High precision computations for energy minimization

David de Laat (CWI Amsterdam)

Real algebraic geometry with a view toward moment problems and optimization, 6 March 2017, MFO

Energy minimization

- Problem: Find the ground state energy of a system of N particles in a compact metric space (V, d) with pair potential h

Energy minimization

- Problem: Find the ground state energy of a system of N particles in a compact metric space (V, d) with pair potential h
- Example: In the Thomson problem we minimize

$$
\sum_{1 \leq i<j \leq N} \frac{1}{\left\|x_{i}-x_{j}\right\|_{2}}
$$

over all sets $\left\{x_{1}, \ldots, x_{N}\right\}$ of N distinct points in $S^{2} \subseteq \mathbb{R}^{3}$

Energy minimization

- Problem: Find the ground state energy of a system of N particles in a compact metric space (V, d) with pair potential h
- Example: In the Thomson problem we minimize

$$
\sum_{1 \leq i<j \leq N} \frac{1}{\left\|x_{i}-x_{j}\right\|_{2}}
$$

over all sets $\left\{x_{1}, \ldots, x_{N}\right\}$ of N distinct points in $S^{2} \subseteq \mathbb{R}^{3}$

- Here $V=S^{2}, d(x, y)=\|x-y\|_{2}$, and $h(w)=1 / w$

Energy minimization

- Problem: Find the ground state energy of a system of N particles in a compact metric space (V, d) with pair potential h
- Example: In the Thomson problem we minimize

$$
\sum_{1 \leq i<j \leq N} \frac{1}{\left\|x_{i}-x_{j}\right\|_{2}}
$$

over all sets $\left\{x_{1}, \ldots, x_{N}\right\}$ of N distinct points in $S^{2} \subseteq \mathbb{R}^{3}$

- Here $V=S^{2}, d(x, y)=\|x-y\|_{2}$, and $h(w)=1 / w$
- Assume $h(w) \rightarrow \infty$ as $w \rightarrow 0$

Energy minimization

- Problem: Find the ground state energy of a system of N particles in a compact metric space (V, d) with pair potential h
- Example: In the Thomson problem we minimize

$$
\sum_{1 \leq i<j \leq N} \frac{1}{\left\|x_{i}-x_{j}\right\|_{2}}
$$

over all sets $\left\{x_{1}, \ldots, x_{N}\right\}$ of N distinct points in $S^{2} \subseteq \mathbb{R}^{3}$

- Here $V=S^{2}, d(x, y)=\|x-y\|_{2}$, and $h(w)=1 / w$
- Assume $h(w) \rightarrow \infty$ as $w \rightarrow 0$
- Use moment techniques to find lower bounds (obstructions)

Energy minimization

- Problem: Find the ground state energy of a system of N particles in a compact metric space (V, d) with pair potential h
- Example: In the Thomson problem we minimize

$$
\sum_{1 \leq i<j \leq N} \frac{1}{\left\|x_{i}-x_{j}\right\|_{2}}
$$

over all sets $\left\{x_{1}, \ldots, x_{N}\right\}$ of N distinct points in $S^{2} \subseteq \mathbb{R}^{3}$

- Here $V=S^{2}, d(x, y)=\|x-y\|_{2}$, and $h(w)=1 / w$
- Assume $h(w) \rightarrow \infty$ as $w \rightarrow 0$
- Use moment techniques to find lower bounds (obstructions)
- Infinite dimensional moment techniques \rightarrow computations

Energy minimization

- Problem: Find the ground state energy of a system of N particles in a compact metric space (V, d) with pair potential h
- Example: In the Thomson problem we minimize

$$
\sum_{1 \leq i<j \leq N} \frac{1}{\left\|x_{i}-x_{j}\right\|_{2}}
$$

over all sets $\left\{x_{1}, \ldots, x_{N}\right\}$ of N distinct points in $S^{2} \subseteq \mathbb{R}^{3}$

- Here $V=S^{2}, d(x, y)=\|x-y\|_{2}$, and $h(w)=1 / w$
- Assume $h(w) \rightarrow \infty$ as $w \rightarrow 0$
- Use moment techniques to find lower bounds (obstructions)
- Infinite dimensional moment techniques \rightarrow computations (Compute sharp lower bound for the $N=5$ case)

Setup

- Let B be an upper bound on the minimal energy

Setup

- Let B be an upper bound on the minimal energy
- Define a graph with vertex set V where two distinct vertices x and y are adjacent if $h(d(x, y))>B$

Setup

- Let B be an upper bound on the minimal energy
- Define a graph with vertex set V where two distinct vertices x and y are adjacent if $h(d(x, y))>B$
- Let I_{t} be the set of independent sets with $\leq t$ elements

Setup

- Let B be an upper bound on the minimal energy
- Define a graph with vertex set V where two distinct vertices x and y are adjacent if $h(d(x, y))>B$
- Let I_{t} be the set of independent sets with $\leq t$ elements
- Let $I_{=t}$ be the set of independent sets with t elements

Setup

- Let B be an upper bound on the minimal energy
- Define a graph with vertex set V where two distinct vertices x and y are adjacent if $h(d(x, y))>B$
- Let I_{t} be the set of independent sets with $\leq t$ elements
- Let $I_{=t}$ be the set of independent sets with t elements
- These sets are compact metric spaces

Setup

- Let B be an upper bound on the minimal energy
- Define a graph with vertex set V where two distinct vertices x and y are adjacent if $h(d(x, y))>B$
- Let I_{t} be the set of independent sets with $\leq t$ elements
- Let $I_{=t}$ be the set of independent sets with t elements
- These sets are compact metric spaces
- Define $f \in \mathcal{C}\left(I_{N}\right)$ by

$$
f(S)= \begin{cases}h(d(x, y)) & \text { if } S=\{x, y\} \text { with } x \neq y \\ 0 & \text { otherwise }\end{cases}
$$

Setup

- Let B be an upper bound on the minimal energy
- Define a graph with vertex set V where two distinct vertices x and y are adjacent if $h(d(x, y))>B$
- Let I_{t} be the set of independent sets with $\leq t$ elements
- Let $I_{=t}$ be the set of independent sets with t elements
- These sets are compact metric spaces
- Define $f \in \mathcal{C}\left(I_{N}\right)$ by

$$
f(S)= \begin{cases}h(d(x, y)) & \text { if } S=\{x, y\} \text { with } x \neq y \\ 0 & \text { otherwise }\end{cases}
$$

- Ground state energy:

$$
E=\min _{S \in I_{=N}} \sum_{P \subseteq S} f(P)
$$

Moment relaxations

- For $S \in I_{=N}$, define the measure $\chi_{S}=\sum_{R \subseteq S} \delta_{R}$ on I_{N}

Moment relaxations

- For $S \in I_{=N}$, define the measure $\chi_{S}=\sum_{R \subseteq S} \delta_{R}$ on I_{N}
- We can use this measure to compute the energy of S

Moment relaxations

- For $S \in I_{=N}$, define the measure $\chi_{S}=\sum_{R \subseteq S} \delta_{R}$ on I_{N}
- We can use this measure to compute the energy of S
- The energy of S is given by

$$
\chi_{S}(f)=\int f(P) d \chi_{S}(P)=\sum_{R \subseteq S} f(R)=\sum_{\{x, y\} \in I_{=2}} h(d(x, y))
$$

Moment relaxations

- For $S \in I_{=N}$, define the measure $\chi_{S}=\sum_{R \subseteq S} \delta_{R}$ on I_{N}
- We can use this measure to compute the energy of S
- The energy of S is given by

$$
\chi_{S}(f)=\int f(P) d \chi_{S}(P)=\sum_{R \subseteq S} f(R)=\sum_{\{x, y\} \in I_{=2}} h(d(x, y))
$$

- This measure satisfies the following 3 properties:

Moment relaxations

- For $S \in I_{=N}$, define the measure $\chi_{S}=\sum_{R \subseteq S} \delta_{R}$ on I_{N}
- We can use this measure to compute the energy of S
- The energy of S is given by

$$
\chi_{S}(f)=\int f(P) d \chi_{S}(P)=\sum_{R \subseteq S} f(R)=\sum_{\{x, y\} \in I_{=2}} h(d(x, y))
$$

- This measure satisfies the following 3 properties:
- χ_{S} is a positive measure

Moment relaxations

- For $S \in I_{=N}$, define the measure $\chi_{S}=\sum_{R \subseteq S} \delta_{R}$ on I_{N}
- We can use this measure to compute the energy of S
- The energy of S is given by

$$
\chi_{S}(f)=\int f(P) d \chi_{S}(P)=\sum_{R \subseteq S} f(R)=\sum_{\{x, y\} \in I_{=2}} h(d(x, y))
$$

- This measure satisfies the following 3 properties:
- χ_{S} is a positive measure
- χ_{S} satisfies $\chi_{S}\left(I_{=i}\right)=\binom{N}{i}$ for all i

Moment relaxations

- For $S \in I_{=N}$, define the measure $\chi_{S}=\sum_{R \subseteq S} \delta_{R}$ on I_{N}
- We can use this measure to compute the energy of S
- The energy of S is given by

$$
\chi_{S}(f)=\int f(P) d \chi_{S}(P)=\sum_{R \subseteq S} f(R)=\sum_{\{x, y\} \in I_{=2}} h(d(x, y))
$$

- This measure satisfies the following 3 properties:
- χ_{S} is a positive measure
- χ_{S} satisfies $\chi_{S}\left(I_{=i}\right)=\binom{N}{i}$ for all i
- χ_{S} is a measure of positive type (see next slide)

Moment relaxations

- For $S \in I_{=N}$, define the measure $\chi_{S}=\sum_{R \subseteq S} \delta_{R}$ on I_{N}
- We can use this measure to compute the energy of S
- The energy of S is given by

$$
\chi_{S}(f)=\int f(P) d \chi_{S}(P)=\sum_{R \subseteq S} f(R)=\sum_{\{x, y\} \in I_{=2}} h(d(x, y))
$$

- This measure satisfies the following 3 properties:
- χ_{S} is a positive measure
- χ_{S} satisfies $\chi_{S}\left(I_{=i}\right)=\binom{N}{i}$ for all i
- χ_{S} is a measure of positive type (see next slide)
- Relaxations:
$E_{t}=\min \left\{\lambda(f): \lambda \in \mathcal{M}\left(I_{2 t}\right)\right.$ positive measure of positive type,

$$
\left.\lambda\left(I_{=i}\right)=\binom{N}{i} \text { for all } 0 \leq i \leq 2 t\right\}
$$

Moment relaxations

- For $S \in I_{=N}$, define the measure $\chi_{S}=\sum_{R \subseteq S} \delta_{R}$ on I_{N}
- We can use this measure to compute the energy of S
- The energy of S is given by

$$
\chi_{S}(f)=\int f(P) d \chi_{S}(P)=\sum_{R \subseteq S} f(R)=\sum_{\{x, y\} \in I_{=2}} h(d(x, y))
$$

- This measure satisfies the following 3 properties:
- χ_{S} is a positive measure
- χ_{S} satisfies $\chi_{S}\left(I_{=i}\right)=\binom{N}{i}$ for all i
- χ_{S} is a measure of positive type (see next slide)
- Relaxations:
$E_{t}=\min \left\{\lambda(f): \lambda \in \mathcal{M}\left(I_{2 t}\right)\right.$ positive measure of positive type,

$$
\left.\lambda\left(I_{=i}\right)=\binom{N}{i} \text { for all } 0 \leq i \leq 2 t\right\}
$$

- E_{t} is a $\min \{2 t, N\}$-point bound

Moment relaxations

- For $S \in I_{=N}$, define the measure $\chi_{S}=\sum_{R \subseteq S} \delta_{R}$ on I_{N}
- We can use this measure to compute the energy of S
- The energy of S is given by

$$
\chi_{S}(f)=\int f(P) d \chi_{S}(P)=\sum_{R \subseteq S} f(R)=\sum_{\{x, y\} \in I_{=2}} h(d(x, y))
$$

- This measure satisfies the following 3 properties:
- χ_{S} is a positive measure
- χ_{S} satisfies $\chi_{S}\left(I_{=i}\right)=\binom{N}{i}$ for all i
- χ_{S} is a measure of positive type (see next slide)
- Relaxations:
$E_{t}=\min \left\{\lambda(f): \lambda \in \mathcal{M}\left(I_{2 t}\right)\right.$ positive measure of positive type,

$$
\left.\lambda\left(I_{=i}\right)=\binom{N}{i} \text { for all } 0 \leq i \leq 2 t\right\}
$$

- E_{t} is a $\min \{2 t, N\}$-point bound

$$
E_{1} \leq E_{2} \leq \cdots \leq E_{N}=E
$$

Measures of positive type [L-Vallentin 2015]

- Operator:

$$
A_{t}: \mathcal{C}\left(I_{t} \times I_{t}\right)_{\mathrm{sym}} \rightarrow \mathcal{C}\left(I_{2 t}\right), A_{t} K(S)=\sum_{J, J^{\prime} \in I_{t}: J \cup J^{\prime}=S} K\left(J, J^{\prime}\right)
$$

Measures of positive type [L-Vallentin 2015]

- Operator:

$$
A_{t}: \mathcal{C}\left(I_{t} \times I_{t}\right)_{\mathrm{sym}} \rightarrow \mathcal{C}\left(I_{2 t}\right), A_{t} K(S)=\sum_{J, J^{\prime} \in I_{t}: J \cup J^{\prime}=S} K\left(J, J^{\prime}\right)
$$

- This is an infinite dimensional version of the adjoint of the opererator $y \mapsto M(y)$ that maps a moment sequence to a moment matrix

Measures of positive type [L-Vallentin 2015]

- Operator:

$$
A_{t}: \mathcal{C}\left(I_{t} \times I_{t}\right)_{\mathrm{sym}} \rightarrow \mathcal{C}\left(I_{2 t}\right), A_{t} K(S)=\sum_{J, J^{\prime} \in I_{t}: J \cup J^{\prime}=S} K\left(J, J^{\prime}\right)
$$

- This is an infinite dimensional version of the adjoint of the opererator $y \mapsto M(y)$ that maps a moment sequence to a moment matrix
- Dual operator

$$
A_{t}^{*}: \mathcal{M}\left(I_{2 t}\right) \rightarrow \mathcal{M}\left(I_{t} \times I_{t}\right)_{\mathrm{sym}}
$$

Measures of positive type [L-Vallentin 2015]

- Operator:

$$
A_{t}: \mathcal{C}\left(I_{t} \times I_{t}\right)_{\mathrm{sym}} \rightarrow \mathcal{C}\left(I_{2 t}\right), A_{t} K(S)=\sum_{J, J^{\prime} \in I_{t}: J \cup J^{\prime}=S} K\left(J, J^{\prime}\right)
$$

- This is an infinite dimensional version of the adjoint of the opererator $y \mapsto M(y)$ that maps a moment sequence to a moment matrix
- Dual operator

$$
A_{t}^{*}: \mathcal{M}\left(I_{2 t}\right) \rightarrow \mathcal{M}\left(I_{t} \times I_{t}\right)_{\mathrm{sym}}
$$

- Cone of positive definite kernels: $\mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}$

Measures of positive type [L-Vallentin 2015]

- Operator:

$$
A_{t}: \mathcal{C}\left(I_{t} \times I_{t}\right)_{\mathrm{sym}} \rightarrow \mathcal{C}\left(I_{2 t}\right), A_{t} K(S)=\sum_{J, J^{\prime} \in I_{t}: J \cup J^{\prime}=S} K\left(J, J^{\prime}\right)
$$

- This is an infinite dimensional version of the adjoint of the opererator $y \mapsto M(y)$ that maps a moment sequence to a moment matrix
- Dual operator

$$
A_{t}^{*}: \mathcal{M}\left(I_{2 t}\right) \rightarrow \mathcal{M}\left(I_{t} \times I_{t}\right)_{\mathrm{sym}}
$$

- Cone of positive definite kernels: $\mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}$
- Dual cone:

$$
\mathcal{M}\left(I_{t} \times I_{t}\right)_{\succeq 0}=\left\{\mu \in \mathcal{M}\left(I_{t} \times I_{t}\right)_{\text {sym }}: \mu(K) \geq 0 \text { for all } K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}\right\}
$$

Measures of positive type [L-Vallentin 2015]

- Operator:

$$
A_{t}: \mathcal{C}\left(I_{t} \times I_{t}\right)_{\mathrm{sym}} \rightarrow \mathcal{C}\left(I_{2 t}\right), A_{t} K(S)=\sum_{J, J^{\prime} \in I_{t}: J \cup J^{\prime}=S} K\left(J, J^{\prime}\right)
$$

- This is an infinite dimensional version of the adjoint of the opererator $y \mapsto M(y)$ that maps a moment sequence to a moment matrix
- Dual operator

$$
A_{t}^{*}: \mathcal{M}\left(I_{2 t}\right) \rightarrow \mathcal{M}\left(I_{t} \times I_{t}\right)_{\mathrm{sym}}
$$

- Cone of positive definite kernels: $\mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}$
- Dual cone:

$$
\mathcal{M}\left(I_{t} \times I_{t}\right)_{\succeq 0}=\left\{\mu \in \mathcal{M}\left(I_{t} \times I_{t}\right)_{\text {sym }}: \mu(K) \geq 0 \text { for all } K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}\right\}
$$

- A measure $\lambda \in \mathcal{M}\left(I_{2 t}\right)$ is of positive type if

$$
A_{t}^{*} \lambda \in \mathcal{M}\left(I_{t} \times I_{t}\right)_{\succeq 0}
$$

The dual hierarchy

$+$

The dual hierarchy

The dual hierarchy

The dual hierarchy

The dual hierarchy

Strong duality holds: $E_{t}=E_{t}^{*}$

The dual hierarchy

Strong duality holds: $E_{t}=E_{t}^{*}$

- In E_{t}^{*} we optimize over kernels $K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}$:

$$
\begin{array}{r}
E_{t}^{*}=\sup \left\{\sum_{i=0}^{2 t}\binom{N}{i} a_{i}: a \in \mathbb{R}^{\{0, \ldots, 2 t\}}, K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}\right. \\
a_{i}+A_{t} K(S) \leq f(S) \\
\\
\text { for } \left.S \in I_{=i} \text { and } i=0, \ldots, 2 t\right\}
\end{array}
$$

The dual hierarchy

Strong duality holds: $E_{t}=E_{t}^{*}$

- In E_{t}^{*} we optimize over kernels $K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}$:

$$
\begin{array}{r}
E_{t}^{*}=\sup \left\{\sum_{i=0}^{2 t}\binom{N}{i} a_{i}: a \in \mathbb{R}^{\{0, \ldots, 2 t\}}, K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}\right. \\
a_{i}+A_{t} K(S) \leq f(S) \\
\\
\text { for } \left.S \in I_{=i} \text { and } i=0, \ldots, 2 t\right\}
\end{array}
$$

- Reduce to finite dimensional variable space:

The dual hierarchy

Strong duality holds: $E_{t}=E_{t}^{*}$

- In E_{t}^{*} we optimize over kernels $K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}$:

$$
\begin{array}{r}
E_{t}^{*}=\sup \left\{\sum_{i=0}^{2 t}\binom{N}{i} a_{i}: a \in \mathbb{R}^{\{0, \ldots, 2 t\}}, K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}\right. \\
a_{i}+A_{t} K(S) \leq f(S) \\
\text { for } \left.S \in I_{=i} \text { and } i=0, \ldots, 2 t\right\}
\end{array}
$$

- Reduce to finite dimensional variable space:

1. Express K in terms of its Fourier coefficients

The dual hierarchy

Strong duality holds: $E_{t}=E_{t}^{*}$

- In E_{t}^{*} we optimize over kernels $K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}$:

$$
\begin{array}{r}
E_{t}^{*}=\sup \left\{\sum_{i=0}^{2 t}\binom{N}{i} a_{i}: a \in \mathbb{R}^{\{0, \ldots, 2 t\}}, K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}\right. \\
a_{i}+A_{t} K(S) \leq f(S) \\
\text { for } \left.S \in I_{=i} \text { and } i=0, \ldots, 2 t\right\}
\end{array}
$$

- Reduce to finite dimensional variable space:

1. Express K in terms of its Fourier coefficients
2. Set all but finitely many of these coefficients to 0

The dual hierarchy

Strong duality holds: $E_{t}=E_{t}^{*}$

- In E_{t}^{*} we optimize over kernels $K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}$:

$$
\begin{array}{r}
E_{t}^{*}=\sup \left\{\sum_{i=0}^{2 t}\binom{N}{i} a_{i}: a \in \mathbb{R}^{\{0, \ldots, 2 t\}}, K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}\right. \\
a_{i}+A_{t} K(S) \leq f(S) \\
\text { for } \left.S \in I_{=i} \text { and } i=0, \ldots, 2 t\right\}
\end{array}
$$

- Reduce to finite dimensional variable space:

1. Express K in terms of its Fourier coefficients
2. Set all but finitely many of these coefficients to 0
3. Optimize over the remaining coefficients

Harmonic analysis on subset spaces

- Let Γ be compact group with an action on V

Harmonic analysis on subset spaces

- Let Γ be compact group with an action on V
- Example: $\Gamma=O(3)$ and $V=S^{2} \subseteq \mathbb{R}^{3}$

Harmonic analysis on subset spaces

- Let Γ be compact group with an action on V
- Example: $\Gamma=O(3)$ and $V=S^{2} \subseteq \mathbb{R}^{3}$
- Assume the metric is Γ-invariant:

$$
d(\gamma x, \gamma y)=d(x, y) \text { for all } x, y \in V \text { and } \gamma \in \Gamma
$$

Harmonic analysis on subset spaces

- Let Γ be compact group with an action on V
- Example: $\Gamma=O(3)$ and $V=S^{2} \subseteq \mathbb{R}^{3}$
- Assume the metric is Γ-invariant: $d(\gamma x, \gamma y)=d(x, y)$ for all $x, y \in V$ and $\gamma \in \Gamma$
- Then the action extends to an action on I_{t} by $\gamma \emptyset=\emptyset$ and $\gamma\left\{x_{1}, \ldots, x_{t}\right\}=\left\{\gamma x_{1}, \ldots, \gamma x_{t}\right\}$

Harmonic analysis on subset spaces

- Let Γ be compact group with an action on V
- Example: $\Gamma=O(3)$ and $V=S^{2} \subseteq \mathbb{R}^{3}$
- Assume the metric is Γ-invariant: $d(\gamma x, \gamma y)=d(x, y)$ for all $x, y \in V$ and $\gamma \in \Gamma$
- Then the action extends to an action on I_{t} by $\gamma \emptyset=\emptyset$ and $\gamma\left\{x_{1}, \ldots, x_{t}\right\}=\left\{\gamma x_{1}, \ldots, \gamma x_{t}\right\}$
- By an "averaging argument" we may assume $K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}$ to be Γ-invariant: $K\left(\gamma J, \gamma J^{\prime}\right)=K\left(J, J^{\prime}\right)$ for all $\gamma \in \Gamma$ and $J, J^{\prime} \in I_{t}$

Harmonic analysis on subset spaces

- Fourier inversion formula:

$$
K\left(J, J^{\prime}\right)=\sum_{\pi \in \hat{\Gamma}} \sum_{i, j=1}^{m_{\pi}} \hat{K}(\pi)_{i, j} Z_{\pi}\left(J, J^{\prime}\right)_{i, j}
$$

Harmonic analysis on subset spaces

- Fourier inversion formula:

$$
K\left(J, J^{\prime}\right)=\sum_{\pi \in \hat{\Gamma}} \sum_{i, j=1}^{m_{\pi}} \hat{K}(\pi)_{i, j} Z_{\pi}\left(J, J^{\prime}\right)_{i, j}
$$

- The Fourier coefficients $\hat{K}(\pi)$ are psd matrices

Harmonic analysis on subset spaces

- Fourier inversion formula:

$$
K\left(J, J^{\prime}\right)=\sum_{\pi \in \hat{\Gamma}} \sum_{i, j=1}^{m_{\pi}} \hat{K}(\pi)_{i, j} Z_{\pi}\left(J, J^{\prime}\right)_{i, j}
$$

- The Fourier coefficients $\hat{K}(\pi)$ are psd matrices
- The $Z_{\pi}(\cdot, \cdot)$ are matrix functions that depend on Γ and I_{t}

Harmonic analysis on subset spaces

- Fourier inversion formula:

$$
K\left(J, J^{\prime}\right)=\sum_{\pi \in \hat{\Gamma}} \sum_{i, j=1}^{m_{\pi}} \hat{K}(\pi)_{i, j} Z_{\pi}\left(J, J^{\prime}\right)_{i, j}
$$

- The Fourier coefficients $\hat{K}(\pi)$ are psd matrices
- The $Z_{\pi}(\cdot, \cdot)$ are matrix functions that depend on Γ and I_{t}
- The action of Γ on I_{t} gives a linear action of Γ on $\mathcal{C}\left(I_{t}\right)$ by

$$
\gamma f(S)=f\left(\gamma^{-1} S\right)
$$

Harmonic analysis on subset spaces

- Fourier inversion formula:

$$
K\left(J, J^{\prime}\right)=\sum_{\pi \in \hat{\Gamma}} \sum_{i, j=1}^{m_{\pi}} \hat{K}(\pi)_{i, j} Z_{\pi}\left(J, J^{\prime}\right)_{i, j}
$$

- The Fourier coefficients $\hat{K}(\pi)$ are psd matrices
- The $Z_{\pi}(\cdot, \cdot)$ are matrix functions that depend on Γ and I_{t}
- The action of Γ on I_{t} gives a linear action of Γ on $\mathcal{C}\left(I_{t}\right)$ by

$$
\gamma f(S)=f\left(\gamma^{-1} S\right)
$$

- To construct the $Z_{\pi}(\cdot, \cdot)$ we need to decompose $\mathcal{C}\left(I_{t}\right)$ as a direct sum of irreducible Γ-invariant subspaces

Harmonic analysis on subset spaces

- Fourier inversion formula:

$$
K\left(J, J^{\prime}\right)=\sum_{\pi \in \hat{\Gamma}} \sum_{i, j=1}^{m_{\pi}} \hat{K}(\pi)_{i, j} Z_{\pi}\left(J, J^{\prime}\right)_{i, j}
$$

- The Fourier coefficients $\hat{K}(\pi)$ are psd matrices
- The $Z_{\pi}(\cdot, \cdot)$ are matrix functions that depend on Γ and I_{t}
- The action of Γ on I_{t} gives a linear action of Γ on $\mathcal{C}\left(I_{t}\right)$ by

$$
\gamma f(S)=f\left(\gamma^{-1} S\right)
$$

- To construct the $Z_{\pi}(\cdot, \cdot)$ we need to decompose $\mathcal{C}\left(I_{t}\right)$ as a direct sum of irreducible Γ-invariant subspaces
- We give procedure to do this using symmetric tensor powers

Harmonic analysis on subset spaces

- Fourier inversion formula:

$$
K\left(J, J^{\prime}\right)=\sum_{\pi \in \hat{\Gamma}} \sum_{i, j=1}^{m_{\pi}} \hat{K}(\pi)_{i, j} Z_{\pi}\left(J, J^{\prime}\right)_{i, j}
$$

- The Fourier coefficients $\hat{K}(\pi)$ are psd matrices
- The $Z_{\pi}(\cdot, \cdot)$ are matrix functions that depend on Γ and I_{t}
- The action of Γ on I_{t} gives a linear action of Γ on $\mathcal{C}\left(I_{t}\right)$ by

$$
\gamma f(S)=f\left(\gamma^{-1} S\right)
$$

- To construct the $Z_{\pi}(\cdot, \cdot)$ we need to decompose $\mathcal{C}\left(I_{t}\right)$ as a direct sum of irreducible Γ-invariant subspaces
- We give procedure to do this using symmetric tensor powers
- We do this explicitly for $V=S^{2}, \Gamma=O(3)$, and $t=2$ (by using Clebsch-Gordan coefficients)

Harmonic analysis on subset spaces

- Fourier inversion formula:

$$
K\left(J, J^{\prime}\right)=\sum_{\pi \in \hat{\Gamma}} \sum_{i, j=1}^{m_{\pi}} \hat{K}(\pi)_{i, j} Z_{\pi}\left(J, J^{\prime}\right)_{i, j}
$$

- The Fourier coefficients $\hat{K}(\pi)$ are psd matrices
- The $Z_{\pi}(\cdot, \cdot)$ are matrix functions that depend on Γ and I_{t}
- The action of Γ on I_{t} gives a linear action of Γ on $\mathcal{C}\left(I_{t}\right)$ by

$$
\gamma f(S)=f\left(\gamma^{-1} S\right)
$$

- To construct the $Z_{\pi}(\cdot, \cdot)$ we need to decompose $\mathcal{C}\left(I_{t}\right)$ as a direct sum of irreducible Γ-invariant subspaces
- We give procedure to do this using symmetric tensor powers
- We do this explicitly for $V=S^{2}, \Gamma=O(3)$, and $t=2$ (by using Clebsch-Gordan coefficients)
- In this way we lower bound E_{2}^{*} by problems with finitely many variables and infinitely many constraints

Invariant theory (for $V=S^{2}$)

- These constraints are of the form

$$
p\left(x_{1}, \ldots, x_{i}\right) \geq 0 \quad \text { for } \quad\left\{x_{1}, \ldots, x_{i}\right\} \in I_{=i}
$$

where p is a polynomial whose coefficients depend linearly on the entries of the matrix variables

Invariant theory (for $V=S^{2}$)

- These constraints are of the form

$$
p\left(x_{1}, \ldots, x_{i}\right) \geq 0 \quad \text { for } \quad\left\{x_{1}, \ldots, x_{i}\right\} \in I_{=i}
$$

where p is a polynomial whose coefficients depend linearly on the entries of the matrix variables

- These polynomials satisfy

$$
p\left(\gamma x_{1}, \ldots, \gamma x_{i}\right)=p\left(x_{1}, \ldots, x_{i}\right) \text { for } x_{1}, \ldots, x_{i} \in S^{2} \text { and } \gamma \in O(3)
$$

Invariant theory (for $V=S^{2}$)

- These constraints are of the form

$$
p\left(x_{1}, \ldots, x_{i}\right) \geq 0 \quad \text { for } \quad\left\{x_{1}, \ldots, x_{i}\right\} \in I_{=i}
$$

where p is a polynomial whose coefficients depend linearly on the entries of the matrix variables

- These polynomials satisfy
$p\left(\gamma x_{1}, \ldots, \gamma x_{i}\right)=p\left(x_{1}, \ldots, x_{i}\right)$ for $x_{1}, \ldots, x_{i} \in S^{2}$ and $\gamma \in O(3)$
- By a theorem of invariant theory we can write p as a polynomial in the inner products:

$$
p\left(x_{1}, \ldots, x_{i}\right)=q\left(x_{1} \cdot x_{1}, x_{1} \cdot x_{2}, \ldots, x_{i} \cdot x_{i}\right)
$$

Invariant theory (for $V=S^{2}$)

- These constraints are of the form

$$
p\left(x_{1}, \ldots, x_{i}\right) \geq 0 \quad \text { for } \quad\left\{x_{1}, \ldots, x_{i}\right\} \in I_{=i}
$$

where p is a polynomial whose coefficients depend linearly on the entries of the matrix variables

- These polynomials satisfy
$p\left(\gamma x_{1}, \ldots, \gamma x_{i}\right)=p\left(x_{1}, \ldots, x_{i}\right)$ for $x_{1}, \ldots, x_{i} \in S^{2}$ and $\gamma \in O(3)$
- By a theorem of invariant theory we can write p as a polynomial in the inner products:

$$
p\left(x_{1}, \ldots, x_{i}\right)=q\left(x_{1} \cdot x_{1}, x_{1} \cdot x_{2}, \ldots, x_{i} \cdot x_{i}\right)
$$

- Now we have constraints of the form

$$
q\left(u_{1}, \ldots, u_{l}\right) \geq 0 \quad \text { for } \quad\left(u_{1}, \ldots, u_{l}\right) \in \text { some semialgebraic set }
$$

Invariant theory

$$
p\left(x_{1}, \ldots, x_{i}\right)=q\left(x_{1} \cdot x_{1}, x_{1} \cdot x_{2}, \ldots, x_{i} \cdot x_{i}\right), \quad \operatorname{deg}(p)=2 d
$$

- The theorem that gives the existence of q is nonconstructive

Invariant theory

$$
p\left(x_{1}, \ldots, x_{i}\right)=q\left(x_{1} \cdot x_{1}, x_{1} \cdot x_{2}, \ldots, x_{i} \cdot x_{i}\right), \quad \operatorname{deg}(p)=2 d
$$

- The theorem that gives the existence of q is nonconstructive
- Find q by solving linear system $A x=b$

Rows indexed by monomials in $3 i$ vars of degree $\leq 2 d$ Columns indexed by monomials in $\binom{i+1}{2}$ vars of degree $\leq d$

Invariant theory

$$
p\left(x_{1}, \ldots, x_{i}\right)=q\left(x_{1} \cdot x_{1}, x_{1} \cdot x_{2}, \ldots, x_{i} \cdot x_{i}\right), \quad \operatorname{deg}(p)=2 d
$$

- The theorem that gives the existence of q is nonconstructive
- Find q by solving linear system $A x=b$

Rows indexed by monomials in $3 i$ vars of degree $\leq 2 d$
Columns indexed by monomials in $\binom{i+1}{2}$ vars of degree $\leq d$

- For $i=4, d=6$ we get over a million rows

Invariant theory

$$
p\left(x_{1}, \ldots, x_{i}\right)=q\left(x_{1} \cdot x_{1}, x_{1} \cdot x_{2}, \ldots, x_{i} \cdot x_{i}\right), \quad \operatorname{deg}(p)=2 d
$$

- The theorem that gives the existence of q is nonconstructive
- Find q by solving linear system $A x=b$ Rows indexed by monomials in $3 i$ vars of degree $\leq 2 d$ Columns indexed by monomials in $\binom{i+1}{2}$ vars of degree $\leq d$
- For $i=4, d=6$ we get over a million rows
- Use custom pivoting, sparse, high precision, Cholesky factorization algorithm

Invariant theory

$$
p\left(x_{1}, \ldots, x_{i}\right)=q\left(x_{1} \cdot x_{1}, x_{1} \cdot x_{2}, \ldots, x_{i} \cdot x_{i}\right), \quad \operatorname{deg}(p)=2 d
$$

- The theorem that gives the existence of q is nonconstructive
- Find q by solving linear system $A x=b$ Rows indexed by monomials in $3 i$ vars of degree $\leq 2 d$ Columns indexed by monomials in $\binom{i+1}{2}$ vars of degree $\leq d$
- For $i=4, d=6$ we get over a million rows
- Use custom pivoting, sparse, high precision, Cholesky factorization algorithm
- Computing the q polynomials takes several days, but only needs to be done once for given d

Sums of squares characterizations

- Putinar: Every positive polynomial on a compact set $S=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}$, where $\left\{g_{1}, \ldots, g_{m}\right\}$ has the Archimedean property, is of the form

$$
f(x)=\sum_{i=0}^{m} g_{i}(x) s_{i}(x), \quad \text { where } \quad g_{0}=1 \text { and } s_{0}, \ldots, s_{m} \text { are SOS }
$$

Sums of squares characterizations

- Putinar: Every positive polynomial on a compact set $S=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}$, where $\left\{g_{1}, \ldots, g_{m}\right\}$ has the Archimedean property, is of the form
$f(x)=\sum_{i=0}^{m} g_{i}(x) s_{i}(x), \quad$ where $\quad g_{0}=1$ and s_{0}, \ldots, s_{m} are SOS
- The SOS polynomials s_{i} can be modeled using psd matrices

Sums of squares characterizations

- Putinar: Every positive polynomial on a compact set $S=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}$, where $\left\{g_{1}, \ldots, g_{m}\right\}$ has the Archimedean property, is of the form
$f(x)=\sum_{i=0}^{m} g_{i}(x) s_{i}(x), \quad$ where $g_{0}=1$ and s_{0}, \ldots, s_{m} are SOS
- The SOS polynomials s_{i} can be modeled using psd matrices
- We use this to go from infinitely many linear constraints to finitely many semidefinite constraints

Sums of squares characterizations

- Putinar: Every positive polynomial on a compact set $S=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}$, where $\left\{g_{1}, \ldots, g_{m}\right\}$ has the Archimedean property, is of the form
$f(x)=\sum_{i=0}^{m} g_{i}(x) s_{i}(x), \quad$ where $\quad g_{0}=1$ and s_{0}, \ldots, s_{m} are SOS
- The SOS polynomials s_{i} can be modeled using psd matrices
- We use this to go from infinitely many linear constraints to finitely many semidefinite constraints
- In energy minimization the particles are interchangeable

Sums of squares characterizations

- Putinar: Every positive polynomial on a compact set $S=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}$, where $\left\{g_{1}, \ldots, g_{m}\right\}$ has the Archimedean property, is of the form
$f(x)=\sum_{i=0}^{m} g_{i}(x) s_{i}(x), \quad$ where $\quad g_{0}=1$ and s_{0}, \ldots, s_{m} are SOS
- The SOS polynomials s_{i} can be modeled using psd matrices
- We use this to go from infinitely many linear constraints to finitely many semidefinite constraints
- In energy minimization the particles are interchangeable
- This means

$$
p\left(x_{\sigma(1)}, \ldots, x_{\sigma(i)}\right)=p\left(x_{1}, \ldots, x_{i}\right) \quad \text { for all } \quad \sigma \in S_{i}
$$

Sums of squares characterizations

- Putinar: Every positive polynomial on a compact set $S=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}$, where $\left\{g_{1}, \ldots, g_{m}\right\}$ has the Archimedean property, is of the form
$f(x)=\sum_{i=0}^{m} g_{i}(x) s_{i}(x), \quad$ where $g_{0}=1$ and s_{0}, \ldots, s_{m} are SOS
- The SOS polynomials s_{i} can be modeled using psd matrices
- We use this to go from infinitely many linear constraints to finitely many semidefinite constraints
- In energy minimization the particles are interchangeable
- This means

$$
p\left(x_{\sigma(1)}, \ldots, x_{\sigma(i)}\right)=p\left(x_{1}, \ldots, x_{i}\right) \quad \text { for all } \quad \sigma \in S_{i}
$$

- Additional symmetries in the $q\left(u_{1}, \ldots, u_{l}\right)$ polynomials

Sums of squares characterizations

- Symmetrization of Putinar's theorem to exploit the symmetry in the particles

Sums of squares characterizations

- Symmetrization of Putinar's theorem to exploit the symmetry in the particles
- Assume the set $\left\{g_{0}, \ldots, g_{m}\right\}$ is Γ-invariant

Sums of squares characterizations

- Symmetrization of Putinar's theorem to exploit the symmetry in the particles
- Assume the set $\left\{g_{0}, \ldots, g_{m}\right\}$ is Γ-invariant
- Denote by $\Gamma_{g_{i}}$ the stabilizer subgroup of Γ with respect to g_{i}

Sums of squares characterizations

- Symmetrization of Putinar's theorem to exploit the symmetry in the particles
- Assume the set $\left\{g_{0}, \ldots, g_{m}\right\}$ is Γ-invariant
- Denote by $\Gamma_{g_{i}}$ the stabilizer subgroup of Γ with respect to g_{i}

A Γ-invariant polynomial that has a Putinar representation can be written as $p=\sum_{i=0}^{m} g_{i} s_{i}$, where s_{i} is a $\Gamma_{g_{i}}$-invariant sum of squares polynomial

Sums of squares characterizations

- Symmetrization of Putinar's theorem to exploit the symmetry in the particles
- Assume the set $\left\{g_{0}, \ldots, g_{m}\right\}$ is Γ-invariant
- Denote by $\Gamma_{g_{i}}$ the stabilizer subgroup of Γ with respect to g_{i}

A Γ-invariant polynomial that has a Putinar representation can be written as $p=\sum_{i=0}^{m} g_{i} s_{i}$, where s_{i} is a $\Gamma_{g_{i}}$-invariant sum of squares polynomial

- We can represent the $\Gamma_{g_{i}}$-invariant sum of squares polynomials s_{i} using block diagonalized positive semidefinite matrices [Gatermann-Parillo 2004]

Sums of squares characterizations

- Symmetrization of Putinar's theorem to exploit the symmetry in the particles
- Assume the set $\left\{g_{0}, \ldots, g_{m}\right\}$ is Γ-invariant
- Denote by $\Gamma_{g_{i}}$ the stabilizer subgroup of Γ with respect to g_{i}

A Γ-invariant polynomial that has a Putinar representation can be written as $p=\sum_{i=0}^{m} g_{i} s_{i}$, where s_{i} is a $\Gamma_{g_{i}}$-invariant sum of squares polynomial

- We can represent the $\Gamma_{g_{i}}$-invariant sum of squares polynomials s_{i} using block diagonalized positive semidefinite matrices [Gatermann-Parillo 2004]
- For energy minimization on the sphere this yields large reductions in solver time (Ex. 150 hours $\rightarrow 7$ hours)

Computations

- Mow we have an SDP given as high precision numbers whose optimal value lower bounds the ground state energy

Computations

- Mow we have an SDP given as high precision numbers whose optimal value lower bounds the ground state energy
- Want to solve with high precision SDP solver

Computations

- Mow we have an SDP given as high precision numbers whose optimal value lower bounds the ground state energy
- Want to solve with high precision SDP solver
- Problem 1: Free variables in the SDP \rightarrow Dual SDP not strictly feasible \rightarrow Cannot solve with high precision solver

Computations

- Mow we have an SDP given as high precision numbers whose optimal value lower bounds the ground state energy
- Want to solve with high precision SDP solver
- Problem 1: Free variables in the SDP \rightarrow Dual SDP not strictly feasible \rightarrow Cannot solve with high precision solver
- Bound free variables with big M constraints

Computations

- Mow we have an SDP given as high precision numbers whose optimal value lower bounds the ground state energy
- Want to solve with high precision SDP solver
- Problem 1: Free variables in the SDP \rightarrow Dual SDP not strictly feasible \rightarrow Cannot solve with high precision solver
- Bound free variables with big M constraints
- Problem 2: The additional symmetry exploitation leads to hard to predict linear dependencies in the constraints

Computations

- Mow we have an SDP given as high precision numbers whose optimal value lower bounds the ground state energy
- Want to solve with high precision SDP solver
- Problem 1: Free variables in the SDP \rightarrow Dual SDP not strictly feasible \rightarrow Cannot solve with high precision solver
- Bound free variables with big M constraints
- Problem 2: The additional symmetry exploitation leads to hard to predict linear dependencies in the constraints
- Use QR factorization of the constraint matrix to remove these

Computations

- In the Thomson problem we take

$$
V=S^{2}, \quad d(x, y)=\|x-y\|_{2}, \quad \text { and } \quad h(w)=\frac{1}{w}
$$

Computations

- In the Thomson problem we take

$$
V=S^{2}, \quad d(x, y)=\|x-y\|_{2}, \quad \text { and } \quad h(w)=\frac{1}{w}
$$

- E_{1}^{*} is sharp for $2,3,4,6$, and 12 particles (Yudin's LP bound)

Computations

- In the Thomson problem we take

$$
V=S^{2}, \quad d(x, y)=\|x-y\|_{2}, \quad \text { and } \quad h(w)=\frac{1}{w}
$$

- E_{1}^{*} is sharp for $2,3,4,6$, and 12 particles (Yudin's LP bound)
- The triangular bipiramid is optimal for $N=5$ (Schwartz 2010)

Computations

- In the Thomson problem we take

$$
V=S^{2}, \quad d(x, y)=\|x-y\|_{2}, \quad \text { and } \quad h(w)=\frac{1}{w}
$$

- E_{1}^{*} is sharp for $2,3,4,6$, and 12 particles (Yudin's LP bound)
- The triangular bipiramid is optimal for $N=5$ (Schwartz 2010)

- High precision SDP solver gives the first 28 decimal digits of a lower bound on E_{2}

Computations

- In the Thomson problem we take

$$
V=S^{2}, \quad d(x, y)=\|x-y\|_{2}, \quad \text { and } \quad h(w)=\frac{1}{w}
$$

- E_{1}^{*} is sharp for $2,3,4,6$, and 12 particles (Yudin's LP bound)
- The triangular bipiramid is optimal for $N=5$ (Schwartz 2010)

- High precision SDP solver gives the first 28 decimal digits of a lower bound on E_{2}
- These all agree with the energy of the triangular bipiramid

Computations

- We should be able to use this to construct an optimality certificate for the $N=5$ case of the Thomson problem, but need to replace linear algebra by Gröbner bases

Computations

- We should be able to use this to construct an optimality certificate for the $N=5$ case of the Thomson problem, but need to replace linear algebra by Gröbner bases
- The system of 5 particles on S^{2} admits a phase transition

Computations

- We should be able to use this to construct an optimality certificate for the $N=5$ case of the Thomson problem, but need to replace linear algebra by Gröbner bases
- The system of 5 particles on S^{2} admits a phase transition
- Using SDP solver we see E_{2} is also (numerically) sharp for many other pair potentials

Computations

- We should be able to use this to construct an optimality certificate for the $N=5$ case of the Thomson problem, but need to replace linear algebra by Gröbner bases
- The system of 5 particles on S^{2} admits a phase transition
- Using SDP solver we see E_{2} is also (numerically) sharp for many other pair potentials
- Conjecture: E_{2} is universally sharp for 5 particles on S^{2}

Computations

- We should be able to use this to construct an optimality certificate for the $N=5$ case of the Thomson problem, but need to replace linear algebra by Gröbner bases
- The system of 5 particles on S^{2} admits a phase transition
- Using SDP solver we see E_{2} is also (numerically) sharp for many other pair potentials
- Conjecture: E_{2} is universally sharp for 5 particles on S^{2}
- This is the first time a four 4 -bound has been computed for a continuous problem

Computations

- We should be able to use this to construct an optimality certificate for the $N=5$ case of the Thomson problem, but need to replace linear algebra by Gröbner bases
- The system of 5 particles on S^{2} admits a phase transition
- Using SDP solver we see E_{2} is also (numerically) sharp for many other pair potentials
- Conjecture: E_{2} is universally sharp for 5 particles on S^{2}
- This is the first time a four 4-bound has been computed for a continuous problem
- Future work: apply these techniques to packing problems

Thank you!

D. de Laat, Moment methods in energy minimization: New bounds for Riesz minimal energy problems, arXiv:1610.04905.

