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Polydisperse spherical cap packings

Given a set {ag,...,apn} of spherical cap angles:
What is the maximal spherical cap packing density?

C(x,a)={y €S"1:x-y>cosa}

w(a) = normalized cap area of a cap with angle «
p P



The theta number for the packing graph

Packing graph G: V = S""1 x {1,... N}
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The theta number for the packing graph

Packing graph G: V =S""1 x {1,... N}
(x,1) ~ (y,j) © cos(aj + aj) < x -y and (x, 1) # (y,))
w(x, i) = w(a;)
The weighted independence number gives the maximal packing
density

9,(G)=infM: K—Vw®Vw e C(V x V),
K(u,u) < M forall ue V,
K(u,v) <0 for all {u,v} & E where u # v.

Group action: O(n) x V — V, A(x,i) = (Ax, )

By averaging a feasible solution under the group action, we see
that we can restrict to O(n) invariant kernels:

Replace C(V X V)w=q by C(V x V)g(()n)



The theta number for the packing graph

V=251

A kernel K € C(V x V) is positive and O(n)-invariant if and only if
(x,y) = kaPk x-y),

where fi > 0 for all k (Schoenberg)



The theta number for the packing graph

V =5m1x{1,... N}

A kernel K € C(V x V) is positive and O(n)-invariant if and only if

K((x 1), (v:0) = D fikPR(x - y),

k=0

where (f;:j7k)ll.\.f/.:1 > 0 for all k
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The theta number for the packing graph

The theta number program for the packing graph reduces to

inf M: (fjo— W(a;)l/zw(aj)l/Q),’-\lJZI =0,
(

fik)hiey = 0 for k> 1,

fii(u) < 0 whenever — 1 < u < cos(a; + «j),
fi(ly<Mforalli=1,...,N

where f;(u) = Y272 fij kPR (u)

For N = 1 this reduces to the Delsarte, Goethels, and Seidel LP
bound

If pis a real even univariate polynomial, then
p(x) > 0 for all x € [a, b] & p(x) = q(x) + (x — a)(b — x)r(x)

where g and r are SOS polynomials



A direct proof of the upper bounding property
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A direct proof of the upper bounding property
Let UZ; C(xi, (i) be a packing, r: {1,...,m} —{1,...,
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So, max{fi(N): i=1,...,N} >3, w(a,;). [



Single size packings on the 2-sphere
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Geometric bound on the 2-sphere (Florian 2001)

» D(ai,a1,a0) = area of shaded part/area of spherical triangle

> maxi<i<j<k<n D(ej,aj, k) upper bounds the packing density



Single size packings on the 4-sphere
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Single size packings on the 5-sphere
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Binary packings on the 2-sphere
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SDP bound / Geometric bound

Geo.



Binary packings on the 4-sphere
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Binary packings on the 5 sphere
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The truncated octahedron packing

This packing is maximal:
> it has density 0.9056...
» the semidefinite program gives 0.9079...

» the next packing (4 big caps, 19 small caps) would have
density 0.9103...



The n-prism packings

Packings associated to the n-prism
» The geometric bound is tight for n > 6
» For n =5 there is a geometrical proof (Florian, Heppes 1999)

» The numerical solution suggest that the semidefinite
programming bound is tight for n =5




The bound is tight for the 5-prism
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The bound is tight for the 5-prism

We need to find functions
4
fi(u) = fiPf(u)
k=0

that satisfy the constraints of the theorem with

max{fi1(1), f22(1)} = density of the 5-prism packing

» Assuming the bound is tight for this configuration, all
inequalities in the proof of the bound must be equalities

» We use the fact that (A, B) = 0 implies AB = 0 for positive
semidefinite matrices A and B

» We obtain 9 linear independent relations on the coefficients

» By adding two guesses based on the numerical solution we
can pick a solution from the remaining one dimensional space



Thank you!



