
Energy minimization via
conic programming hierarchies

David de Laat (TU Delft)

SIAM conference on optimization
May 20, 2014, San Diego

http://www.daviddelaat.nl


Energy minimization

Given

- a set V (container)

- a function w : V × V → R≥0 ∪ {∞} (pair potential)

- an integer N (number of particles)

What is the minimal potential energy of a particle configuration?

E = inf
S∈(V

N)

∑
{x,y}∈(S2)

w(x, y)

Example

For the Thomson problem we take V = S2 and w(x, y) = ‖x−y‖−1
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Lower bounds

I Configurations provide upper bounds on the optimal energy E

I Usually hard to prove optimality of a configuration

Approach to finding lower bounds

1. Relax the problem to a conic optimization problem

2. Find good feasible solutions to the dual problem
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Related work

I The symmetry group Γ of V acts on V k by
γ(x1, . . . , xk) = (γx1, . . . , γxk)

I The k-point correlation function of a configuration S ⊆ V
measures the number of k-subsets of S in each orbit in V k

I These functions satisfy certain linear/semidefinite constraints

I Relaxation: instead of optimizing over N -particle subsets,
optimize over functions satisfying these constraints

I 2-point bounds using contraints from positive Γ-invariant
kernels on V [Yudin 1992]

I Universal optimality of configurations using 2-point bounds
[Cohn-Kumar 2006]

I 3-point using constraints from kernels which are invariant
under the stabilizer subgroup of a point [Schrijver 2005,
Bachoc-Vallentin 2009, Cohn-Woo 2012]

I k-point bounds using the stabilizer subgroup of k − 2 points
[Musin 2007]
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This talk

I Hierarchy for energy minimization based on a generalization
by [L.-Vallentin 2013] of the Lasserre hierarchy for the
independent set problem to infinite graphs

I Instead of correlation functions we have “correlation
measures”, and instead of positive kernels invariant under a
stabilizer subgroup we have positive kernels on subset spaces

I Convergent hierarchy of finite semidefinite programs

I Application to low dimensional spaces
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Setup

Restrict to particle configurations whose points are not “too close”:

I Assume V is a compact Hausdorff space

I Assume w : V × V \∆V → R is a continuous function with
w(x, y)→∞ as (x, y) converges to the diagonal

I Let δ > E and define the graph G = (V,E) where

x ∼ y if w(x, y) > δ

I Consider only independent sets in G of cardinality N

Subset spaces:

I Let Vt be the set of subsets of V of cardinality at most t with
topology induced by q : V t → Vt, (v1, . . . , vt) 7→ {v1, . . . , vt}

I Denote by It ⊂ Vt the compact subset of independent sets

I View w as an element in C(I2t)
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Primal hierarchy
I We define a hierarchy of conic optimization problems with

optimal values E1, E2, . . . such that

E1 ≤ E2 ≤ · · · ≤ EN = E

I Et is a min{2t,N}-point bound
I In the t-th step: optimize over a cone Kt(G) of Borel

measures on Imin{2t,N}

Et = min
{
λ(w) : λ ∈ Kt(G),

λ(I=i) =

(
N

i

)
for i = 1, . . . ,min{2t,N}

}
I If S is a N -particle configuration, then

χS =
∑

R⊆S:|R|≤2t

δR

is a feasible measure (this proves Et ≤ E)
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Cone of moment measures

I Define the operator At : C(Vt × Vt)sym → C(Imin{2t,N}) by

AtK(S) =
∑

J,J ′∈Vt:J∪J ′=S

K(J, J ′)

I At is a generalization of the dual of the operator that maps a
vector to its moment matrix

I Cone of positive kernels: C(Vt × Vt)�0

I Cone of moment measures

Kt(G) = {λ ∈M(Imin{2t,N})≥0 : A∗tλ ∈M(Vt × Vt)�0}

I When t = N , the extreme rays of Kt(G) are precisely the
measures χS with S ∈ I=N

I This is the main step in proving EN = E
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Dual hierarchy

I For lower bounds we need dual feasible solutions

I In the dual hierarchy optimization is over scalars ai and
elements L in the dual cone Kt(G)∗

E∗t = sup
{min{2t,N}∑

i=0

(
N

i

)
ai : a0, . . . , amin{2t,N} ∈ R, L ∈ Kt(G)∗,

ai − L ≤ w on I=i for i = 0, . . . ,min{2t,N}
}

I The elements L are of the form AtK for K ∈ C(Vt × Vt)�0

I Strong duality holds: Et = E∗t
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Frequency formulation

I Assume w is Γ-invariant: w(γx, γy) = w(x, y) for all γ ∈ Γ,
x, y ∈ V

I Then all constraints in the program E∗t are invariant under Γ,
and we can restrict to the cone

{AtK : K ∈ C(Vt × Vt)Γ
�0}

I Γ acts on Vt by γ∅ = ∅ and γ{x1, . . . , xt} = {γx1, . . . , γxt}
I Bochner’s theorem: K ∈ C(Vt × Vt)Γ

�0 is of the form

K(J, J ′) =
∞∑
k=0

〈Fk, Zk(J, J ′)〉 where

Fk: positive semidefinite matrices (the Fourier coefficients)
Zk: zonal matrices corresponding to the action of Γ on Vt
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Semidefinite programming

I Restrict the series
∑∞

k=0〈Fk, Zk(J, J ′)〉 to the first d terms

I Use principal submatrices Zk,d of Zk of size sk,d
(where sk,d →∞ as d→∞)

I This gives a semi-infinite semidefinite program E∗t,d
I In general the Fourier series does not converge uniformly; the

action of Γ on Vt has infinitely many orbits (for t ≥ 2)

I By a summability method we have E∗t,d → E∗t as d→∞
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Semidefinite programming

I The linear constraints in E∗t,d are of the form

ai −
d∑

k=0

〈Fk, AtZk,d〉 ≤ w on I=i for i = 0, . . . ,min{2t,N}

I Variable transformation to write the above as polynomial
inequalities over a semialgebraic set (depends on the
application)

I Using sums of squares characterizations E∗t,d can be
approximated by a sequence of finite semidefinite programs
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Example: V = S1 with O(2)-invariant pair potential w

I Zonal matrices as polynomial matrices in the inner products:

Zk({x1, . . . , xt}, {y1, . . . , yt})i,j =

(
t∏

r,s=1

(xr · xs)i(yr · ys)j
)

t∑
r,s=1

Tk(xr·ys)

I AtZk,d is an O(2)-invariant matrix valued function on sets in
Imin{2t,N}

I Describe an element {x1, . . . , xmin{2t,N}} ∈ (Imin{2t,N})/O(2) by
the angles θi = cos(xi · xi+1) for i = 1, . . . ,min{2t,N} − 1

I Each inner product is a trigonometric polynomial in these angles
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Example: V = S1 with O(2)-invariant pair potential w

I The linear inequalities should hold over the set{
(θ1, . . . , θmin{2t,N}) : cos

(∑
i∈E

θi

)
≥ Cδ for E ⊆ {1, . . . ,min{2t,N}}

}
I Use trigonometric SOS characterizations [Dumitrescu 2006]

I The 4-point bound E∗2 requires trivariate SOS characterizations

I For Coulomb (or other completely monotonic potentials) 2-point
bounds are always sharp on the circle Cohn-Kumar 2006

I Lennard-Jones potential: Based on a sampling implementation it
appears that for e.g. N = 3 we have

E1 < E2 = E
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Thank you!


