Upper bounds for multiple-size spherical cap packings

David de Laat
Joint work with Fernando de Oliveira Filho and Frank Vallentin

Emerging Developments in Real Algebraic Geometry
Magdeburg - February 23, 2012

Multiple-size spherical cap packing problem

Given a fixed set $\left\{\alpha_{1}, \ldots, \alpha_{N}\right\}$ of spherical cap angles: What is the maximal spherical cap packing density?

Spherical cap packing graph

$$
V=S^{n-1} \times\{1, \ldots, N\}
$$

Spherical cap packing graph

$$
\begin{gathered}
V=S^{n-1} \times\{1, \ldots, N\} \\
(x, i) \sim(y, j) \Longleftrightarrow \cos \left(\alpha_{i}+\alpha_{j}\right)<x \cdot y \text { and }(x, i) \neq(y, j)
\end{gathered}
$$

Spherical cap packing graph

$$
\begin{gathered}
V=S^{n-1} \times\{1, \ldots, N\} \\
(x, i) \sim(y, j) \Longleftrightarrow \cos \left(\alpha_{i}+\alpha_{j}\right)<x \cdot y \text { and }(x, i) \neq(y, j) \\
w(x, i)=\frac{\omega_{n-1}\left(S^{n-2}\right)}{\omega_{n}\left(S^{n-1}\right)} \int_{\cos \alpha_{i}}^{1}\left(1-u^{2}\right)^{(n-3) / 2} d u
\end{gathered}
$$

Spherical cap packing graph

$$
\begin{gathered}
V=S^{n-1} \times\{1, \ldots, N\} \\
(x, i) \sim(y, j) \Longleftrightarrow \cos \left(\alpha_{i}+\alpha_{j}\right)<x \cdot y \text { and }(x, i) \neq(y, j) \\
w(x, i)=\frac{\omega_{n-1}\left(S^{n-2}\right)}{\omega_{n}\left(S^{n-1}\right)} \int_{\cos \alpha_{i}}^{1}\left(1-u^{2}\right)^{(n-3) / 2} d u
\end{gathered}
$$

- Stable sets correspond to packings

Spherical cap packing graph

$$
\begin{gathered}
V=S^{n-1} \times\{1, \ldots, N\} \\
(x, i) \sim(y, j) \Longleftrightarrow \cos \left(\alpha_{i}+\alpha_{j}\right)<x \cdot y \text { and }(x, i) \neq(y, j) \\
w(x, i)=\frac{\omega_{n-1}\left(S^{n-2}\right)}{\omega_{n}\left(S^{n-1}\right)} \int_{\cos \alpha_{i}}^{1}\left(1-u^{2}\right)^{(n-3) / 2} d u
\end{gathered}
$$

- Stable sets correspond to packings
- Weighted stability number gives the maximal packing density

The weighted theta number for finite graphs

- Computing the weighted stability number is NP-hard
- The weighted theta (prime) number gives upper bounds:

$$
\vartheta_{w}^{\prime}(G)=\min \left\{\begin{array}{c}
\left.M: \begin{array}{c}
K-\sqrt{w} \sqrt{w}^{\top} \in S_{\geq 0}^{v} \\
(K-M I)(u, v) \leq 0 \text { when } u \nsim v
\end{array}\right\}, ~ f
\end{array}\right\}
$$

- This can be computed in polynomial time using semidefinite programming

Infinite graphs

- Hilbert-Schmidt kernels:

$$
\mathcal{C}(V \times V)=\{K: V \times V \rightarrow \mathbb{R}: K \text { continuous }\}
$$

Infinite graphs

- Hilbert-Schmidt kernels:
$\mathcal{C}(V \times V)=\{K: V \times V \rightarrow \mathbb{R}: K$ continuous $\}$
- $K \in \mathcal{C}(V \times V)$ is positive if it is symmetric and $\left(K\left(u_{i}, u_{j}\right)\right)_{1 \leq i, j \leq n} \succeq 0$ for all n and all $u_{1}, \ldots, u_{n} \in V$

Infinite graphs

- Hilbert-Schmidt kernels:
$\mathcal{C}(V \times V)=\{K: V \times V \rightarrow \mathbb{R}: K$ continuous $\}$
- $K \in \mathcal{C}(V \times V)$ is positive if it is symmetric and $\left(K\left(u_{i}, u_{j}\right)\right)_{1 \leq i, j \leq n} \succeq 0$ for all n and all $u_{1}, \ldots, u_{n} \in V$
- Generalization of the theta number:
- Infinitely many variables/constraints: how to compute this?

Using symmetry

Group action: $O(n) \times V \rightarrow V, g(x, i)=(g x, i)$

Using symmetry

Group action: $O(n) \times V \rightarrow V, g(x, i)=(g x, i)$
Observation:
If (K, M) is feasible for

$$
\vartheta_{w}^{\prime}(G)=\inf \left\{\begin{array}{c}
\left.M: \begin{array}{c}
K-\sqrt{w} \otimes \sqrt{w} \in \mathcal{C}_{\succeq 0}(V \times V) \\
(K-M I)(u, v) \leq 0 \text { when } u \nsim v
\end{array}\right\}, ~ ., ~ . ~
\end{array}\right\}
$$

then (\bar{K}, M) is also feasible, where

$$
\bar{K}(u, v):=\int_{O(n)} K(g u, g v) \mu(d g)
$$

and where μ is the normalized Haar measure on $O(n)$

Using symmetry

Group action: $O(n) \times V \rightarrow V, g(x, i)=(g x, i)$
Observation:
If (K, M) is feasible for

$$
\vartheta_{w}^{\prime}(G)=\inf \left\{\begin{array}{c}
\left.M: \begin{array}{c}
K-\sqrt{w} \otimes \sqrt{w} \in \mathcal{C}_{\succeq 0}(V \times V) \\
(K-M I)(u, v) \leq 0 \text { when } u \nsim v
\end{array}\right\}, ~ ., ~ . ~
\end{array}\right\}
$$

then (\bar{K}, M) is also feasible, where

$$
\bar{K}(u, v):=\int_{O(n)} K(g u, g v) \mu(d g)
$$

and where μ is the normalized Haar measure on $O(n)$
Symmetry reduction:
In the infimum we can restrict to $O(n)$-invariant kernels

Positive invariant kernels

A kernel $K \in \mathcal{C}(V \times V)$ is positive and $O(n)$-invariant if and only if

$$
K((x, i),(y, j))=\sum_{k=0}^{\infty} f_{k, i j} P_{k}^{n}(x \cdot y)
$$

where $\left(f_{k, i j}\right)_{1 \leq i, j \leq N} \succeq 0$ for all k
(For $N=1$ this is a result of Schoenberg)
Jacobi polynomials P_{k}^{n} :
Orthogonal with respect to the weight $\left(1-s^{2}\right)^{(n-3) / 2}$ on $[-1,1]$ Normalized such that $P_{k}^{n}(1)=1$

Simplified program

This gives the following simplified program

$$
\vartheta_{w}^{\prime}(G)=\inf \left\{\begin{array}{ll}
& \left(f_{0, i j}-\sqrt{w\left(\alpha_{i}\right)} \sqrt{w\left(\alpha_{j}\right)}\right)_{1 \leq i, j \leq N} \succeq 0 \\
M: & \left(f_{k, i j}\right)_{1 \leq i, j \leq N} \succeq 0, k=1,2, \ldots \\
\sum_{k=0}^{\infty} f_{k, i j} P_{k}^{n}(u) \leq 0,-1 \leq u \leq \cos \left(\alpha_{i}+\alpha_{j}\right) \\
& \sum_{k=0}^{\infty} f_{k, i i} \leq M
\end{array}\right\}
$$

- Replace ∞ by a large number d
- Finitely many variables, but still infinitely many constraints
- Use a sum of squares characterization to simplify further:

Simplified program

This gives the following simplified program

$$
\vartheta_{w}^{\prime}(G)=\inf \left\{\begin{array}{ll}
& \left(f_{0, i j}-\sqrt{w\left(\alpha_{i}\right)} \sqrt{w\left(\alpha_{j}\right)}\right)_{1 \leq i, j \leq N} \succeq 0 \\
\left.M: \begin{array}{l}
\left(f_{k, i j}\right)_{1 \leq i, j \leq N} \succeq 0, k=1,2, \ldots \\
\sum_{k=0}^{\infty} f_{k, i j} P_{k}^{n}(u) \leq 0,-1 \leq u \leq \cos \left(\alpha_{i}+\alpha_{j}\right) \\
\\
\sum_{k=0}^{\infty} f_{k, i i} \leq M
\end{array}\right\}
\end{array}\right\}
$$

- Replace ∞ by a large number d
- Finitely many variables, but still infinitely many constraints
- Use a sum of squares characterization to simplify further:

If p is a real even univariate polynomial, then

$$
p(x) \geq 0 \text { for all } x \in[a, b] \Leftrightarrow p(x)=q(x)+(x-a)(b-x) r(x)
$$

where q and r are SOS polynomials

Simplified program

This gives the following simplified program

$$
\vartheta_{w}^{\prime}(G)=\inf \left\{\begin{array}{ll}
& \left(f_{0, i j}-\sqrt{w\left(\alpha_{i}\right)} \sqrt{w\left(\alpha_{j}\right)}\right)_{1 \leq i, j \leq N} \succeq 0 \\
M: \begin{array}{l}
\left(f_{k, i j}\right)_{1 \leq i, j \leq N} \succeq 0, k=1,2, \ldots \\
\sum_{k=0}^{\infty} f_{k, i j} P_{k}^{n}(u) \leq 0,-1 \leq u \leq \cos \left(\alpha_{i}+\alpha_{j}\right) \\
\sum_{k=0}^{\infty} f_{k, i i} \leq M
\end{array}
\end{array}\right\}
$$

- Replace ∞ by a large number d
- Finitely many variables, but still infinitely many constraints
- Use a sum of squares characterization to simplify further:

If p is a real even univariate polynomial, then

$$
p(x) \geq 0 \text { for all } x \in[a, b] \Leftrightarrow p(x)=q(x)+(x-a)(b-x) r(x)
$$

where q and r are SOS polynomials

$$
\begin{gathered}
p(x) \text { is } \operatorname{SOS} \Leftrightarrow p(x)=[x]^{T} Q[x] \text { for some } Q \succeq 0 \\
{[x]=\left(1, x, \ldots, x^{d}\right)^{\top}}
\end{gathered}
$$

A semidefinite program

This gives the semidefinite program

$$
\vartheta_{w}^{\prime}(G)=\inf \left\{\begin{array}{ll}
& \left(f_{0, i j}-\sqrt{w\left(\alpha_{i}\right)} \sqrt{w\left(\alpha_{j}\right)}\right)_{1 \leq i, j \leq N} \succeq 0 \\
\left(f_{k, i j}\right)_{1 \leq i, j \leq N} \succeq 0, k=1, \ldots, d \\
M: & Q^{i j} \in S_{\succeq 01}^{d / 2+1}, R^{i j} \in S_{\succeq 0}^{d / 2}, 1 \leq i, j \leq N \\
& \sum_{k=0}^{d}\left(P_{l}^{n}\right)_{k} f_{l, i j}+\left\langle Q^{i j}, E_{l}\right\rangle+\left\langle R^{i j}, T_{l, i j}\right\rangle=0 \\
& \sum_{k=0}^{d} f_{k, i i} \leq M
\end{array}\right\}
$$

- E_{l} is the $0 / 1$ matrix with $\left(E_{l}\right)_{i+1, j+1}=1$ when $i+j=l$
- $T_{l, i j}=\cos \left(\alpha_{i}+\alpha_{j}\right) E_{I}+\left(-1+\cos \left(\alpha_{i}+\alpha_{j}\right)\right) E_{l-1}-E_{l-2}$

Single size packings $(n=3)$

Single size packings $(n=3)$

Single size packings $(n=3)$

Single size packings for $n=3$

Single size packings for $n=4$

Single size packings for $n=5$

Binary packings for $n=3$

SDP bound / Geometric bound

Binary packings for $n=4$

Binary packings for $n=5$

