Energy minimization via conic programming hierarchies

David de Laat (TU Delft)

SIAM conference on optimization
May 20, 2014, San Diego

Energy minimization

Given

- a set V (container)
- a function $w: V \times V \rightarrow \mathbb{R}_{\geq 0} \cup\{\infty\}$ (pair potential)
- an integer N (number of particles)

What is the minimal potential energy of a particle configuration?

Energy minimization

Given

- a set V (container)
- a function $w: V \times V \rightarrow \mathbb{R}_{\geq 0} \cup\{\infty\}$ (pair potential)
- an integer N (number of particles)

What is the minimal potential energy of a particle configuration?

$$
E=\inf _{S \in\binom{V}{N}} \sum_{\{x, y\} \in\binom{S}{2}} w(x, y)
$$

Energy minimization

Given

- a set V (container)
- a function $w: V \times V \rightarrow \mathbb{R}_{\geq 0} \cup\{\infty\}$ (pair potential)
- an integer N (number of particles)

What is the minimal potential energy of a particle configuration?

$$
E=\inf _{S \in\binom{V}{N}} \sum_{\{x, y\} \in\binom{S}{2}} w(x, y)
$$

Example

For the Thomson problem we take $V=S^{2}$ and $w(x, y)=\|x-y\|^{-1}$

Lower bounds

- Configurations provide upper bounds on the optimal energy E

Lower bounds

- Configurations provide upper bounds on the optimal energy E
- Usually hard to prove optimality of a configuration

Lower bounds

- Configurations provide upper bounds on the optimal energy E
- Usually hard to prove optimality of a configuration

Approach to finding lower bounds

1. Relax the problem to a conic optimization problem
2. Find good feasible solutions to the dual problem

Related work

- The symmetry group Γ of V acts on V^{k} by

$$
\gamma\left(x_{1}, \ldots, x_{k}\right)=\left(\gamma x_{1}, \ldots, \gamma x_{k}\right)
$$

Related work

- The symmetry group Γ of V acts on V^{k} by $\gamma\left(x_{1}, \ldots, x_{k}\right)=\left(\gamma x_{1}, \ldots, \gamma x_{k}\right)$
- The k-point correlation function of a configuration $S \subseteq V$ measures the number of k-subsets of S in each orbit in V^{k}

Related work

- The symmetry group Γ of V acts on V^{k} by $\gamma\left(x_{1}, \ldots, x_{k}\right)=\left(\gamma x_{1}, \ldots, \gamma x_{k}\right)$
- The k-point correlation function of a configuration $S \subseteq V$ measures the number of k-subsets of S in each orbit in V^{k}
- These functions satisfy certain linear/semidefinite constraints

Related work

- The symmetry group Γ of V acts on V^{k} by $\gamma\left(x_{1}, \ldots, x_{k}\right)=\left(\gamma x_{1}, \ldots, \gamma x_{k}\right)$
- The k-point correlation function of a configuration $S \subseteq V$ measures the number of k-subsets of S in each orbit in V^{k}
- These functions satisfy certain linear/semidefinite constraints
- Relaxation: instead of optimizing over N-particle subsets, optimize over functions satisfying these constraints

Related work

- The symmetry group Γ of V acts on V^{k} by $\gamma\left(x_{1}, \ldots, x_{k}\right)=\left(\gamma x_{1}, \ldots, \gamma x_{k}\right)$
- The k-point correlation function of a configuration $S \subseteq V$ measures the number of k-subsets of S in each orbit in V^{k}
- These functions satisfy certain linear/semidefinite constraints
- Relaxation: instead of optimizing over N-particle subsets, optimize over functions satisfying these constraints
- 2-point bounds using contraints from positive Γ-invariant kernels on V [Yudin 1992]

Related work

- The symmetry group Γ of V acts on V^{k} by $\gamma\left(x_{1}, \ldots, x_{k}\right)=\left(\gamma x_{1}, \ldots, \gamma x_{k}\right)$
- The k-point correlation function of a configuration $S \subseteq V$ measures the number of k-subsets of S in each orbit in V^{k}
- These functions satisfy certain linear/semidefinite constraints
- Relaxation: instead of optimizing over N-particle subsets, optimize over functions satisfying these constraints
- 2-point bounds using contraints from positive Γ-invariant kernels on V [Yudin 1992]
- Universal optimality of configurations using 2-point bounds [Cohn-Kumar 2006]

Related work

- The symmetry group Γ of V acts on V^{k} by $\gamma\left(x_{1}, \ldots, x_{k}\right)=\left(\gamma x_{1}, \ldots, \gamma x_{k}\right)$
- The k-point correlation function of a configuration $S \subseteq V$ measures the number of k-subsets of S in each orbit in V^{k}
- These functions satisfy certain linear/semidefinite constraints
- Relaxation: instead of optimizing over N-particle subsets, optimize over functions satisfying these constraints
- 2-point bounds using contraints from positive Γ-invariant kernels on V [Yudin 1992]
- Universal optimality of configurations using 2-point bounds [Cohn-Kumar 2006]
- 3-point using constraints from kernels which are invariant under the stabilizer subgroup of a point [Schrijver 2005, Bachoc-Vallentin 2009, Cohn-Woo 2012]

Related work

- The symmetry group Γ of V acts on V^{k} by $\gamma\left(x_{1}, \ldots, x_{k}\right)=\left(\gamma x_{1}, \ldots, \gamma x_{k}\right)$
- The k-point correlation function of a configuration $S \subseteq V$ measures the number of k-subsets of S in each orbit in V^{k}
- These functions satisfy certain linear/semidefinite constraints
- Relaxation: instead of optimizing over N-particle subsets, optimize over functions satisfying these constraints
- 2-point bounds using contraints from positive Γ-invariant kernels on V [Yudin 1992]
- Universal optimality of configurations using 2-point bounds [Cohn-Kumar 2006]
- 3-point using constraints from kernels which are invariant under the stabilizer subgroup of a point [Schrijver 2005, Bachoc-Vallentin 2009, Cohn-Woo 2012]
- k-point bounds using the stabilizer subgroup of $k-2$ points [Musin 2007]

This talk

- Hierarchy for energy minimization based on a generalization by [L.-Vallentin 2013] of the Lasserre hierarchy for the independent set problem to infinite graphs

This talk

- Hierarchy for energy minimization based on a generalization by [L.-Vallentin 2013] of the Lasserre hierarchy for the independent set problem to infinite graphs
- Instead of correlation functions we have "correlation measures", and instead of positive kernels invariant under a stabilizer subgroup we have positive kernels on subset spaces

This talk

- Hierarchy for energy minimization based on a generalization by [L.-Vallentin 2013] of the Lasserre hierarchy for the independent set problem to infinite graphs
- Instead of correlation functions we have "correlation measures", and instead of positive kernels invariant under a stabilizer subgroup we have positive kernels on subset spaces
- Convergent hierarchy of finite semidefinite programs

This talk

- Hierarchy for energy minimization based on a generalization by [L.-Vallentin 2013] of the Lasserre hierarchy for the independent set problem to infinite graphs
- Instead of correlation functions we have "correlation measures", and instead of positive kernels invariant under a stabilizer subgroup we have positive kernels on subset spaces
- Convergent hierarchy of finite semidefinite programs
- Application to low dimensional spaces

Setup

Restrict to particle configurations whose points are not "too close":

Setup

Restrict to particle configurations whose points are not "too close":

- Assume V is a compact Hausdorff space

Setup

Restrict to particle configurations whose points are not "too close":

- Assume V is a compact Hausdorff space
- Assume $w: V \times V \backslash \Delta_{V} \rightarrow \mathbb{R}$ is a continuous function with $w(x, y) \rightarrow \infty$ as (x, y) converges to the diagonal

Setup

Restrict to particle configurations whose points are not "too close":

- Assume V is a compact Hausdorff space
- Assume $w: V \times V \backslash \Delta_{V} \rightarrow \mathbb{R}$ is a continuous function with $w(x, y) \rightarrow \infty$ as (x, y) converges to the diagonal
- Let $\delta>E$ and define the graph $G=(V, E)$ where

$$
x \sim y \text { if } w(x, y)>\delta
$$

Setup

Restrict to particle configurations whose points are not "too close":

- Assume V is a compact Hausdorff space
- Assume $w: V \times V \backslash \Delta_{V} \rightarrow \mathbb{R}$ is a continuous function with $w(x, y) \rightarrow \infty$ as (x, y) converges to the diagonal
- Let $\delta>E$ and define the graph $G=(V, E)$ where

$$
x \sim y \text { if } w(x, y)>\delta
$$

- Consider only independent sets in G of cardinality N

Setup

Restrict to particle configurations whose points are not "too close":

- Assume V is a compact Hausdorff space
- Assume $w: V \times V \backslash \Delta_{V} \rightarrow \mathbb{R}$ is a continuous function with $w(x, y) \rightarrow \infty$ as (x, y) converges to the diagonal
- Let $\delta>E$ and define the graph $G=(V, E)$ where

$$
x \sim y \text { if } w(x, y)>\delta
$$

- Consider only independent sets in G of cardinality N Subset spaces:

Setup

Restrict to particle configurations whose points are not "too close":

- Assume V is a compact Hausdorff space
- Assume $w: V \times V \backslash \Delta_{V} \rightarrow \mathbb{R}$ is a continuous function with $w(x, y) \rightarrow \infty$ as (x, y) converges to the diagonal
- Let $\delta>E$ and define the graph $G=(V, E)$ where

$$
x \sim y \text { if } w(x, y)>\delta
$$

- Consider only independent sets in G of cardinality N

Subset spaces:

- Let V_{t} be the set of subsets of V of cardinality at most t with topology induced by $q: V^{t} \rightarrow V_{t},\left(v_{1}, \ldots, v_{t}\right) \mapsto\left\{v_{1}, \ldots, v_{t}\right\}$

Setup

Restrict to particle configurations whose points are not "too close":

- Assume V is a compact Hausdorff space
- Assume $w: V \times V \backslash \Delta_{V} \rightarrow \mathbb{R}$ is a continuous function with $w(x, y) \rightarrow \infty$ as (x, y) converges to the diagonal
- Let $\delta>E$ and define the graph $G=(V, E)$ where

$$
x \sim y \text { if } w(x, y)>\delta
$$

- Consider only independent sets in G of cardinality N

Subset spaces:

- Let V_{t} be the set of subsets of V of cardinality at most t with topology induced by $q: V^{t} \rightarrow V_{t},\left(v_{1}, \ldots, v_{t}\right) \mapsto\left\{v_{1}, \ldots, v_{t}\right\}$
- Denote by $I_{t} \subset V_{t}$ the compact subset of independent sets

Setup

Restrict to particle configurations whose points are not "too close":

- Assume V is a compact Hausdorff space
- Assume $w: V \times V \backslash \Delta_{V} \rightarrow \mathbb{R}$ is a continuous function with $w(x, y) \rightarrow \infty$ as (x, y) converges to the diagonal
- Let $\delta>E$ and define the graph $G=(V, E)$ where

$$
x \sim y \text { if } w(x, y)>\delta
$$

- Consider only independent sets in G of cardinality N

Subset spaces:

- Let V_{t} be the set of subsets of V of cardinality at most t with topology induced by $q: V^{t} \rightarrow V_{t},\left(v_{1}, \ldots, v_{t}\right) \mapsto\left\{v_{1}, \ldots, v_{t}\right\}$
- Denote by $I_{t} \subset V_{t}$ the compact subset of independent sets
- View w as an element in $\mathcal{C}\left(I_{2 t}\right)$

Primal hierarchy

- We define a hierarchy of conic optimization problems with optimal values E_{1}, E_{2}, \ldots such that

$$
E_{1} \leq E_{2} \leq \cdots \leq E_{N}=E
$$

Primal hierarchy

- We define a hierarchy of conic optimization problems with optimal values E_{1}, E_{2}, \ldots such that

$$
E_{1} \leq E_{2} \leq \cdots \leq E_{N}=E
$$

- E_{t} is a $\min \{2 t, N\}$-point bound

Primal hierarchy

- We define a hierarchy of conic optimization problems with optimal values E_{1}, E_{2}, \ldots such that

$$
E_{1} \leq E_{2} \leq \cdots \leq E_{N}=E
$$

- E_{t} is a $\min \{2 t, N\}$-point bound
- In the t-th step: optimize over a cone $K_{t}(G)$ of Borel measures on $I_{\min \{2 t, N\}}$

Primal hierarchy

- We define a hierarchy of conic optimization problems with optimal values E_{1}, E_{2}, \ldots such that

$$
E_{1} \leq E_{2} \leq \cdots \leq E_{N}=E
$$

- E_{t} is a $\min \{2 t, N\}$-point bound
- In the t-th step: optimize over a cone $K_{t}(G)$ of Borel measures on $I_{\min \{2 t, N\}}$

$$
\begin{aligned}
& E_{t}=\min \left\{\lambda(w): \lambda \in K_{t}(G)\right. \\
& \left.\qquad \lambda\left(I_{=i}\right)=\binom{N}{i} \text { for } i=1, \ldots, \min \{2 t, N\}\right\}
\end{aligned}
$$

Primal hierarchy

- We define a hierarchy of conic optimization problems with optimal values E_{1}, E_{2}, \ldots such that

$$
E_{1} \leq E_{2} \leq \cdots \leq E_{N}=E
$$

- E_{t} is a $\min \{2 t, N\}$-point bound
- In the t-th step: optimize over a cone $K_{t}(G)$ of Borel measures on $I_{\min \{2 t, N\}}$

$$
\begin{aligned}
& E_{t}=\min \left\{\lambda(w): \lambda \in K_{t}(G)\right. \\
& \\
&\left.\lambda\left(I_{=i}\right)=\binom{N}{i} \text { for } i=1, \ldots, \min \{2 t, N\}\right\}
\end{aligned}
$$

- If S is a N-particle configuration, then

$$
\chi_{S}=\sum_{R \subseteq S:|R| \leq 2 t} \delta_{R}
$$

is a feasible measure (this proves $E_{t} \leq E$)

Cone of moment measures

- Define the operator $A_{t}: \mathcal{C}\left(V_{t} \times V_{t}\right)_{\text {sym }} \rightarrow \mathcal{C}\left(I_{\min \{2 t, N\}}\right)$ by

$$
A_{t} K(S)=\sum_{J, J^{\prime} \in V_{t}: J \cup J^{\prime}=S} K\left(J, J^{\prime}\right)
$$

Cone of moment measures

- Define the operator $A_{t}: \mathcal{C}\left(V_{t} \times V_{t}\right)_{\text {sym }} \rightarrow \mathcal{C}\left(I_{\min \{2 t, N\}}\right)$ by

$$
A_{t} K(S)=\sum_{J, J^{\prime} \in V_{t}: J \cup J^{\prime}=S} K\left(J, J^{\prime}\right)
$$

- A_{t} is a generalization of the dual of the operator that maps a vector to its moment matrix

Cone of moment measures

- Define the operator $A_{t}: \mathcal{C}\left(V_{t} \times V_{t}\right)_{\text {sym }} \rightarrow \mathcal{C}\left(I_{\min \{2 t, N\}}\right)$ by

$$
A_{t} K(S)=\sum_{J, J^{\prime} \in V_{t}: J \cup J^{\prime}=S} K\left(J, J^{\prime}\right)
$$

- A_{t} is a generalization of the dual of the operator that maps a vector to its moment matrix
- Cone of positive kernels: $\mathcal{C}\left(V_{t} \times V_{t}\right)_{\succeq 0}$

Cone of moment measures

- Define the operator $A_{t}: \mathcal{C}\left(V_{t} \times V_{t}\right)_{\text {sym }} \rightarrow \mathcal{C}\left(I_{\min \{2 t, N\}}\right)$ by

$$
A_{t} K(S)=\sum_{J, J^{\prime} \in V_{t}: J \cup J^{\prime}=S} K\left(J, J^{\prime}\right)
$$

- A_{t} is a generalization of the dual of the operator that maps a vector to its moment matrix
- Cone of positive kernels: $\mathcal{C}\left(V_{t} \times V_{t}\right)_{\succeq 0}$
- Cone of moment measures

$$
K_{t}(G)=\left\{\lambda \in \mathcal{M}\left(I_{\min \{2 t, N\}}\right)_{\geq 0}: A_{t}^{*} \lambda \in \mathcal{M}\left(V_{t} \times V_{t}\right)_{\succeq 0}\right\}
$$

Cone of moment measures

- Define the operator $A_{t}: \mathcal{C}\left(V_{t} \times V_{t}\right)_{\text {sym }} \rightarrow \mathcal{C}\left(I_{\min \{2 t, N\}}\right)$ by

$$
A_{t} K(S)=\sum_{J, J^{\prime} \in V_{t}: J \cup J^{\prime}=S} K\left(J, J^{\prime}\right)
$$

- A_{t} is a generalization of the dual of the operator that maps a vector to its moment matrix
- Cone of positive kernels: $\mathcal{C}\left(V_{t} \times V_{t}\right)_{\succeq 0}$
- Cone of moment measures

$$
K_{t}(G)=\left\{\lambda \in \mathcal{M}\left(I_{\min \{2 t, N\}}\right)_{\geq 0}: A_{t}^{*} \lambda \in \mathcal{M}\left(V_{t} \times V_{t}\right)_{\succeq 0}\right\}
$$

- When $t=N$, the extreme rays of $K_{t}(G)$ are precisely the measures χ_{S} with $S \in I_{=N}$

Cone of moment measures

- Define the operator $A_{t}: \mathcal{C}\left(V_{t} \times V_{t}\right)_{\text {sym }} \rightarrow \mathcal{C}\left(I_{\min \{2 t, N\}}\right)$ by

$$
A_{t} K(S)=\sum_{J, J^{\prime} \in V_{t}: J \cup J^{\prime}=S} K\left(J, J^{\prime}\right)
$$

- A_{t} is a generalization of the dual of the operator that maps a vector to its moment matrix
- Cone of positive kernels: $\mathcal{C}\left(V_{t} \times V_{t}\right)_{\succeq 0}$
- Cone of moment measures

$$
K_{t}(G)=\left\{\lambda \in \mathcal{M}\left(I_{\min \{2 t, N\}}\right)_{\geq 0}: A_{t}^{*} \lambda \in \mathcal{M}\left(V_{t} \times V_{t}\right)_{\succeq 0}\right\}
$$

- When $t=N$, the extreme rays of $K_{t}(G)$ are precisely the measures χ_{S} with $S \in I_{=N}$
- This is the main step in proving $E_{N}=E$

Dual hierarchy

- For lower bounds we need dual feasible solutions

Dual hierarchy

- For lower bounds we need dual feasible solutions
- In the dual hierarchy optimization is over scalars a_{i} and elements L in the dual cone $K_{t}(G)^{*}$

Dual hierarchy

- For lower bounds we need dual feasible solutions
- In the dual hierarchy optimization is over scalars a_{i} and elements L in the dual cone $K_{t}(G)^{*}$

$$
\begin{array}{r}
E_{t}^{*}=\sup \left\{\sum_{i=0}^{\min \{2 t, N\}}\binom{N}{i} a_{i}: a_{0}, \ldots, a_{\min \{2 t, N\}} \in \mathbb{R}, L \in K_{t}(G)^{*},\right. \\
\left.a_{i}-L \leq w \text { on } I_{=i} \text { for } i=0, \ldots, \min \{2 t, N\}\right\}
\end{array}
$$

Dual hierarchy

- For lower bounds we need dual feasible solutions
- In the dual hierarchy optimization is over scalars a_{i} and elements L in the dual cone $K_{t}(G)^{*}$

$$
\begin{array}{r}
E_{t}^{*}=\sup \left\{\sum_{i=0}^{\min \{2 t, N\}}\binom{N}{i} a_{i}: a_{0}, \ldots, a_{\min \{2 t, N\}} \in \mathbb{R}, L \in K_{t}(G)^{*}\right. \\
\left.a_{i}-L \leq w \text { on } I_{=i} \text { for } i=0, \ldots, \min \{2 t, N\}\right\}
\end{array}
$$

- The elements L are of the form $A_{t} K$ for $K \in \mathcal{C}\left(V_{t} \times V_{t}\right)_{\succeq 0}$

Dual hierarchy

- For lower bounds we need dual feasible solutions
- In the dual hierarchy optimization is over scalars a_{i} and elements L in the dual cone $K_{t}(G)^{*}$

$$
\begin{array}{r}
E_{t}^{*}=\sup \left\{\sum_{i=0}^{\min \{2 t, N\}}\binom{N}{i} a_{i}: a_{0}, \ldots, a_{\min \{2 t, N\}} \in \mathbb{R}, L \in K_{t}(G)^{*}\right. \\
\left.a_{i}-L \leq w \text { on } I_{=i} \text { for } i=0, \ldots, \min \{2 t, N\}\right\}
\end{array}
$$

- The elements L are of the form $A_{t} K$ for $K \in \mathcal{C}\left(V_{t} \times V_{t}\right)_{\succeq 0}$
- Strong duality holds: $E_{t}=E_{t}^{*}$

Frequency formulation

- Assume w is Γ-invariant: $w(\gamma x, \gamma y)=w(x, y)$ for all $\gamma \in \Gamma$, $x, y \in V$

Frequency formulation

- Assume w is Γ-invariant: $w(\gamma x, \gamma y)=w(x, y)$ for all $\gamma \in \Gamma$, $x, y \in V$
- Then all constraints in the program E_{t}^{*} are invariant under Γ, and we can restrict to the cone

$$
\left\{A_{t} K: K \in \mathcal{C}\left(V_{t} \times V_{t}\right) \Gamma_{\succeq 0}^{\Gamma}\right\}
$$

Frequency formulation

- Assume w is Γ-invariant: $w(\gamma x, \gamma y)=w(x, y)$ for all $\gamma \in \Gamma$, $x, y \in V$
- Then all constraints in the program E_{t}^{*} are invariant under Γ, and we can restrict to the cone

$$
\left\{A_{t} K: K \in \mathcal{C}\left(V_{t} \times V_{t}\right)_{\succeq 0}^{\Gamma}\right\}
$$

- Γ acts on V_{t} by $\gamma \emptyset=\emptyset$ and $\gamma\left\{x_{1}, \ldots, x_{t}\right\}=\left\{\gamma x_{1}, \ldots, \gamma x_{t}\right\}$

Frequency formulation

- Assume w is Γ-invariant: $w(\gamma x, \gamma y)=w(x, y)$ for all $\gamma \in \Gamma$, $x, y \in V$
- Then all constraints in the program E_{t}^{*} are invariant under Γ, and we can restrict to the cone

$$
\left\{A_{t} K: K \in \mathcal{C}\left(V_{t} \times V_{t}\right)_{\succeq 0}^{\Gamma}\right\}
$$

- Γ acts on V_{t} by $\gamma \emptyset=\emptyset$ and $\gamma\left\{x_{1}, \ldots, x_{t}\right\}=\left\{\gamma x_{1}, \ldots, \gamma x_{t}\right\}$
- Bochner's theorem: $K \in \mathcal{C}\left(V_{t} \times V_{t}\right) \Gamma_{\succeq}^{\Gamma}$ is of the form

$$
K\left(J, J^{\prime}\right)=\sum_{k=0}^{\infty}\left\langle F_{k}, Z_{k}\left(J, J^{\prime}\right)\right\rangle \quad \text { where }
$$

F_{k} : positive semidefinite matrices (the Fourier coefficients) Z_{k} : zonal matrices corresponding to the action of Γ on V_{t}

Semidefinite programming

- Restrict the series $\sum_{k=0}^{\infty}\left\langle F_{k}, Z_{k}\left(J, J^{\prime}\right)\right\rangle$ to the first d terms

Semidefinite programming

- Restrict the series $\sum_{k=0}^{\infty}\left\langle F_{k}, Z_{k}\left(J, J^{\prime}\right)\right\rangle$ to the first d terms
- Use principal submatrices $Z_{k, d}$ of Z_{k} of size $s_{k, d}$ (where $s_{k, d} \rightarrow \infty$ as $d \rightarrow \infty$)

Semidefinite programming

- Restrict the series $\sum_{k=0}^{\infty}\left\langle F_{k}, Z_{k}\left(J, J^{\prime}\right)\right\rangle$ to the first d terms
- Use principal submatrices $Z_{k, d}$ of Z_{k} of size $s_{k, d}$ (where $s_{k, d} \rightarrow \infty$ as $d \rightarrow \infty$)
- This gives a semi-infinite semidefinite program $E_{t, d}^{*}$

Semidefinite programming

- Restrict the series $\sum_{k=0}^{\infty}\left\langle F_{k}, Z_{k}\left(J, J^{\prime}\right)\right\rangle$ to the first d terms
- Use principal submatrices $Z_{k, d}$ of Z_{k} of size $s_{k, d}$ (where $s_{k, d} \rightarrow \infty$ as $d \rightarrow \infty$)
- This gives a semi-infinite semidefinite program $E_{t, d}^{*}$
- In general the Fourier series does not converge uniformly; the action of Γ on V_{t} has infinitely many orbits (for $t \geq 2$)

Semidefinite programming

- Restrict the series $\sum_{k=0}^{\infty}\left\langle F_{k}, Z_{k}\left(J, J^{\prime}\right)\right\rangle$ to the first d terms
- Use principal submatrices $Z_{k, d}$ of Z_{k} of size $s_{k, d}$ (where $s_{k, d} \rightarrow \infty$ as $d \rightarrow \infty$)
- This gives a semi-infinite semidefinite program $E_{t, d}^{*}$
- In general the Fourier series does not converge uniformly; the action of Γ on V_{t} has infinitely many orbits (for $t \geq 2$)
- By a summability method we have $E_{t, d}^{*} \rightarrow E_{t}^{*}$ as $d \rightarrow \infty$

Semidefinite programming

- The linear constraints in $E_{t, d}^{*}$ are of the form

$$
a_{i}-\sum_{k=0}^{d}\left\langle F_{k}, A_{t} Z_{k, d}\right\rangle \leq w \text { on } I_{=i} \text { for } i=0, \ldots, \min \{2 t, N\}
$$

Semidefinite programming

- The linear constraints in $E_{t, d}^{*}$ are of the form

$$
a_{i}-\sum_{k=0}^{d}\left\langle F_{k}, A_{t} Z_{k, d}\right\rangle \leq w \text { on } I_{=i} \text { for } i=0, \ldots, \min \{2 t, N\}
$$

- Variable transformation to write the above as polynomial inequalities over a semialgebraic set (depends on the application)

Semidefinite programming

- The linear constraints in $E_{t, d}^{*}$ are of the form

$$
a_{i}-\sum_{k=0}^{d}\left\langle F_{k}, A_{t} Z_{k, d}\right\rangle \leq w \text { on } I_{=i} \text { for } i=0, \ldots, \min \{2 t, N\}
$$

- Variable transformation to write the above as polynomial inequalities over a semialgebraic set (depends on the application)
- Using sums of squares characterizations $E_{t, d}^{*}$ can be approximated by a sequence of finite semidefinite programs

Example: $V=S^{1}$ with $O(2)$-invariant pair potential w

- Zonal matrices as polynomial matrices in the inner products:

$$
Z_{k}\left(\left\{x_{1}, \ldots, x_{t}\right\},\left\{y_{1}, \ldots, y_{t}\right\}\right)_{i, j}=\left(\prod_{r, s=1}^{t}\left(x_{r} \cdot x_{s}\right)^{i}\left(y_{r} \cdot y_{s}\right)^{j}\right) \sum_{r, s=1}^{t} T_{k}\left(x_{r} \cdot y_{s}\right)
$$

Example: $V=S^{1}$ with $O(2)$-invariant pair potential w

- Zonal matrices as polynomial matrices in the inner products:

$$
Z_{k}\left(\left\{x_{1}, \ldots, x_{t}\right\},\left\{y_{1}, \ldots, y_{t}\right\}\right)_{i, j}=\left(\prod_{r, s=1}^{t}\left(x_{r} \cdot x_{s}\right)^{i}\left(y_{r} \cdot y_{s}\right)^{j}\right) \sum_{r, s=1}^{t} T_{k}\left(x_{r} \cdot y_{s}\right)
$$

- $A_{t} Z_{k, d}$ is an $O(2)$-invariant matrix valued function on sets in $I_{\min \{2 t, N\}}$

Example: $V=S^{1}$ with $O(2)$-invariant pair potential w

- Zonal matrices as polynomial matrices in the inner products:

$$
Z_{k}\left(\left\{x_{1}, \ldots, x_{t}\right\},\left\{y_{1}, \ldots, y_{t}\right\}\right)_{i, j}=\left(\prod_{r, s=1}^{t}\left(x_{r} \cdot x_{s}\right)^{i}\left(y_{r} \cdot y_{s}\right)^{j}\right) \sum_{r, s=1}^{t} T_{k}\left(x_{r} \cdot y_{s}\right)
$$

- $A_{t} Z_{k, d}$ is an $O(2)$-invariant matrix valued function on sets in $I_{\min \{2 t, N\}}$
- Describe an element $\left\{x_{1}, \ldots, x_{\min \{2 t, N\}}\right\} \in\left(I_{\min \{2 t, N\}}\right) / O(2)$ by the angles $\theta_{i}=\cos \left(x_{i} \cdot x_{i+1}\right)$ for $i=1, \ldots, \min \{2 t, N\}-1$

Example: $V=S^{1}$ with $O(2)$-invariant pair potential w

- Zonal matrices as polynomial matrices in the inner products:

$$
Z_{k}\left(\left\{x_{1}, \ldots, x_{t}\right\},\left\{y_{1}, \ldots, y_{t}\right\}\right)_{i, j}=\left(\prod_{r, s=1}^{t}\left(x_{r} \cdot x_{s}\right)^{i}\left(y_{r} \cdot y_{s}\right)^{j}\right) \sum_{r, s=1}^{t} T_{k}\left(x_{r} \cdot y_{s}\right)
$$

- $A_{t} Z_{k, d}$ is an $O(2)$-invariant matrix valued function on sets in $I_{\min \{2 t, N\}}$
- Describe an element $\left\{x_{1}, \ldots, x_{\min \{2 t, N\}}\right\} \in\left(I_{\min \{2 t, N\}}\right) / O(2)$ by the angles $\theta_{i}=\cos \left(x_{i} \cdot x_{i+1}\right)$ for $i=1, \ldots, \min \{2 t, N\}-1$
- Each inner product is a trigonometric polynomial in these angles

Example: $V=S^{1}$ with $O(2)$-invariant pair potential w

Example: $V=S^{1}$ with $O(2)$-invariant pair potential w

- The linear inequalities should hold over the set

$$
\left\{\left(\theta_{1}, \ldots, \theta_{\min \{2 t, N\}}\right): \cos \left(\sum_{i \in E} \theta_{i}\right) \geq C_{\delta} \text { for } E \subseteq\{1, \ldots, \min \{2 t, N\}\}\right\}
$$

Example: $V=S^{1}$ with $O(2)$-invariant pair potential w

- The linear inequalities should hold over the set

$$
\left\{\left(\theta_{1}, \ldots, \theta_{\min \{2 t, N\}}\right): \cos \left(\sum_{i \in E} \theta_{i}\right) \geq C_{\delta} \text { for } E \subseteq\{1, \ldots, \min \{2 t, N\}\}\right\}
$$

- Use trigonometric SOS characterizations [Dumitrescu 2006]

Example: $V=S^{1}$ with $O(2)$-invariant pair potential w

- The linear inequalities should hold over the set

$$
\left\{\left(\theta_{1}, \ldots, \theta_{\min \{2 t, N\}}\right): \cos \left(\sum_{i \in E} \theta_{i}\right) \geq C_{\delta} \text { for } E \subseteq\{1, \ldots, \min \{2 t, N\}\}\right\}
$$

- Use trigonometric SOS characterizations [Dumitrescu 2006]
- The 4-point bound E_{2}^{*} requires trivariate SOS characterizations

Example: $V=S^{1}$ with $O(2)$-invariant pair potential w

- The linear inequalities should hold over the set

$$
\left\{\left(\theta_{1}, \ldots, \theta_{\min \{2 t, N\}}\right): \cos \left(\sum_{i \in E} \theta_{i}\right) \geq C_{\delta} \text { for } E \subseteq\{1, \ldots, \min \{2 t, N\}\}\right\}
$$

- Use trigonometric SOS characterizations [Dumitrescu 2006]
- The 4-point bound E_{2}^{*} requires trivariate SOS characterizations
- For Coulomb (or other completely monotonic potentials) 2-point bounds are always sharp on the circle Cohn-Kumar 2006

Example: $V=S^{1}$ with $O(2)$-invariant pair potential w

- The linear inequalities should hold over the set

$$
\left\{\left(\theta_{1}, \ldots, \theta_{\min \{2 t, N\}}\right): \cos \left(\sum_{i \in E} \theta_{i}\right) \geq C_{\delta} \text { for } E \subseteq\{1, \ldots, \min \{2 t, N\}\}\right\}
$$

- Use trigonometric SOS characterizations [Dumitrescu 2006]
- The 4-point bound E_{2}^{*} requires trivariate SOS characterizations
- For Coulomb (or other completely monotonic potentials) 2-point bounds are always sharp on the circle Cohn-Kumar 2006
- Lennard-Jones potential: Based on a sampling implementation it appears that for e.g. $N=3$ we have

$$
E_{1}<E_{2}=E
$$

Thank you!

