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» Proof:

» Second claim: One cannot arrange 13 billiard balls such that
all of them kiss a 14th billiard ball

» Goal: Develop techniques to find proofs for claims like these
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> My thesis introduces a concept of moments for geometric
configurations



Tools

Combine moment formulation with
> optimization,
» harmonic analysis,
» and real algebraic geometry

to build a computer program that generates proofs
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> In optimization we try to find the best element from some set
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» Duality: Each maximization problem has a corresponding
minimization problem (and vice versa)
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Real algebraic geometry

» Let f(x) = 2* — 1023 + 2722 — 10z + 1
f()

‘ x
» Claim: There is no x for which f(z) is negative
» Different ways of writing f:

» f(x) = z(z® — 102 + 272 — 10) + 1
» f(z) = (2% — 5z +1)?
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Problem in for instance coding theory
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Problem in extremal geometry

I

Moment formulation of the problem

I

Use optimization, harmonic analysis, and real algebraic geometry

0

Computer program

0

Generate a proof that shows the geometric configuration is optimal



Thank you!
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