Polydisperse spherical cap packings

David de Laat
Joint work with Fernando M. de Oliveira Filho and Frank Vallentin

Optimal and near optimal configurations on lattices and manifolds Oberwolfach - August 24, 2012

Polydisperse spherical cap packings

Given a set $\left\{\alpha_{1}, \ldots, \alpha_{N}\right\}$ of spherical cap angles: What is the maximal spherical cap packing density?

$C(x, \alpha)=\left\{y \in S^{n-1}: x \cdot y \geq \cos \alpha\right\}$
$w(\alpha)=$ normalized cap area of a cap with angle α

The theta number for the packing graph

$$
\text { Packing graph } G: V=S^{n-1} \times\{1, \ldots, N\}
$$

The theta number for the packing graph

$$
\begin{gathered}
\text { Packing graph G: V=S } S^{n-1} \times\{1, \ldots, N\} \\
(x, i) \sim(y, j) \Leftrightarrow \cos \left(\alpha_{i}+\alpha_{j}\right)<x \cdot y \text { and }(x, i) \neq(y, j)
\end{gathered}
$$

The theta number for the packing graph

$$
\begin{gathered}
\text { Packing graph G: V }=S^{n-1} \times\{1, \ldots, N\} \\
(x, i) \sim(y, j) \Leftrightarrow \cos \left(\alpha_{i}+\alpha_{j}\right)<x \cdot y \text { and }(x, i) \neq(y, j) \\
w(x, i)=w\left(\alpha_{i}\right)
\end{gathered}
$$

The theta number for the packing graph

$$
\begin{gathered}
\text { Packing graph } G: V=S^{n-1} \times\{1, \ldots, N\} \\
(x, i) \sim(y, j) \Leftrightarrow \cos \left(\alpha_{i}+\alpha_{j}\right)<x \cdot y \text { and }(x, i) \neq(y, j) \\
w(x, i)=w\left(\alpha_{i}\right)
\end{gathered}
$$

The weighted independence number gives the maximal packing density

The theta number for the packing graph

$$
\begin{gathered}
\text { Packing graph G: V }=S^{n-1} \times\{1, \ldots, N\} \\
(x, i) \sim(y, j) \Leftrightarrow \cos \left(\alpha_{i}+\alpha_{j}\right)<x \cdot y \text { and }(x, i) \neq(y, j) \\
w(x, i)=w\left(\alpha_{i}\right)
\end{gathered}
$$

The weighted independence number gives the maximal packing density

$$
\begin{aligned}
\vartheta_{w}^{\prime}(G)=\inf M: & K-\sqrt{w} \otimes \sqrt{w} \in \mathcal{C}(V \times V)_{\succeq 0}, \\
& K(u, u) \leq M \text { for all } u \in V \\
& K(u, v) \leq 0 \text { for all }\{u, v\} \notin E \text { where } u \neq v .
\end{aligned}
$$

The theta number for the packing graph

$$
\begin{gathered}
\text { Packing graph G: V }=S^{n-1} \times\{1, \ldots, N\} \\
(x, i) \sim(y, j) \Leftrightarrow \cos \left(\alpha_{i}+\alpha_{j}\right)<x \cdot y \text { and }(x, i) \neq(y, j) \\
w(x, i)=w\left(\alpha_{i}\right)
\end{gathered}
$$

The weighted independence number gives the maximal packing density

$$
\begin{aligned}
\vartheta_{w}^{\prime}(G)=\inf M: & K-\sqrt{w} \otimes \sqrt{w} \in \mathcal{C}(V \times V)_{\succeq 0}, \\
& K(u, u) \leq M \text { for all } u \in V \\
& K(u, v) \leq 0 \text { for all }\{u, v\} \notin E \text { where } u \neq v .
\end{aligned}
$$

Group action: $O(n) \times V \rightarrow V, A(x, i)=(A x, i)$

The theta number for the packing graph

$$
\begin{gathered}
\text { Packing graph G: V=S } S^{n-1} \times\{1, \ldots, N\} \\
(x, i) \sim(y, j) \Leftrightarrow \cos \left(\alpha_{i}+\alpha_{j}\right)<x \cdot y \text { and }(x, i) \neq(y, j) \\
w(x, i)=w\left(\alpha_{i}\right)
\end{gathered}
$$

The weighted independence number gives the maximal packing density

$$
\begin{aligned}
\vartheta_{w}^{\prime}(G)=\inf M: & K-\sqrt{w} \otimes \sqrt{w} \in \mathcal{C}(V \times V)_{\succeq 0}, \\
& K(u, u) \leq M \text { for all } u \in V \\
& K(u, v) \leq 0 \text { for all }\{u, v\} \notin E \text { where } u \neq v .
\end{aligned}
$$

Group action: $O(n) \times V \rightarrow V, A(x, i)=(A x, i)$
By averaging a feasible solution under the group action, we see that we can restrict to $O(n)$ invariant kernels:

Replace $\mathcal{C}(V \times V)_{\succeq 0}$ by $\mathcal{C}(V \times V)_{\succeq 0}^{O(n)}$

The theta number for the packing graph

$$
V=S^{n-1}
$$

A kernel $K \in \mathcal{C}(V \times V)$ is positive and $O(n)$-invariant if and only if

$$
K(x, y)=\sum_{k=0}^{\infty} f_{k} P_{k}^{n}(x \cdot y)
$$

where $f_{k} \geq 0$ for all k (Schoenberg)

The theta number for the packing graph

$$
V=S^{n-1} \times\{1, \ldots, N\}
$$

A kernel $K \in \mathcal{C}(V \times V)$ is positive and $O(n)$-invariant if and only if

$$
K((x, i),(y, j))=\sum_{k=0}^{\infty} f_{i j, k} P_{k}^{n}(x \cdot y)
$$

where $\left(f_{i j, k}\right)_{i, j=1}^{N} \succeq 0$ for all k

The theta number for the packing graph

The theta number program for the packing graph reduces to

$$
\begin{aligned}
\inf M: & \left(f_{i j, 0}-w\left(\alpha_{i}\right)^{1 / 2} w\left(\alpha_{j}\right)^{1 / 2}\right)_{i, j=1}^{N} \succeq 0 \\
& \left(f_{i j, k}\right)_{i, j=1}^{N} \succeq 0 \text { for } k \geq 1 \\
& f_{i j}(u) \leq 0 \text { whenever }-1 \leq u \leq \cos \left(\alpha_{i}+\alpha_{j}\right) \\
& f_{i i}(1) \leq M \text { for all } i=1, \ldots, N
\end{aligned}
$$

where $f_{i j}(u)=\sum_{k=0}^{\infty} f_{i j, k} P_{k}^{n}(u)$

The theta number for the packing graph

The theta number program for the packing graph reduces to

$$
\begin{aligned}
\inf M: & \left(f_{i j, 0}-w\left(\alpha_{i}\right)^{1 / 2} w\left(\alpha_{j}\right)^{1 / 2}\right)_{i, j=1}^{N} \succeq 0 \\
& \left(f_{i j, k}\right)_{i, j=1}^{N} \succeq 0 \text { for } k \geq 1 \\
& f_{i j}(u) \leq 0 \text { whenever }-1 \leq u \leq \cos \left(\alpha_{i}+\alpha_{j}\right) \\
& f_{i i}(1) \leq M \text { for all } i=1, \ldots, N
\end{aligned}
$$

where $f_{i j}(u)=\sum_{k=0}^{\infty} f_{i j, k} P_{k}^{n}(u)$

For $N=1$ this reduces to the Delsarte, Goethels, and Seidel LP bound

The theta number for the packing graph

The theta number program for the packing graph reduces to

$$
\begin{aligned}
\inf M: & \left(f_{i j, 0}-w\left(\alpha_{i}\right)^{1 / 2} w\left(\alpha_{j}\right)^{1 / 2}\right)_{i, j=1}^{N} \succeq 0 \\
& \left(f_{i j, k}\right)_{i, j=1}^{N} \succeq 0 \text { for } k \geq 1 \\
& f_{i j}(u) \leq 0 \text { whenever }-1 \leq u \leq \cos \left(\alpha_{i}+\alpha_{j}\right) \\
& f_{i i}(1) \leq M \text { for all } i=1, \ldots, N
\end{aligned}
$$

where $f_{i j}(u)=\sum_{k=0}^{\infty} f_{i j, k} P_{k}^{n}(u)$

For $N=1$ this reduces to the Delsarte, Goethels, and Seidel LP bound

If p is a real even univariate polynomial, then

$$
p(x) \geq 0 \text { for all } x \in[a, b] \Leftrightarrow p(x)=q(x)+(x-a)(b-x) r(x)
$$

where q and r are SOS polynomials

A direct proof of the upper bounding property
Let $\bigcup_{i=1}^{m} C\left(x_{i}, \alpha_{r(i)}\right)$ be a packing, $r:\{1, \ldots, m\} \rightarrow\{1, \ldots, N\}$

A direct proof of the upper bounding property
Let $\bigcup_{i=1}^{m} C\left(x_{i}, \alpha_{r(i)}\right)$ be a packing, $r:\{1, \ldots, m\} \rightarrow\{1, \ldots, N\}$

$$
S:=\sum_{i, j=1}^{m} \sqrt{w\left(\alpha_{r(i)}\right)} \sqrt{w\left(\alpha_{r(j)}\right)} f_{r(i) r(j)}\left(x_{i} \cdot x_{j}\right)
$$

A direct proof of the upper bounding property

Let $\bigcup_{i=1}^{m} C\left(x_{i}, \alpha_{r(i)}\right)$ be a packing, $r:\{1, \ldots, m\} \rightarrow\{1, \ldots, N\}$

$$
S:=\sum_{i, j=1}^{m} \sqrt{w\left(\alpha_{r(i)}\right)} \sqrt{w\left(\alpha_{r(j)}\right)} f_{r(i) r(j)}\left(x_{i} \cdot x_{j}\right)
$$

$$
S \leq \sum_{i=1}^{m} w\left(\alpha_{r(i)}\right) f_{r(i) r(i)}(1) \leq \sum_{i=1}^{m} w\left(\alpha_{r(i)}\right) \max \left\{f_{i j}(N): i=1, \ldots, N\right\}
$$

A direct proof of the upper bounding property

Let $\bigcup_{i=1}^{m} C\left(x_{i}, \alpha_{r(i)}\right)$ be a packing, $r:\{1, \ldots, m\} \rightarrow\{1, \ldots, N\}$

$$
S:=\sum_{i, j=1}^{m} \sqrt{w\left(\alpha_{r(i)}\right)} \sqrt{w\left(\alpha_{r(j)}\right)} f_{r(i) r(j)}\left(x_{i} \cdot x_{j}\right)
$$

$$
\begin{gathered}
S \leq \sum_{i=1}^{m} w\left(\alpha_{r(i)}\right) f_{r(i) r(i)}(1) \leq \sum_{i=1}^{m} w\left(\alpha_{r(i)}\right) \max \left\{f_{i i}(N): i=1, \ldots, N\right\} \\
S=\sum_{k=0}^{\infty} \sum_{i, j=1}^{m} \sqrt{w\left(\alpha_{r(i)}\right)} \sqrt{w\left(\alpha_{r(j)}\right)} f_{r(i) r(j), k} P_{k}^{n}\left(x_{i} \cdot x_{j}\right) \\
\geq \sum_{i, j=1}^{m} \sqrt{w\left(\alpha_{r(i)}\right)} \sqrt{w\left(\alpha_{r(j)}\right)} f_{r(i) r(j), 0} \\
\geq \sum_{i, j=1}^{m} \sqrt{w\left(\alpha_{r(i)}\right)} \sqrt{w\left(\alpha_{r(j)}\right)} \sqrt{w\left(\alpha_{r(i)}\right)} \sqrt{w\left(\alpha_{r(j)}\right)}
\end{gathered}
$$

A direct proof of the upper bounding property

Let $\bigcup_{i=1}^{m} C\left(x_{i}, \alpha_{r(i)}\right)$ be a packing, $r:\{1, \ldots, m\} \rightarrow\{1, \ldots, N\}$

$$
\begin{gathered}
S:=\sum_{i, j=1}^{m} \sqrt{w\left(\alpha_{r(i)}\right)} \sqrt{w\left(\alpha_{r(j)}\right)} f_{r(i) r(j)}\left(x_{i} \cdot x_{j}\right) \\
S \leq \sum_{i=1}^{m} w\left(\alpha_{r(i)}\right) f_{r(i) r(i)}(1) \leq \sum_{i=1}^{m} w\left(\alpha_{r(i)}\right) \max \left\{f_{i i}(N): i=1, \ldots, N\right\} \\
S=\sum_{k=0}^{\infty} \sum_{i, j=1}^{m} \sqrt{w\left(\alpha_{r(i)}\right)} \sqrt{w\left(\alpha_{r(j)}\right)} f_{r(i) r(j), k} P_{k}^{n}\left(x_{i} \cdot x_{j}\right) \\
\geq \sum_{i, j=1}^{m} \sqrt{w\left(\alpha_{r(i)}\right)} \sqrt{w\left(\alpha_{r(j)}\right)} f_{r(i) r(j), 0} \\
\geq \sum_{i, j=1}^{m} \sqrt{w\left(\alpha_{r(i)}\right)} \sqrt{w\left(\alpha_{r(j)}\right)} \sqrt{w\left(\alpha_{r(i)}\right)} \sqrt{w\left(\alpha_{r(j)}\right)}
\end{gathered}
$$

So, $\max \left\{f_{i i}(N): i=1, \ldots, N\right\} \geq \sum_{i=1}^{m} w\left(\alpha_{r(i)}\right)$.

Single size packings on the 2-sphere

Geometric bound on the 2-sphere (Florian 2001)

- $D\left(\alpha_{1}, \alpha_{1}, \alpha_{2}\right)=$ area of shaded part/area of spherical triangle
- $\max _{1 \leq i \leq j \leq k \leq N} D\left(\alpha_{i}, \alpha_{j}, \alpha_{k}\right)$ upper bounds the packing density

Single size packings on the 4-sphere

Single size packings on the 5 -sphere

Binary packings on the 2-sphere

SDP bound / Geometric bound

Binary packings on the 4-sphere

Binary packings on the 5 sphere

The truncated octahedron packing

This packing is maximal:

- it has density 0.9056...
- the semidefinite program gives $0.9079 \ldots$
- the next packing (4 big caps, 19 small caps) would have density $0.9103 \ldots$

The n-prism packings

Packings associated to the n-prism

- The geometric bound is tight for $n \geq 6$
- For $n=5$ there is a geometrical proof (Florian, Heppes 1999)
- The numerical solution suggest that the semidefinite programming bound is tight for $n=5$

The bound is tight for the 5-prism

We need to find functions

$$
f_{i j}(u)=\sum_{k=0}^{4} f_{i j, k} P_{k}^{n}(u)
$$

that satisfy the constraints of the theorem with
$\max \left\{f_{11}(1), f_{22}(1)\right\}=$ density of the 5 -prism packing

The bound is tight for the 5-prism

We need to find functions

$$
f_{i j}(u)=\sum_{k=0}^{4} f_{i j, k} P_{k}^{n}(u)
$$

that satisfy the constraints of the theorem with

$$
\max \left\{f_{11}(1), f_{22}(1)\right\}=\text { density of the } 5 \text {-prism packing }
$$

- Assuming the bound is tight for this configuration, all inequalities in the proof of the bound must be equalities

The bound is tight for the 5-prism

We need to find functions

$$
f_{i j}(u)=\sum_{k=0}^{4} f_{i j, k} P_{k}^{n}(u)
$$

that satisfy the constraints of the theorem with

$$
\max \left\{f_{11}(1), f_{22}(1)\right\}=\text { density of the } 5 \text {-prism packing }
$$

- Assuming the bound is tight for this configuration, all inequalities in the proof of the bound must be equalities
- We use the fact that $\langle A, B\rangle=0$ implies $A B=0$ for positive semidefinite matrices A and B

The bound is tight for the 5-prism

We need to find functions

$$
f_{i j}(u)=\sum_{k=0}^{4} f_{i j, k} P_{k}^{n}(u)
$$

that satisfy the constraints of the theorem with

$$
\max \left\{f_{11}(1), f_{22}(1)\right\}=\text { density of the } 5 \text {-prism packing }
$$

- Assuming the bound is tight for this configuration, all inequalities in the proof of the bound must be equalities
- We use the fact that $\langle A, B\rangle=0$ implies $A B=0$ for positive semidefinite matrices A and B
- We obtain 9 linear independent relations on the coefficients

The bound is tight for the 5-prism

We need to find functions

$$
f_{i j}(u)=\sum_{k=0}^{4} f_{i j, k} P_{k}^{n}(u)
$$

that satisfy the constraints of the theorem with

$$
\max \left\{f_{11}(1), f_{22}(1)\right\}=\text { density of the } 5 \text {-prism packing }
$$

- Assuming the bound is tight for this configuration, all inequalities in the proof of the bound must be equalities
- We use the fact that $\langle A, B\rangle=0$ implies $A B=0$ for positive semidefinite matrices A and B
- We obtain 9 linear independent relations on the coefficients
- By adding two guesses based on the numerical solution we can pick a solution from the remaining one dimensional space

Thank you!

