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Energy minimization

Given
- a set V (container)
- a function w: V x V — R>¢ U {oo} (pair potential)
- an integer N (number of particles)

What is the minimal potential energy of a particle configuration?

E= in‘f/ Z w(z,y)
se(y) {zye(d)

Example

For the Thomson problem we take V = S2 and w(z,y) = ||z —y||~*
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Lower bounds

» Configurations provide upper bounds on the optimal energy E

> Usually hard to prove optimality of a configuration

Approach to finding lower bounds
1. Relax the problem to a conic optimization problem

2. Find good feasible solutions to the dual problem
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Related work

» The symmetry group I' of V acts on V¥ by
Y(x1, .. k) = (Yo, - YTR)

> The k-point correlation function of a configuration S C V
measures the number of k-subsets of S in each orbit in V¥

» These functions satisfy certain linear/semidefinite constraints

» Relaxation: instead of optimizing over N-particle subsets,
optimize over functions satisfying these constraints

» 2-point bounds using contraints from positive I'-invariant
kernels on V' [Yudin 1992]

» Universal optimality of configurations using 2-point bounds
[Cohn-Kumar 2006]

» 3-point using constraints from kernels which are invariant
under the stabilizer subgroup of a point [Schrijver 2005,
Bachoc-Vallentin 2009, Cohn-Woo 2012]

» k-point bounds using the stabilizer subgroup of k — 2 points
[Musin 2007]
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This talk

» Hierarchy for energy minimization based on a generalization
by [L.-Vallentin 2013] of the Lasserre hierarchy for the
independent set problem to infinite graphs

> Instead of correlation functions we have ‘“correlation
measures’, and instead of positive kernels invariant under a
stabilizer subgroup we have positive kernels on subset spaces

» Convergent hierarchy of finite semidefinite programs

» Application to low dimensional spaces
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Setup

Restrict to particle configurations whose points are not “too close”:
> Assume V is a compact Hausdorff space

» Assume w: V x V' \ Ay — R is a continuous function with
w(x,y) — oo as (x,y) converges to the diagonal

» Let 0 > F and define the graph G = (V, E) where
x~yifw(x,y) >9d

» Consider only independent sets in G of cardinality NV

Subset spaces:
» Let V; be the set of subsets of V' of cardinality at most ¢ with
topology induced by q: V¢ — Vi, (vi,...,v1) = {v1,..., v}
» Denote by I; C V; the compact subset of independent sets

» View w as an element in C(Iy)
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» If S is a N-particle configuration, then

Xs = Z Or

RCS:|R|<2t

is a feasible measure (this proves E; < E)
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Cone of moment measures

> Define the operator A;: C(Vi X Vi)sym — C(Imin2t,n}) by

AK(S) = > KT
J,J' eV JuJ'=S

» A; is a generalization of the dual of the operator that maps a
vector to its moment matrix
» Cone of positive kernels: C(V; x V;)=o

» Cone of moment measures
Ki(G) = {\ € M(Iningor,ny)>0 : AfA € M(Vy X Vi) =0}

» When t = N, the extreme rays of K;(G) are precisely the
measures g with S € I_y

» This is the main step in proving Exy = E
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Dual hierarchy

» For lower bounds we need dual feasible solutions

> In the dual hierarchy optimization is over scalars a; and
elements L in the dual cone K:(G)*

min{2t,N}

* N *
Ei = Sup{ Z <z >ai D@, .., aminf2e,Ny € R, L € Ky(G)7,
i=0

ai—L<w on I; for i:O,...,min{2t,N}}

» The elements L are of the form A;K for K € C(V; x V)0
» Strong duality holds: E; = Ef
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Frequency formulation

v

Assume w is T-invariant: w(yz,vy) = w(z,y) for all v € T,
z,yeV

Then all constraints in the program E} are invariant under I’
and we can restrict to the cone

v

{AK 1 K eC(V, x V)Lo}

» Tactson V; by 0 = 0 and v{x1,...,2¢} = {yz1,...,y2¢}
» Bochner's theorem: K € C(V; x Vt)go is of the form
K(J,J)) = (F, Z(J,J')) where
k=0

F}.: positive semidefinite matrices (the Fourier coefficients)
Zj.: zonal matrices corresponding to the action of " on V;
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Semidefinite programming

v

Restrict the series Y22 ((Fi, Zi(J, J')) to the first d terms

» Use principal submatrices Z;, 4 of Zj, of size s, 4
(where s, g — 00 as d — c0)

v

This gives a semi-infinite semidefinite program E} ;

v

In general the Fourier series does not converge uniformly; the
action of I' on V} has infinitely many orbits (for ¢ > 2)

» By a summability method we have E;; — E} as d — oo



Semidefinite programming

» The linear constraints in Ej ; are of the form

d
a; — Z<Fk"AtZkvd> <w on I-; for i=0,...,min{2¢t, N}
k=0



Semidefinite programming

» The linear constraints in Ej ; are of the form

d
a; — Z<sz>AtZk,d> <w on I-; for i=0,...,min{2¢t, N}
k=0

» Variable transformation to write the above as polynomial
inequalities over a semialgebraic set (depends on the
application)



Semidefinite programming

» The linear constraints in E*d are of the form

d
a; — Z<sz>AtZk,d> <w on I-; for i=0,...,min{2¢t, N}
k=0

» Variable transformation to write the above as polynomial
inequalities over a semialgebraic set (depends on the
application)

» Using sums of squares characterizations E*d can be
approximated by a sequence of finite semidefinite programs
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Example: V = S* with O(2)-invariant pair potential w

» Zonal matrices as polynomial matrices in the inner products:

Ze({@r, s {yn - uid)ig = (H (@ ~xs)i(yr~ys)j> > Ti(arys)

r,s=1 r,s=1

> A;Zy 4 is an O(2)-invariant matrix valued function on sets in
Imin{2t,N}

> Describe an element {x1,. .., Zming2r, N3} € (Iming2t,n3)/O(2) by
the angles 0; = cos(z; - x;41) fori=1,..., min{2¢t, N} — 1

» Each inner product is a trigonometric polynomial in these angles
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Example: V = S* with O(2)-invariant pair potential w

>

The linear inequalities should hold over the set

{(91,...,9min{2t71\;}) : Cos <Z€Z> > Cs for ECA{1,... 7min{Qt,J\f}}}

>

>

>

iCE
Use trigonometric SOS characterizations [Dumitrescu 2006]
The 4-point bound Ej requires trivariate SOS characterizations

For Coulomb (or other completely monotonic potentials) 2-point
bounds are always sharp on the circle Cohn-Kumar 2006

Lennard-Jones potential: Based on a sampling implementation it
appears that for e.g. N = 3 we have

Ey<BEy,=FE



Thank you!



