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Packing problems in discrete geometry

I These problems can be modeled as maximum independent set
problems in graphs on infinitely many vertices

Spherical cap packings

What is the maximum number of spherical caps of size t in Sn−1

such that no two caps intersect in their interiors?
G = (V,E), V = Sn−1, E = {{x, y} : x · y ∈ (t, 1)}

I Independent sets correspond to valid packings
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Upper bounds for the independence number of finite graphs

I Finding the independence number of a finite graph is NP-hard

I Linear programming bound for binary codes (Delsarte, 1973)

I Semidefinite programming bound (ϑ-number) for finite graphs
(Lovász, 1979)

I ϑ′-number (Schrijver, 1979 / McEliece, Rodemich, Rumsey,
1978)

I Hierarchy of semidefinite programming bounds for 0/1
polynomial optimization problems (Lasserre, 2001)

I The maximum independent set problem can be written as a
polynomial optimization problem

I Lasserre hierarchy for the independent set problem
(Laurent, 2003)



Upper bounds for the independence number of finite graphs

I Finding the independence number of a finite graph is NP-hard

I Linear programming bound for binary codes (Delsarte, 1973)

I Semidefinite programming bound (ϑ-number) for finite graphs
(Lovász, 1979)

I ϑ′-number (Schrijver, 1979 / McEliece, Rodemich, Rumsey,
1978)

I Hierarchy of semidefinite programming bounds for 0/1
polynomial optimization problems (Lasserre, 2001)

I The maximum independent set problem can be written as a
polynomial optimization problem

I Lasserre hierarchy for the independent set problem
(Laurent, 2003)



Upper bounds for the independence number of finite graphs

I Finding the independence number of a finite graph is NP-hard

I Linear programming bound for binary codes (Delsarte, 1973)

I Semidefinite programming bound (ϑ-number) for finite graphs
(Lovász, 1979)

I ϑ′-number (Schrijver, 1979 / McEliece, Rodemich, Rumsey,
1978)

I Hierarchy of semidefinite programming bounds for 0/1
polynomial optimization problems (Lasserre, 2001)

I The maximum independent set problem can be written as a
polynomial optimization problem

I Lasserre hierarchy for the independent set problem
(Laurent, 2003)



Upper bounds for the independence number of finite graphs

I Finding the independence number of a finite graph is NP-hard

I Linear programming bound for binary codes (Delsarte, 1973)

I Semidefinite programming bound (ϑ-number) for finite graphs
(Lovász, 1979)

I ϑ′-number (Schrijver, 1979 / McEliece, Rodemich, Rumsey,
1978)

I Hierarchy of semidefinite programming bounds for 0/1
polynomial optimization problems (Lasserre, 2001)

I The maximum independent set problem can be written as a
polynomial optimization problem

I Lasserre hierarchy for the independent set problem
(Laurent, 2003)



Upper bounds for the independence number of finite graphs

I Finding the independence number of a finite graph is NP-hard

I Linear programming bound for binary codes (Delsarte, 1973)

I Semidefinite programming bound (ϑ-number) for finite graphs
(Lovász, 1979)

I ϑ′-number (Schrijver, 1979 / McEliece, Rodemich, Rumsey,
1978)

I Hierarchy of semidefinite programming bounds for 0/1
polynomial optimization problems (Lasserre, 2001)

I The maximum independent set problem can be written as a
polynomial optimization problem

I Lasserre hierarchy for the independent set problem
(Laurent, 2003)



Upper bounds for the independence number of finite graphs

I Finding the independence number of a finite graph is NP-hard

I Linear programming bound for binary codes (Delsarte, 1973)

I Semidefinite programming bound (ϑ-number) for finite graphs
(Lovász, 1979)

I ϑ′-number (Schrijver, 1979 / McEliece, Rodemich, Rumsey,
1978)

I Hierarchy of semidefinite programming bounds for 0/1
polynomial optimization problems (Lasserre, 2001)

I The maximum independent set problem can be written as a
polynomial optimization problem

I Lasserre hierarchy for the independent set problem
(Laurent, 2003)



Upper bounds for the independence number of finite graphs

I Finding the independence number of a finite graph is NP-hard

I Linear programming bound for binary codes (Delsarte, 1973)

I Semidefinite programming bound (ϑ-number) for finite graphs
(Lovász, 1979)

I ϑ′-number (Schrijver, 1979 / McEliece, Rodemich, Rumsey,
1978)

I Hierarchy of semidefinite programming bounds for 0/1
polynomial optimization problems (Lasserre, 2001)

I The maximum independent set problem can be written as a
polynomial optimization problem

I Lasserre hierarchy for the independent set problem
(Laurent, 2003)



The Lasserre hierarchy for finite graphs

last(G) = max
{

∑
x∈V

y{x}

: y ∈ RI2t≥0,

y∅ = 1

,

Mt(y) � 0

}

I It is the set of independent sets of cardinality at most t

I Mt(y) is the matrix with rows and columns indexed by It and

Mt(y)J,J ′ =

{
yJ∪J ′ if J ∪ J ′ ∈ I2t,
0 otherwise

I ϑ′(G) = las1(G) ≥ las2(G) ≥ . . . ≥ lasα(G)(G) = α(G)



The Lasserre hierarchy for finite graphs

last(G) = max
{∑
x∈V

y{x} : y ∈ RI2t≥0,

y∅ = 1

,

Mt(y) � 0

}

I It is the set of independent sets of cardinality at most t

I Mt(y) is the matrix with rows and columns indexed by It and

Mt(y)J,J ′ =

{
yJ∪J ′ if J ∪ J ′ ∈ I2t,
0 otherwise

I ϑ′(G) = las1(G) ≥ las2(G) ≥ . . . ≥ lasα(G)(G) = α(G)



The Lasserre hierarchy for finite graphs

last(G) = max
{∑
x∈V

y{x} : y ∈ RI2t≥0, y∅ = 1,

Mt(y) � 0

}

I It is the set of independent sets of cardinality at most t

I Mt(y) is the matrix with rows and columns indexed by It and

Mt(y)J,J ′ =

{
yJ∪J ′ if J ∪ J ′ ∈ I2t,
0 otherwise

I ϑ′(G) = las1(G) ≥ las2(G) ≥ . . . ≥ lasα(G)(G) = α(G)



The Lasserre hierarchy for finite graphs

last(G) = max
{∑
x∈V

y{x} : y ∈ RI2t≥0, y∅ = 1, Mt(y) � 0
}

I It is the set of independent sets of cardinality at most t

I Mt(y) is the matrix with rows and columns indexed by It and

Mt(y)J,J ′ =

{
yJ∪J ′ if J ∪ J ′ ∈ I2t,
0 otherwise

I ϑ′(G) = las1(G) ≥ las2(G) ≥ . . . ≥ lasα(G)(G) = α(G)



The Lasserre hierarchy for finite graphs

last(G) = max
{∑
x∈V

y{x} : y ∈ RI2t≥0, y∅ = 1, Mt(y) � 0
}

I It is the set of independent sets of cardinality at most t

I Mt(y) is the matrix with rows and columns indexed by It and

Mt(y)J,J ′ =

{
yJ∪J ′ if J ∪ J ′ ∈ I2t,
0 otherwise

I ϑ′(G) = las1(G) ≥ las2(G) ≥ . . . ≥ lasα(G)(G) = α(G)



The Lasserre hierarchy for finite graphs

last(G) = max
{∑
x∈V

y{x} : y ∈ RI2t≥0, y∅ = 1, Mt(y) � 0
}

I It is the set of independent sets of cardinality at most t

I Mt(y) is the matrix with rows and columns indexed by It and

Mt(y)J,J ′ =

{
yJ∪J ′ if J ∪ J ′ ∈ I2t,
0 otherwise

I ϑ′(G) = las1(G) ≥ las2(G) ≥ . . . ≥ lasα(G)(G) = α(G)



Generalization to infinite graphs

I Linear programming bound for spherical cap packings
(Delsarte, 1977 / Kabatiansky, Levenshtein, 1978)

I Generalization of the ϑ-number to infinite graphs
(Bachoc, Nebe, de Oliveira, Vallentin, 2009)

I This talk: Generalize the Lasserre hierarchy to infinite graphs;
finite convergence



Generalization to infinite graphs

I Linear programming bound for spherical cap packings
(Delsarte, 1977 / Kabatiansky, Levenshtein, 1978)

I Generalization of the ϑ-number to infinite graphs
(Bachoc, Nebe, de Oliveira, Vallentin, 2009)

I This talk: Generalize the Lasserre hierarchy to infinite graphs;
finite convergence



Generalization to infinite graphs

I Linear programming bound for spherical cap packings
(Delsarte, 1977 / Kabatiansky, Levenshtein, 1978)

I Generalization of the ϑ-number to infinite graphs
(Bachoc, Nebe, de Oliveira, Vallentin, 2009)

I This talk: Generalize the Lasserre hierarchy to infinite graphs;
finite convergence



Topological packing graphs

I We consider graphs where
I vertices which are close are adjacent
I adjacent vertices stay adjacent after slight pertubations

Definition

A topological packing graph is a graph where

- the vertex set is a Hausdorff topological space

- each finite clique is contained in an open clique

I We consider compact topological packing graphs

I These graphs have finite independence number
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Duality theory

I A duality theory is important for concrete computations:
I In the maximization problems we need optimal solutions to get

upper bounds
I In the dual minimization problems any feasible solution

provides an upper bound

I The conic duals are given by

last(G)
∗ = inf

{
K(∅, ∅) : K ∈ C(It × It)�0,

AtK(S) ≤ −1I=1(S) for S ∈ I2t \ {∅}
}

Theorem

Strong duality holds: for all t ∈ N,

I last(G) = last(G)
∗

I if last(G) <∞, then the optimum in last(G) is attained
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I For the proof we use a closed cone condition
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K =
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}
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I Minkowski difference: K = K1 −K2
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{
(A∗

t ξ, ξ(I=1)) : ξ ∈M(I2t)≥0, ξ({∅}) = 0
}
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{
(µ, 0) : µ ∈M(It × It)�0

}
I By a theorem of Klee and Dieudonné K1 −K2 is closed when

1. K1 ∩K2 = {0}
2. K1 and K2 are closed
3. K1 is locally compact
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Finite convergence

Theorem

Suppose G is a compact topological packing graph. Then,

lasα(G)(G) = α(G).

I If S is an independent set, then χS =
∑

R⊆S δR is feasible for
lasα(G)(G)

I If λ is feasible for lasα(G)(G), then λ =
∫
χS dσ(S) for some

signed Radon measure σ on Iα(G)

I Main part of the proof: show that σ is a probability measure

I lasα(G)(G) = max{
∫
|S| dσ(S) : σ ∈ P(Iα(G))} = α(G)
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I Main part of the proof: show that σ is a probability measure

I lasα(G)(G) = max{
∫
|S| dσ(S) : σ ∈ P(Iα(G))} = α(G)



Thank you

D. de Laat, F. Vallentin, A semidefinite programming hierarchy for

packing problems in discrete geometry, in preparation.
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