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Packing and energy minimization

Sphere packing

Spherical cap packing

Energy minimization

Kepler conjecture (1611)

Tammes problem (1930)

Thomson problem (1904)

I Infinitely many configurations among which there are many
which are locally but not globally optimal

I This talk: Methods to find obstructions
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The maximum independent set problem

Example: the Petersen graph

I In general difficult to solve to optimality (NP-hard)
I The Lovász ϑ-number upper bounds the independence number
I Efficiently computable through semidefinite programming
I Semidefinite program: optimize a linear functional over an

affine slice of the cone of n× n positive semidefinite matrices

3× 3 positive semidefinite matrices

with unit diagonal:
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Model packing problems as independent set problems

I Example: the spherical cap packing problem
I As vertex set we take the unit sphere
I Two vertices x and y are adjacent if the spherical caps

centered about x and y intersect in their interiors:
x

y

I Optimal density is proportional to the independence number

I ϑ generalizes to an infinite dimensional maximization problem

I Use optimization duality, harmonic analysis, and real algebraic
geometry to approximate ϑ by a semidefinite program
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New bounds for binary packings

Sodium Chloride

I Question 1: Can we use this method for optimality proofs?

I Yes: We prove ϑ is sharp for a binary cap packing problem:

I We slightly improve ϑ to give the best known bounds for
sphere packing in dimensions 4− 7 and 9

I Question 2: Can we obtain arbitrarily good bounds?
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Moment methods in polynomial optimization

Goal: Find the global minimum of a polynomial p ∈ R[x1, . . . , xn]

Minimize p(x) over all x ∈ Rn
=

Minimize
∫
p dµ over all probability measures µ on Rn

Moments: yα =
∫
xα1
1 · · ·xαn

n dµ(x)∫
p dµ =

∑
α

pαyα, y0 = 1, (yα+β)α,β is positive semidefinite

Lower bounds by optimizing over truncated moment sequences
(Lasserre hierarchy)

inf
{∑

α

pαyα : y0 = 1, (yα+β)|α|,|β|≤t positive semidefinite
}
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Moment methods in energy minimization

I Goal: Find the ground state energy of a system of N particles
in a container V with pair potential h

I Minimal energy:

E = min
S∈(VN)

∑
P∈(S2)

h(P )

I The variables in the t-th relaxation are measures on
(
V
≤2t
)

I Relaxations:

Et = min
{

∫
h dλ

:

λ ∈M(
(
V
≤2t
)
), λ � 0, . . .

}

E1 ≤ E2 ≤ · · · ≤ EN = E
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Computations using the dual

0

Strong duality holds: Et = E∗t

I In E∗t we optimize over continuous, positive definite kernels

K :
(
V
≤t
)
×
(
V
≤t
)
→ R

I Optimize over truncated Fourier series of K

I The Thomson problem has been solved for:
3 (1912), 4, 6 (1992), 12 (1996), and 5 (2010) particles

I E∗1 is sharp for 3, 4, 6, and 12 particles

I E∗2 is (almost) sharp for 5 particles
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Thank you!

Image credits:
Sphere packing: Grek L

Elliptope: Philipp Rostalski
Sodium Chloride: Ben Mills


