A semidefinite programming hierarchy for geometric packing problems

David de Laat Joint work with Frank Vallentin

4th SDP days - March 2013

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Geometric packing problems

- ▶ Spherical codes (spherical cap packings): What is the largest number of points that one can place on Sⁿ⁻¹ such that the pairwise inner products are at most t?
- Model geometric packing problems as maximum independent set problems

•
$$G = (S^{n-1}, x \sim y \text{ if } x \cdot y > t)$$

Definition

A packing graph is a graph where

- the vertex set is a Hausdorff topological space
- each finite clique is contained in an open clique
- We will consider compact packing graphs

Upper bounds for the max independent set problem

Finite Graphs	Infinite Graphs
Delsarte, 1973	Delsarte, 1977 Kabatiansky, Levenshtein, 1978
Lovász, 1979	Bachoc, Nebe, de Oliveira, Vallentin, 2009
Schrijver, 1979 McEliece, Rodemich, Rumsey, 1978	
Lasserre, 2001	
Laurent, 2003	

This talk: generalize the Lasserre hierarchy to infinite graphs and prove finite convergence

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Lasserre hierarchy for finite graphs

$$\alpha \leq \max \left\{ \sum_{i=1}^{n} y_i : \begin{array}{c} 0 \\ 1 \\ 2 \\ \vdots \\ 1 \\ y_1 \\ y_2 \\ \vdots \\ \{1, 2\} \\ \vdots \\ \{3, 4\} \\ \vdots \end{array} \right| \begin{array}{c} y_1 \\ y_2 \\ \vdots \\ y_n \\ \vdots \\ \vdots \\ \vdots \\ y_n \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ y_S = 0 \text{ if } S \text{ has an edge } \right\} \\ \geq 0,$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへで

Finite subset spaces

- Sub(V,t) is the collection of nonempty subsets of V with at most t elements
- Quotient map:

$$q: V^t \to \mathsf{Sub}(V, t), (v_1, \dots, v_t) \mapsto \{v_1, \dots, v_t\}$$

- ► Sub(V, t) is a compact Hausdorff space
- I_t ⊆ Sub(V,t) is the collection of nonempty independent sets with at most t elements

• $V_t = \mathsf{Sub}(V, t) \cup \{\emptyset\}$ is part of the semigroup $(2^V, \cup)$

Finite subset spaces

 I_t is the collection of nonempty independent sets with $\leq t$ elements

Finite subset spaces

- If the topology on V comes from a metric, then the topology on Sub(V,t) is given by the Hausdorff distance
- Example: the sets $\{x, y\}$ and $\{u, v, w\}$ are close in Sub(V, t)

Lemma

 $I_t \to \mathbb{Z}_{\geq 0}, S \mapsto |S|$ is continuous

▶ The sets $\{x, y\}$ and $\{u, v, w\}$ are in different connected components in I_t

• A function $f \in \mathcal{C}(V_t \times V_t)_{sym}$ is a *positive kernel* if

 $(f(x_i, x_j))_{i,j=1}^m$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

is positive semidefinite for all m and $x_1, \ldots, x_m \in V_t$

• Cone of positive (definite) kernels: $C(V_t \times V_t)_{\succeq 0}$

Measures of positive type

- $M(V_t \times V_t)_{\succeq 0}$ is the cone dual to $\mathcal{C}(V_t \times V_t)_{\succeq 0}$
- ► The elements in M(V_t × V_t)_{≥0} are called *positive definite* measures
- ▶ Define the operator $A_t \colon \mathcal{C}(V_t \times V_t)_{sym} \to \mathcal{C}(I_{2t})$ by

$$A_t f(S) = \sum_{J, J' \in V_t : J \cup J' = S} f(J, J')$$

▶ The *measures of positive type* on *I*_{2t}:

$$\left\{\lambda \in M(I_{2t}) \colon A_t^* \lambda \in M(V_t \times V_t)_{\succeq 0}\right\}$$

A measure λ on a locally compact group Γ is of positive type if it defines a positive linear functional on the group algebra:

$$\lambda(f^**f) \ge 0 \text{ for all } f \in \mathcal{C}(\Gamma)$$
• For $f, g \in \mathcal{C}(V_t)$, let $f^* = f$ and $f * g = A_t(f \otimes g)$

The hierarchie

• Generalization of the Lasserre hierarchy to infinite graphs:

$$\vartheta_t = \inf \left\{ f(\emptyset, \emptyset) \colon f \in \mathcal{C}(V_t \times V_t)_{\succeq 0}, \\ \mathbb{1}_{I_1} + A_t f \in \mathcal{C}(I_{2t})_{\leq 0} \right\}$$

Conic duality gives the dual chain

$$\vartheta_t^* = \sup \left\{ \lambda(I_1) \colon \lambda \in M(I_{2t})_{\geq 0}, \\ \delta_{\emptyset} \otimes \delta_{\emptyset} + A_t^* \lambda \in M(V_t \times V_t)_{\geq 0} \right\}$$

・ロト ・御 ト ・ ヨト ・ ヨト … ヨー

Theorem

1.
$$\vartheta_t = \vartheta_t^*$$
 for all t
2. $\alpha \leq \ldots \leq \vartheta_3^* \leq \vartheta_2^* \leq \vartheta_1^*$
3. $\vartheta_{\alpha}^* = \alpha$

Strong duality

- To prove strong duality we use a closed cone condition
- We need to show that the cone

$$K = \{ (A_t^* \lambda - \mu, \lambda(I_1)) \colon \mu \in M(V_t \times V_t)_{\geq 0}, \lambda \in M(I_{2t})_{\geq 0} \}$$

is closed in $M(V_t \times V_t)_{sym} \times \mathbb{R}$

• Idea: $K = K_1 - K_2$ (Minkowski difference)

Lemma (Klee 1955)

If K_1 and K_2 are closed convex cones in a topological vector space, K_1 is locally compact, and $K_1 \cap K_2 = \{0\}$, then $K_1 - K_2$ is closed.

Finite convergence

We write the ath step of the hierarchy as

 $\Theta = \max\{\lambda(I_1) \colon \lambda \in M(I), \lambda(\{\emptyset\}) = 1, A^* \lambda \succeq 0\}$

where I is the collection of all independent sets

- Claim: $\Theta = \alpha$
- Given an independent set S, $\chi_S = \sum_{J \subseteq S} \delta_J$ is feasible for Θ

- λ feasible $\Rightarrow \lambda = \int \chi_S d\sigma(S)$
- We show that σ is a probability measure
- $\Theta = \max\{\int |S| d\sigma(S) \colon \sigma \in \mathcal{P}(I)\}$

Thank you!

D. de Laat, F. Vallentin, A semidefinite programming hierarchy for geometric packing problems, in preparation.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ