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Geometric packing problems

I Spherical codes (spherical cap packings): What is the largest
number of points that one can place on Sn−1 such that the
pairwise inner products are at most t?

I Model geometric packing problems as maximum independent
set problems

I G = (Sn−1, x ∼ y if x · y > t)

Definition

A packing graph is a graph where

- the vertex set is a Hausdorff topological space

- each finite clique is contained in an open clique

I We will consider compact packing graphs



Upper bounds for the max independent set problem
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This talk: generalize the Lasserre hierarchy to infinite graphs and
prove finite convergence



The Lasserre hierarchy for finite graphs
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Finite subset spaces

I Sub(V, t) is the collection of nonempty subsets of V with at
most t elements

I Quotient map:

q : V t → Sub(V, t), (v1, . . . , vt) 7→ {v1, . . . , vt}

I Sub(V, t) is a compact Hausdorff space

I It ⊆ Sub(V, t) is the collection of nonempty independent sets
with at most t elements

I Vt = Sub(V, t) ∪ {∅} is part of the semigroup (2V ,∪)



Finite subset spaces

It is the collection of nonempty independent sets with ≤ t elements

Lemma

It is compact
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Finite subset spaces

I If the topology on V comes from a metric, then the topology
on Sub(V, t) is given by the Hausdorff distance

I Example: the sets {x, y} and {u, v, w} are close in Sub(V, t)
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Lemma

It → Z≥0, S 7→ |S| is continuous

I The sets {x, y} and {u, v, w} are in different connected
components in It



Positive kernels

I A function f ∈ C(Vt × Vt)sym is a positive kernel if

(f(xi, xj))
m
i,j=1

is positive semidefinite for all m and x1, . . . , xm ∈ Vt
I Cone of positive (definite) kernels: C(Vt × Vt)�0



Measures of positive type

I M(Vt × Vt)�0 is the cone dual to C(Vt × Vt)�0
I The elements in M(Vt × Vt)�0 are called positive definite

measures

I Define the operator At : C(Vt × Vt)sym → C(I2t) by

Atf(S) =
∑

J,J ′∈Vt : J∪J ′=S

f(J, J ′)

I The measures of positive type on I2t:{
λ ∈M(I2t) : A∗tλ ∈M(Vt × Vt)�0

}
I A measure λ on a locally compact group Γ is of positive type

if it defines a positive linear functional on the group algebra:

λ(f∗ ∗ f) ≥ 0 for all f ∈ C(Γ)

I For f, g ∈ C(Vt), let f∗ = f and f ∗ g = At(f ⊗ g)



The hierarchie

I Generalization of the Lasserre hierarchy to infinite graphs:

ϑt = inf
{
f(∅, ∅) : f ∈ C(Vt × Vt)�0,

1I1 +Atf ∈ C(I2t)≤0
}

I Conic duality gives the dual chain

ϑ∗t = sup
{
λ(I1) : λ ∈M(I2t)≥0,

δ∅ ⊗ δ∅ +A∗tλ ∈M(Vt × Vt)�0
}

Theorem

1. ϑt = ϑ∗t for all t

2. α ≤ . . . ≤ ϑ∗3 ≤ ϑ∗2 ≤ ϑ∗1
3. ϑ∗α = α



Strong duality

I To prove strong duality we use a closed cone condition

I We need to show that the cone

K = {(A∗tλ− µ, λ(I1)) : µ ∈M(Vt × Vt)�0, λ ∈M(I2t)≥0}

is closed in M(Vt × Vt)sym × R
I Idea: K = K1 −K2 (Minkowski difference)

Lemma (Klee 1955)

If K1 and K2 are closed convex cones in a topological vector space,
K1 is locally compact, and K1∩K2 = {0}, then K1−K2 is closed.



Finite convergence

I We write the αth step of the hierarchy as

Θ = max{λ(I1) : λ ∈M(I), λ({∅}) = 1, A∗λ � 0}

where I is the collection of all independent sets

I Claim: Θ = α

I Given an independent set S, χS =
∑

J⊆S δJ is feasible for Θ

I λ feasible ⇒ λ =
∫
χSdσ(S)

I We show that σ is a probability measure

I Θ = max{
∫
|S|dσ(S) : σ ∈ P(I)}



Thank you!
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