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Energy minimization

I Problem: Find the ground state energy of a system of N
particles in a compact metric space (V, d) with pair potential h

I Example: In the Thomson problem we minimize∑
1≤i<j≤N

1

‖xi − xj‖2

over all sets {x1, . . . , xN} of N distinct points in S2 ⊆ R3

I Here V = S2, d(x, y) = ‖x− y‖2, and h(w) = 1/w

I Assume h(w)→∞ as w → 0

I Use moment techniques to find lower bounds (obstructions)

I Infinite dimensional moment techniques → computations
(Compute sharp lower bound for the N = 5 case)
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Setup

I Let B be an upper bound on the minimal energy

I Define a graph with vertex set V where two distinct vertices x
and y are adjacent if h(d(x, y)) > B

I Let It be the set of independent sets with ≤ t elements

I Let I=t be the set of independent sets with t elements

I These sets are compact metric spaces

I Define f ∈ C(IN ) by

f(S) =

{
h(d(x, y)) if S = {x, y} with x 6= y,

0 otherwise

I Ground state energy:

E = min
S∈I=N

∑
P⊆S

f(P )
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Moment relaxations
I For S ∈ I=N , define the measure χS =

∑
R⊆S δR on IN

I We can use this measure to compute the energy of S
I The energy of S is given by

χS(f) =

∫
f(P ) dχS(P ) =

∑
R⊆S

f(R) =
∑

{x,y}∈I=2

h(d(x, y))

I This measure satisfies the following 3 properties:
I χS is a positive measure
I χS satisfies χS(I=i) =

(
N
i

)
for all i

I χS is a measure of positive type (see next slide)
I Relaxations:

Et = min
{
λ(f) : λ ∈M(I2t) positive measure of positive type,

λ(I=i) =
(
N
i

)
for all 0 ≤ i ≤ 2t

}
I Et is a min{2t,N}-point bound

E1 ≤ E2 ≤ · · · ≤ EN = E
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Measures of positive type [L–Vallentin 2015]
I Operator:

At : C(It× It)sym → C(I2t), AtK(S) =
∑

J,J ′∈It:J∪J ′=S

K(J, J ′)

I This is an infinite dimensional version of the adjoint of the
opererator y 7→M(y) that maps a moment sequence to a
moment matrix

I Dual operator

A∗t : M(I2t)→M(It × It)sym

I Cone of positive definite kernels: C(It × It)�0

I Dual cone:

M(It×It)�0 = {µ ∈M(It×It)sym : µ(K) ≥ 0 for all K ∈ C(It×It)�0}

I A measure λ ∈M(I2t) is of positive type if

A∗tλ ∈M(It × It)�0
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The dual hierarchy

0

Strong duality holds: Et = E∗t

I In E∗t we optimize over kernels K ∈ C(It × It)�0:

E∗t = sup
{ 2t∑
i=0

(
N

i

)
ai : a ∈ R{0,...,2t}, K ∈ C(It × It)�0,

ai +AtK(S) ≤ f(S)

for S ∈ I=i and i = 0, . . . , 2t
}
,

I Reduce to finite dimensional variable space:
1. Express K in terms of its Fourier coefficients
2. Set all but finitely many of these coefficients to 0
3. Optimize over the remaining coefficients
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Harmonic analysis on subset spaces

I Let Γ be compact group with an action on V

I Example: Γ = O(3) and V = S2 ⊆ R3

I Assume the metric is Γ-invariant:
d(γx, γy) = d(x, y) for all x, y ∈ V and γ ∈ Γ

I Then the action extends to an action on It by
γ∅ = ∅ and γ{x1, . . . , xt} = {γx1, . . . , γxt}

I By an “averaging argument” we may assume
K ∈ C(It × It)�0 to be Γ-invariant:
K(γJ, γJ ′) = K(J, J ′) for all γ ∈ Γ and J, J ′ ∈ It
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Harmonic analysis on subset spaces

I Fourier inversion formula:

K(J, J ′) =
∑
π∈Γ̂

mπ∑
i,j=1

K̂(π)i,jZπ(J, J ′)i,j

I The Fourier coefficients K̂(π) are psd matrices

I The Zπ(·, ·) are matrix functions that depend on Γ and It
I The action of Γ on It gives a linear action of Γ on C(It) by

γf(S) = f(γ−1S)

I To construct the Zπ(·, ·) we need to decompose C(It) as a
direct sum of irreducible Γ-invariant subspaces

I We give procedure to do this using symmetric tensor powers

I We do this explicitly for V = S2, Γ = O(3), and t = 2
(by using Clebsch–Gordan coefficients)

I In this way we lower bound E∗2 by problems with finitely many
variables and infinitely many constraints



Harmonic analysis on subset spaces

I Fourier inversion formula:

K(J, J ′) =
∑
π∈Γ̂

mπ∑
i,j=1

K̂(π)i,jZπ(J, J ′)i,j

I The Fourier coefficients K̂(π) are psd matrices

I The Zπ(·, ·) are matrix functions that depend on Γ and It
I The action of Γ on It gives a linear action of Γ on C(It) by

γf(S) = f(γ−1S)

I To construct the Zπ(·, ·) we need to decompose C(It) as a
direct sum of irreducible Γ-invariant subspaces

I We give procedure to do this using symmetric tensor powers

I We do this explicitly for V = S2, Γ = O(3), and t = 2
(by using Clebsch–Gordan coefficients)

I In this way we lower bound E∗2 by problems with finitely many
variables and infinitely many constraints



Harmonic analysis on subset spaces

I Fourier inversion formula:

K(J, J ′) =
∑
π∈Γ̂

mπ∑
i,j=1

K̂(π)i,jZπ(J, J ′)i,j

I The Fourier coefficients K̂(π) are psd matrices

I The Zπ(·, ·) are matrix functions that depend on Γ and It

I The action of Γ on It gives a linear action of Γ on C(It) by

γf(S) = f(γ−1S)

I To construct the Zπ(·, ·) we need to decompose C(It) as a
direct sum of irreducible Γ-invariant subspaces

I We give procedure to do this using symmetric tensor powers

I We do this explicitly for V = S2, Γ = O(3), and t = 2
(by using Clebsch–Gordan coefficients)

I In this way we lower bound E∗2 by problems with finitely many
variables and infinitely many constraints



Harmonic analysis on subset spaces

I Fourier inversion formula:

K(J, J ′) =
∑
π∈Γ̂

mπ∑
i,j=1

K̂(π)i,jZπ(J, J ′)i,j

I The Fourier coefficients K̂(π) are psd matrices

I The Zπ(·, ·) are matrix functions that depend on Γ and It
I The action of Γ on It gives a linear action of Γ on C(It) by

γf(S) = f(γ−1S)

I To construct the Zπ(·, ·) we need to decompose C(It) as a
direct sum of irreducible Γ-invariant subspaces

I We give procedure to do this using symmetric tensor powers

I We do this explicitly for V = S2, Γ = O(3), and t = 2
(by using Clebsch–Gordan coefficients)

I In this way we lower bound E∗2 by problems with finitely many
variables and infinitely many constraints



Harmonic analysis on subset spaces

I Fourier inversion formula:

K(J, J ′) =
∑
π∈Γ̂

mπ∑
i,j=1

K̂(π)i,jZπ(J, J ′)i,j

I The Fourier coefficients K̂(π) are psd matrices

I The Zπ(·, ·) are matrix functions that depend on Γ and It
I The action of Γ on It gives a linear action of Γ on C(It) by

γf(S) = f(γ−1S)

I To construct the Zπ(·, ·) we need to decompose C(It) as a
direct sum of irreducible Γ-invariant subspaces

I We give procedure to do this using symmetric tensor powers

I We do this explicitly for V = S2, Γ = O(3), and t = 2
(by using Clebsch–Gordan coefficients)

I In this way we lower bound E∗2 by problems with finitely many
variables and infinitely many constraints



Harmonic analysis on subset spaces

I Fourier inversion formula:

K(J, J ′) =
∑
π∈Γ̂

mπ∑
i,j=1

K̂(π)i,jZπ(J, J ′)i,j

I The Fourier coefficients K̂(π) are psd matrices

I The Zπ(·, ·) are matrix functions that depend on Γ and It
I The action of Γ on It gives a linear action of Γ on C(It) by

γf(S) = f(γ−1S)

I To construct the Zπ(·, ·) we need to decompose C(It) as a
direct sum of irreducible Γ-invariant subspaces

I We give procedure to do this using symmetric tensor powers

I We do this explicitly for V = S2, Γ = O(3), and t = 2
(by using Clebsch–Gordan coefficients)

I In this way we lower bound E∗2 by problems with finitely many
variables and infinitely many constraints



Harmonic analysis on subset spaces

I Fourier inversion formula:

K(J, J ′) =
∑
π∈Γ̂

mπ∑
i,j=1

K̂(π)i,jZπ(J, J ′)i,j

I The Fourier coefficients K̂(π) are psd matrices

I The Zπ(·, ·) are matrix functions that depend on Γ and It
I The action of Γ on It gives a linear action of Γ on C(It) by

γf(S) = f(γ−1S)

I To construct the Zπ(·, ·) we need to decompose C(It) as a
direct sum of irreducible Γ-invariant subspaces

I We give procedure to do this using symmetric tensor powers

I We do this explicitly for V = S2, Γ = O(3), and t = 2
(by using Clebsch–Gordan coefficients)

I In this way we lower bound E∗2 by problems with finitely many
variables and infinitely many constraints



Harmonic analysis on subset spaces

I Fourier inversion formula:

K(J, J ′) =
∑
π∈Γ̂

mπ∑
i,j=1

K̂(π)i,jZπ(J, J ′)i,j

I The Fourier coefficients K̂(π) are psd matrices

I The Zπ(·, ·) are matrix functions that depend on Γ and It
I The action of Γ on It gives a linear action of Γ on C(It) by

γf(S) = f(γ−1S)

I To construct the Zπ(·, ·) we need to decompose C(It) as a
direct sum of irreducible Γ-invariant subspaces

I We give procedure to do this using symmetric tensor powers

I We do this explicitly for V = S2, Γ = O(3), and t = 2
(by using Clebsch–Gordan coefficients)

I In this way we lower bound E∗2 by problems with finitely many
variables and infinitely many constraints



Invariant theory (for V = S2)

I These constraints are of the form

p(x1, . . . , xi) ≥ 0 for {x1, . . . , xi} ∈ I=i,

where p is a polynomial whose coefficients depend linearly on
the entries of the matrix variables

I These polynomials satisfy

p(γx1, . . . , γxi) = p(x1, . . . , xi) for x1, . . . , xi ∈ S2 and γ ∈ O(3)

I By a theorem of invariant theory we can write p as a
polynomial in the inner products:

p(x1, . . . , xi) = q(x1 · x1, x1 · x2, . . . , xi · xi)

I Now we have constraints of the form

q(u1, . . . , ul) ≥ 0 for (u1, . . . , ul) ∈ some semialgebraic set
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Invariant theory

p(x1, . . . , xi) = q(x1 · x1, x1 · x2, . . . , xi · xi), deg(p) = 2d

I The theorem that gives the existence of q is nonconstructive

I Find q by solving linear system Ax = b
Rows indexed by monomials in 3i vars of degree ≤ 2d
Columns indexed by monomials in

(
i+1

2

)
vars of degree ≤ d

I For i = 4, d = 6 we get over a million rows

I Use custom pivoting, sparse, high precision, Cholesky
factorization algorithm

I Computing the q polynomials takes several days, but only
needs to be done once for given d
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Sums of squares characterizations

I Putinar: Every positive polynomial on a compact set
S = {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥ 0}, where
{g1, . . . , gm} has the Archimedean property, is of the form

f(x) =

m∑
i=0

gi(x)si(x), where g0 = 1 and s0, . . . , sm are SOS

I The SOS polynomials si can be modeled using psd matrices

I We use this to go from infinitely many linear constraints to
finitely many semidefinite constraints

I In energy minimization the particles are interchangeable

I This means

p(xσ(1), . . . , xσ(i)) = p(x1, . . . , xi) for all σ ∈ Si

I Additional symmetries in the q(u1, . . . , ul) polynomials
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Sums of squares characterizations

I Symmetrization of Putinar’s theorem to exploit the symmetry
in the particles

I Assume the set {g0, . . . , gm} is Γ-invariant

I Denote by Γgi the stabilizer subgroup of Γ with respect to gi

A Γ-invariant polynomial that has a Putinar representation
can be written as p =

∑m
i=0 gisi, where si is a Γgi-invariant

sum of squares polynomial

I We can represent the Γgi-invariant sum of squares
polynomials si using block diagonalized positive semidefinite
matrices [Gatermann–Parillo 2004]

I For energy minimization on the sphere this yields large
reductions in solver time (Ex. 150 hours → 7 hours)
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Computations

I Mow we have an SDP given as high precision numbers whose
optimal value lower bounds the ground state energy

I Want to solve with high precision SDP solver

I Problem 1: Free variables in the SDP → Dual SDP not
strictly feasible → Cannot solve with high precision solver

I Bound free variables with big M constraints

I Problem 2: The additional symmetry exploitation leads to
hard to predict linear dependencies in the constraints

I Use QR factorization of the constraint matrix to remove these
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Computations

I In the Thomson problem we take

V = S2, d(x, y) = ‖x− y‖2, and h(w) =
1

w

I E∗1 is sharp for 2, 3, 4, 6, and 12 particles (Yudin’s LP bound)

I The triangular bipiramid is optimal for N = 5 (Schwartz 2010)

I High precision SDP solver gives the first 28 decimal digits of a
lower bound on E2

I These all agree with the energy of the triangular bipiramid
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Computations

I We should be able to use this to construct an optimality
certificate for the N = 5 case of the Thomson problem, but
need to replace linear algebra by Gröbner bases

I The system of 5 particles on S2 admits a phase transition

I Using SDP solver we see E2 is also (numerically) sharp for
many other pair potentials

I Conjecture: E2 is universally sharp for 5 particles on S2

I This is the first time a four 4-bound has been computed for a
continuous problem

I Future work: apply these techniques to packing problems
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I The system of 5 particles on S2 admits a phase transition

I Using SDP solver we see E2 is also (numerically) sharp for
many other pair potentials

I Conjecture: E2 is universally sharp for 5 particles on S2

I This is the first time a four 4-bound has been computed for a
continuous problem

I Future work: apply these techniques to packing problems



Computations

I We should be able to use this to construct an optimality
certificate for the N = 5 case of the Thomson problem, but
need to replace linear algebra by Gröbner bases
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Thank you!

D. de Laat, Moment methods in energy minimization: New bounds for
Riesz minimal energy problems, arXiv:1610.04905.


