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» This talk: Methods to find obstructions



The maximum independent set problem

Example: the Petersen graph



The maximum independent set problem

Example: the Petersen graph



The maximum independent set problem

Example: the Petersen graph

> In general difficult to solve to optimality (NP-hard)



The maximum independent set problem

Example: the Petersen graph

> In general difficult to solve to optimality (NP-hard)
» The Lovdsz ¥-number upper bounds the independence number



The maximum independent set problem

Example: the Petersen graph

> In general difficult to solve to optimality (NP-hard)
» The Lovdsz ¥-number upper bounds the independence number
» Efficiently computable through semidefinite programming



The maximum independent set problem

Example: the Petersen graph

In general difficult to solve to optimality (NP-hard)

The Lovéasz ¥-number upper bounds the independence number
Efficiently computable through semidefinite programming
Semidefinite program: optimize a linear functional over an
affine slice of the cone of n x n positive semidefinite matrices

vy vVvyy



The maximum independent set problem

Example: the Petersen graph

In general difficult to solve to optimality (NP-hard)

The Lovéasz ¥-number upper bounds the independence number
Efficiently computable through semidefinite programming
Semidefinite program: optimize a linear functional over an
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3 x 3 positive semidefinite matrices
with unit diagonal:
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Model packing problems as independent set problems

» Example: the spherical cap packing problem
> As vertex set we take the unit sphere
» Two vertices x and y are adjacent if the spherical caps
centered about = and y intersect in their interiors:

» Optimal density is proportional to the independence number
» 1} generalizes to an infinite dimensional maximization problem

> Use optimization duality, harmonic analysis, and real algebraic
geometry to approximate ¢ by a semidefinite program
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New bounds for binary packings

Density: 79.3... %
Our upper bound: 81.3...%

Sodium Chloride

» Question 1: Can we use this method for optimality proofs?

> Yes: We prove 1 is sharp for a binary cap packing problem:

> We slightly improve 1 to give the best known bounds for
sphere packing in dimensions 4 — 7 and 9

» Question 2: Can we obtain arbitrarily good bounds?
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Goal: Find the global minimum of a polynomial p € Rz, ..., 2]

Minimize p(z) over all x € R"

Minimize [ pdu over all pr?)bability measures g on R”
Moments: yo = [2{* -+ 22" du(x)
/pd,u = Zpaya, Yo =1, (Yat8)a,s is positive semidefinite
«

Lower bounds by optimizing over truncated moment sequences
(Lasserre hierarchy)

inf { Zpaya 190 = 1, (Yat8)jal,|8/<t POSItive semidefinite}
(03
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Moment methods in energy minimization

» Goal: Find the ground state energy of a system of IV particles
in a container V with pair potential h

> Minimal energy:

E = min h(P)
se(x) PEZ(;;)

» The variables in the t-th relaxation are measures on (<‘gt)

» Relaxations:

Et:min{/hd)\:)\EM((g‘gt)),)\EO, }

E1<Ey<-..-<Ey=F
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Dual maximization problem

E} E, E

Strong duality holds: E; = Ef

v

In E we optimize over continuous, positive definite kernels

K: (L) x (L) =R

v

Optimize over truncated Fourier series of K

v

The Thomson problem has been solved for:
3 (1912), 4, 6 (1992), 12 (1996), and 5 (2010) particles

EY is sharp for 3, 4, 6, and 12 particles
E3 is (almost) sharp for 5 particles '

v

v



Thank you!

Image credits:
Sphere packing: Grek L
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