits a phase transition at $s\approx 15.05$
 - ▶ For small *s* the triangular bipyramid is believed to be optimal
 - ▶ For large *s* the square pyramid is believed to be optimal

$$\sum_{1 \le i < j \le N} \frac{1}{\|x_i - x_j\|_2^s}$$

- \blacktriangleright It is believed that the system of 5 particles on S^2 admits a phase transition at $s\approx 15.05$
 - ▶ For small *s* the triangular bipyramid is believed to be optimal
 - ▶ For large *s* the square pyramid is believed to be optimal
- We show E_2^* is sharp for s = 1, 2, 3, 4 (up to solver precision)

$$\sum_{1 \le i < j \le N} \frac{1}{\|x_i - x_j\|_2^s}$$

- \blacktriangleright It is believed that the system of 5 particles on S^2 admits a phase transition at $s\approx 15.05$
 - ▶ For small *s* the triangular bipyramid is believed to be optimal
 - ▶ For large *s* the square pyramid is believed to be optimal
- We show E_2^* is sharp for s = 1, 2, 3, 4 (up to solver precision)
- It would be very interesting if E_2^* is sharp for all s
 - Lower bound that stays sharp throughout a phase transition
 - Local-to-global behaviour in confined geometries

Thank you!

- D. de Laat, Moment methods in energy minimization: New bounds for Riesz minimal energy problems, In preparation.
- D. de Laat, Moment methods in extremal geometry, PhD thesis, Delft University of Technology, 2016.
- D. de Laat, F. Vallentin, A semidefinite programming hierarchy for packing problems in discrete geometry, Math. Program., Ser. B 151 (2015), 529-553.
- D. de Laat, F.M. Oliveira, F. Vallentin, Upper bounds for packings of spheres of several radii, Forum Math. Sigma 2 (2014), e23 (42 pages).

Image credits: Sphere packing: Grek L Elliptope: Philipp Rostalski Sodium Chloride: Ben Mills