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Packing problems in discrete geometry

> These problems can be modeled as maximum independent set
problems in graphs on infinitely many vertices

Spherical cap packings

What is the maximum number of spherical caps of size ¢ in ™!
such that no two caps intersect in their interiors?
G=(V,E), V=51 E={{z,y}:z-ye 1)}

» Independent sets correspond to valid packings
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Upper bounds for the independence number of finite graphs

» Finding the independence number of a finite graph is NP-hard
» Linear programming bound for binary codes (Delsarte, 1973)

» Semidefinite programming bound (¢¥-number) for finite graphs
(Lovész, 1979)

» ¥'-number (Schrijver, 1979 / McEliece, Rodemich, Rumsey,
1978)

» Hierarchy of semidefinite programming bounds for 0/1
polynomial optimization problems (Lasserre, 2001)

» The maximum independent set problem can be written as a
polynomial optimization problem

> Lasserre hierarchy for the independent set problem
(Laurent, 2003)
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The Lasserre hierarchy for finite graphs

lasy(G) = max { 3" ypry 1y € REY, yo =1, Mi(y) = 0}
eV

» [; is the set of independent sets of cardinality at most ¢

» M;(y) is the matrix with rows and columns indexed by I; and

YJjuJ’ ifJUJIGIQt,
M(y) .0 = N .
0 otherwise

» (G) = lasi(G) > lasz(G) > ... > lasy ) (G) = a(G)
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Generalization to infinite graphs

» Linear programming bound for spherical cap packings
(Delsarte, 1977 / Kabatiansky, Levenshtein, 1978)

» Generalization of the ¥-number to infinite graphs
(Bachoc, Nebe, de Oliveira, Vallentin, 2009)

» This talk: Generalize the Lasserre hierarchy to infinite graphs;
finite convergence
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Topological packing graphs

» We consider graphs where
> vertices which are close are adjacent

» adjacent vertices stay adjacent after slight pertubations
Definition
A topological packing graph is a graph where
- the vertex set is a Hausdorff topological space

- each finite clique is contained in an open clique

» We consider compact topological packing graphs
» These graphs have finite independence number
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las;(G) = sup {)\(I 1) : A€ M(Iy)>0, AN{0}) =
AN € M(I; x It)=o

» suby(V): set of nonempty subsets of V' of cardinality < ¢

v

Quotient map:

q: VvVt suby(V), (vi,...,v) = {1, 0}

» sub; (V) is equipped with the quotient topology

v

I; gets its topology as a subset of sub:(V) U {0}
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Generalization for compact topological packing graphs

las;(G) = sup {)\(I 1) 1 A € M(Iat)>0, A{0}) =
Aid e M(I; x It)»

» A function K € C(I; x I;)sym is a positive definite kernel if

(K(Jiy Jj))i5=1 =0 forall meN and Ji,...,Jm €L

» Cone of positive definite kernels: C(I; X It)=q
» Cone of positive definite measures:
M(ItXIt)EO = {,u S M(Itx-[t)sym : ,UJ(K) >0 for all K € C(ItXIt)tO}a

where p(K) = [ K(J,J") du(J, J")
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Generalization for compact topological packing graphs

las;(G) = sup {)\(I 1) 1 A € M(Iat)>0, A{0}) =
AfX € M(I; x It)so

» There is an operator A; such that (M;(y), X) = (y, A, X) for
all vectors y and matrices X

» Define the operator A;: C(I; X It)sym — C(I2;) b

AfS) = Y LT

JJ' €L JUT'=S

» The adjoint: Af: M(Iy) = M (I X I;)sym
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Duality theory

» A duality theory is important for concrete computations:
> In the maximization problems we need optimal solutions to get
upper bounds
> In the dual minimization problems any feasible solution
provides an upper bound

» The conic duals are given by

last(G)* = inf {K(@, (D) K e C(It X It)th
AK(S) < —11,(9) for § € Iy \ {0}}

Theorem
Strong duality holds: for all t € N,
> lasi(G) = lasi(G)*
» if las;(G) < oo, then the optimum in las;(G) is attained
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Duality theory

» For the proof we use a closed cone condition
> We have to show that

K = {(Af¢ — p,§(I=1)) s p € M1y % Iy)»o,
¢ € M(Ia) >0, £({0}) = 0}

is closed in M (I x It)sym x R
» Minkowski difference: K = K1 — K>
> Ky = {(A7€,6(121)) € € M(Iz)z0, E({0}) = 0}
> Ky ={(1,0): p€ M(I; x I)»0 }
» By a theorem of Klee and Dieudonné K; — K5 is closed when
1. K1nKy={0}
2. K7 and K5 are closed
3. Kj is locally compact
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Finite convergence

Theorem
Suppose G is a compact topological packing graph. Then,

lasa(G) (G) = a(G)

v

If S is an independent set, then x5 = > g 0r is feasible for
lasa(g)(G)

If X is feasible for las,(cy(G), then A = [ x5 do(S) for some
signed Radon measure o on I,(q)

v

» Main part of the proof: show that ¢ is a probability measure
las, () (G) = max{ [ |S|do(S) : 0 € Py} = o(G)

v



Thank you

D. de Laat, F. Vallentin, A semidefinite programming hierarchy for
packing problems in discrete geometry, in preparation.
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