Moment methods in extremal geometry Layman's talk

David de Laat

TU Delft

29 January 2016

Extremal geometry

Extremal geometry

Coding theory (Example: Voyager probes)

- Coding theory (Example: Voyager probes)
- Cryptography

- Coding theory (Example: Voyager probes)
- Cryptography
- Approximation theory

- Coding theory (Example: Voyager probes)
- Cryptography
- Approximation theory
- Modeling particle systems (Symmetry?)

- Coding theory (Example: Voyager probes)
- Cryptography
- Approximation theory

:

Modeling particle systems (Symmetry?)

► First claim: One can arrange 12 billiard balls such that all of them kiss a 13th billiard ball

► First claim: One can arrange 12 billiard balls such that all of them kiss a 13th billiard ball

Proof:

 First claim: One can arrange 12 billiard balls such that all of them kiss a 13th billiard ball

Proof:

Second claim: One cannot arrange 13 billiard balls such that all of them kiss a 14th billiard ball

 First claim: One can arrange 12 billiard balls such that all of them kiss a 13th billiard ball

Proof:

- Second claim: One cannot arrange 13 billiard balls such that all of them kiss a 14th billiard ball
- ► Goal: Develop techniques to find proofs for claims like these

My thesis introduces a concept of moments for geometric configurations

Tools

Combine moment formulation with

- optimization,
- harmonic analysis,
- and real algebraic geometry

to build a computer program that generates proofs

Optimization

In optimization we try to find the best element from some set of available alternatives

Optimization

- In optimization we try to find the best element from some set of available alternatives
- Example: Dijkstra's algorithm

Optimization

- In optimization we try to find the best element from some set of available alternatives
- Example: Dijkstra's algorithm

 Duality: Each maximization problem has a corresponding minimization problem (and vice versa)

• Claim: There is no x for which f(x) is negative

- Claim: There is no x for which f(x) is negative
- Different ways of writing f:

- Claim: There is no x for which f(x) is negative
- Different ways of writing f:
 - $f(x) = x(x^3 10x^2 + 27x 10) + 1$

- Claim: There is no x for which f(x) is negative
- Different ways of writing f:

•
$$f(x) = x(x^3 - 10x^2 + 27x - 10) + 1$$

•
$$f(x) = (x^2 - 5x + 1)^2$$

Problem in for instance coding theory

Problem in for instance coding theory \downarrow Problem in extremal geometry

Problem in for instance coding theory \downarrow Problem in extremal geometry \downarrow Moment formulation of the problem

Problem in for instance coding theory \downarrow Problem in extremal geometry \downarrow Moment formulation of the problem \downarrow Use optimization, harmonic analysis, and real algebraic geometry

Thank you!

