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» Problem: Find the ground state energy of a system of NV
particles in a compact metric space (V, d) with pair potential h

» Example: In the Thomson problem we minimize

> Foh

r<igen 1z =@l
over all sets {x1,...,zn} of N distinct points in S C R3

» Here V =52, d(z,y) = ||z — yl|2, and h(w) = 1/w

» Assume h(w) — oo as w — 0

» Use moment techniques to find lower bounds (obstructions)

> Infinite dimensional moment techniques — computations
(Compute sharp lower bound for the N = 5 case)
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Setup

Let B be an upper bound on the minimal energy

Define a graph with vertex set V' where two distinct vertices x
and y are adjacent if A(d(z,y)) > B

Let I; be the set of independent sets with < ¢ elements
Let I_; be the set of independent sets with ¢ elements
These sets are compact metric spaces

Define f € C(In) by

{h(d(z,y)) if S ={z,y} with x # v,

0 otherwise

Ground state energy:

FE = 1
Bin ) f(P)
PCS
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Moment relaxations

» For S € I_y, define the measure xyg = ZRQS Or on Iy
> We can use this measure to compute the energy of S
> The energy of S is given by

n=[HPyasp) =3 fm) = Y hld(wy)
RCS {z,y}el_s

» This measure satisfies the following 3 properties:
> Xs is a positive measure
» xs satisfies xs(I=;) = (]j) for all 4
> X is a measure of positive type (see next slide)
» Relaxations:

E; = min {)\(f) : A € M(I;) positive measure of positive type,
A(I=i) = (Y) for all 0 < i < 2t}

» Fy is a min{2t, N }-point bound

EL<BE<---<Ey=F
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Measures of positive type [L—Vallentin 2015]
» Operator:
Ap: C(I X I)sym — C(Iot), ALK (S) = Y K(J,.J)
JJ'el: JuJ'=S

» This is an infinite dimensional version of the adjoint of the
opererator y — M (y) that maps a moment sequence to a
moment matrix

» Dual operator
A:: M(IQt) — M(It X It)sym

» Cone of positive definite kernels: C(I; x I;)=o
» Dual cone:

M(ItXIt)EO = {M € M(ItXIt)Sym : ,LL(K) >0 for all K € C(ItXIt)EO}
» A measure A € M(Iy) is of positive type if
AIA € M(It X It)tO
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The dual hierarchy

Dual maximization problem

0 E} E E

Strong duality holds: E; = Ef

> In E} we optimize over kernels K € C(I; x It)»o:
2% /N
Ef =sup { Z ( . )ai cq e RUO2 K € C(I; x It)wo,
=0 a; + A K(S) < f(9)
for Sel_; andi:O,...,Qt},

» Reduce to finite dimensional variable space:
1. Express K in terms of its Fourier coefficients
2. Set all but finitely many of these coefficients to 0
3. Optimize over the remaining coefficients
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Harmonic analysis on subset spaces

» Let I' be compact group with an action on V
» Example: T =0O(3) and V = S2 CR3
> Assume the metric is [-invariant:
d(yx,vy) = d(x,y) for all z,y € Vand y € T
» Then the action extends to an action on I; by
Y0 =0 and v{x1,..., 21} = {yx1,. .., y21}
» By an “averaging argument” we may assume
K € C(I; x It)=0 to be I'-invariant:
K(yJ,vJ")Y=K(J,J") forally €T and J,J € I
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Harmonic analysis on subset spaces

» Fourier inversion formula:

K(J,J") = ZZK Ze(J, T )i

rel t,j=1

» The Fourier coefficients K () are psd matrices
» The Z:(-,-) are matrix functions that depend on I" and I
» The action of T" on I, gives a linear action of I on C([;) by

vf(S) = f(r71S)

» To construct the Z;(-,-) we need to decompose C(I;) as a
direct sum of irreducible I'-invariant subspaces

» We give procedure to do this using symmetric tensor powers
» We do this explicitly for V = S%, T = 0O(3),and t =2
(by using Clebsch—Gordan coefficients)
> In this way we lower bound E3 by problems with finitely many
variables and infinitely many constraints
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» These constraints are of the form
p(w1,...,2;) >0 for {z1,...,2:} € I,

where p is a polynomial whose coefficients depend linearly on
the entries of the matrix variables

» These polynomials satisfy
p(yz1, ..., yxi) = play, ..., x;) forzy,...,z; € S? and v € O(3)

» By a theorem of invariant theory we can write p as a
polynomial in the inner products:

p(x1, ... x5) = q(xy - w1, 21 - T2y ..., T - X5)

» Now we have constraints of the form

q(ui,...,u) >0 for (u,...,u;) € some semialgebraic set
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Invariant theory

p(x1,. .., x;) = q(x1 - 1,21 - T, ..., T - Ti), deg(p) = 2d

» The theorem that gives the existence of ¢ is nonconstructive
» Find ¢ by solving linear system Az = b
Rows indexed by monomials in 3i vars of degree < 2d
Columns indexed by monomials in (“}') vars of degree < d
» For i =4, d = 6 we get over a million rows

» Use custom pivoting, sparse, high precision, Cholesky
factorization algorithm

» Computing the ¢ polynomials takes several days, but only
needs to be done once for given d
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Sums of squares characterizations

» Putinar: Every positive polynomial on a compact set
S={xeR":g1(x) >0,...,gm(x) >0}, where
{g1,-..,9m} has the Archimedean property, is of the form

m

flx) = Zgi(x)si(m), where go =1 and sg, ..., sy are SOS
=0

» The SOS polynomials s; can be modeled using psd matrices

v

We use this to go from infinitely many linear constraints to
finitely many semidefinite constraints

> In energy minimization the particles are interchangeable
» This means

P(To(1ys -+ To()) = P(@1,. ., 2;) forall o€,
» Additional symmetries in the q(uy,...,u;) polynomials
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Sums of squares characterizations

» Symmetrization of Putinar’s theorem to exploit the symmetry
in the particles
» Assume the set {go,...,gm} is [-invariant

> Denote by I'y, the stabilizer subgroup of I" with respect to g;

A T'-invariant polynomial that has a Putinar representation
can be written as p = ZZZO 9iSi, where s; is a I'g,-invariant
sum of squares polynomial

» We can represent the I'g,-invariant sum of squares
polynomials s; using block diagonalized positive semidefinite
matrices [Gatermann—Parillo 2004]

» For energy minimization on the sphere this yields large
reductions in solver time (Ex. 150 hours — 7 hours)
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Computations

» Mow we have an SDP given as high precision numbers whose
optimal value lower bounds the ground state energy

» Want to solve with high precision SDP solver

» Problem 1: Free variables in the SDP — Dual SDP not
strictly feasible — Cannot solve with high precision solver

» Bound free variables with big M constraints

> Problem 2: The additional symmetry exploitation leads to
hard to predict linear dependencies in the constraints

» Use QR factorization of the constraint matrix to remove these
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In the Thomson problem we take

1
V=252 d,y) =|z—yl and h(w):E

v

EY is sharp for 2, 3, 4, 6, and 12 particles (Yudin's LP bound)
The triangular bipiramid is optimal for N = 5 (Schwartz 2010)

High precision SDP solver gives the first 28 decimal digits of a
lower bound on E5

v

v

v

These all agree with the energy of the triangular bipiramid
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Computations

» We should be able to use this to construct an optimality
certificate for the NV = 5 case of the Thomson problem, but
need to replace linear algebra by Grobner bases

» The system of 5 particles on S? admits a phase transition

» Using SDP solver we see Fj is also (numerically) sharp for
many other pair potentials

» Conjecture: Fj5 is universally sharp for 5 particles on 52

» This is the first time a four 4-bound has been computed for a
continuous problem

» Future work: apply these techniques to packing problems



Thank you!

D. de Laat, Moment methods in energy minimization: New bounds for
Riesz minimal energy problems, arXiv:1610.04905.



