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Polydisperse spherical cap packings

Given a set {α1, . . . , αN} of spherical cap angles:
What is the maximal spherical cap packing density?

α

C (x , α) = {y ∈ Sn−1 : x · y ≥ cosα}

x

w(α) = normalized cap area of a cap with angle α



The theta number for the packing graph

Packing graph G : V = Sn−1 × {1, . . . ,N}

(x , i) ∼ (y , j)⇔ cos(αi + αj) < x · y and (x , i) 6= (y , j)
w(x , i) = w(αi )

The weighted independence number gives the maximal packing
density

ϑ′w (G ) = inf M : K −
√
w ⊗

√
w ∈ C(V × V )�0,

K (u, u) ≤ M for all u ∈ V ,

K (u, v) ≤ 0 for all {u, v} 6∈ E where u 6= v .

Group action: O(n)× V → V , A(x , i) = (Ax , i)

By averaging a feasible solution under the group action, we see
that we can restrict to O(n) invariant kernels:

Replace C(V × V )�0 by C(V × V )
O(n)
�0
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The theta number for the packing graph

V = Sn−1

A kernel K ∈ C(V ×V ) is positive and O(n)-invariant if and only if

K (x , y) =
∞∑
k=0

fkP
n
k (x · y),

where fk ≥ 0 for all k (Schoenberg)



The theta number for the packing graph

V = Sn−1×{1, . . . ,N}

A kernel K ∈ C(V ×V ) is positive and O(n)-invariant if and only if

K ((x , i), (y , j)) =
∞∑
k=0

fij ,kP
n
k (x · y),

where (fij ,k)Ni ,j=1 � 0 for all k



The theta number for the packing graph
The theta number program for the packing graph reduces to

inf M : (fij ,0 − w(αi )
1/2w(αj)

1/2)Ni ,j=1 � 0,

(fij ,k)Ni ,j=1 � 0 for k ≥ 1,

fij(u) ≤ 0 whenever − 1 ≤ u ≤ cos(αi + αj),

fii (1) ≤ M for all i = 1, . . . ,N

where fij(u) =
∑∞

k=0 fij ,kP
n
k (u)

For N = 1 this reduces to the Delsarte, Goethels, and Seidel LP
bound

If p is a real even univariate polynomial, then

p(x) ≥ 0 for all x ∈ [a, b]⇔ p(x) = q(x) + (x − a)(b − x)r(x)

where q and r are SOS polynomials
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A direct proof of the upper bounding property
Let

⋃m
i=1 C (xi , αr(i)) be a packing, r : {1, . . . ,m} → {1, . . . ,N}

S :=
m∑

i ,j=1

√
w(αr(i))

√
w(αr(j))fr(i)r(j)(xi · xj)

S ≤
m∑
i=1

w(αr(i))fr(i)r(i)(1) ≤
m∑
i=1

w(αr(i)) max{fii (N) : i = 1, . . . ,N}

S =
∞∑
k=0

m∑
i ,j=1

√
w(αr(i))

√
w(αr(j))fr(i)r(j),kP

n
k (xi · xj)

≥
m∑

i ,j=1

√
w(αr(i))

√
w(αr(j))fr(i)r(j),0

≥
m∑

i ,j=1

√
w(αr(i))

√
w(αr(j))

√
w(αr(i))

√
w(αr(j))

So, max{fii (N) : i = 1, . . . ,N} ≥
∑m

i=1 w(αr(i)).
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Single size packings on the 2-sphere
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Geometric bound on the 2-sphere (Florian 2001)

α1

α1

α2

I D(α1, α1, α2) = area of shaded part/area of spherical triangle

I max1≤i≤j≤k≤N D(αi , αj , αk) upper bounds the packing density



Single size packings on the 4-sphere
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Single size packings on the 5-sphere

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.45

0.50

0.55

0.60

0.65

Simplex

Cross-polytope

Semicube



Binary packings on the 2-sphere
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SDP bound / Geometric bound
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Binary packings on the 4-sphere
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Binary packings on the 5 sphere
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The truncated octahedron packing

This packing is maximal:

I it has density 0.9056 . . .

I the semidefinite program gives 0.9079 . . .

I the next packing (4 big caps, 19 small caps) would have
density 0.9103 . . .



The n-prism packings

Packings associated to the n-prism

I The geometric bound is tight for n ≥ 6

I For n = 5 there is a geometrical proof (Florian, Heppes 1999)

I The numerical solution suggest that the semidefinite
programming bound is tight for n = 5



The bound is tight for the 5-prism
We need to find functions

fij(u) =
4∑

k=0

fij ,kP
n
k (u)

that satisfy the constraints of the theorem with

max{f11(1), f22(1)} = density of the 5-prism packing

I Assuming the bound is tight for this configuration, all
inequalities in the proof of the bound must be equalities

I We use the fact that 〈A,B〉 = 0 implies AB = 0 for positive
semidefinite matrices A and B

I We obtain 9 linear independent relations on the coefficients

I By adding two guesses based on the numerical solution we
can pick a solution from the remaining one dimensional space
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Thank you!


