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Symmetric matrix factorization ranks

PSD matrices
A ∈ Rn×n is PSD if there are a1, . . . , an ∈ Rd with Aij = aTi aj
rank(A) = smallest possible d ; Easy to compute; d ≤ n

CP matrices
A ∈ Rn×n is CP if there are a1, . . . , an ∈ Rd

+ with Aij = aTi aj
cp-rank(A) = smallest possible d ; Hard to compute;

If A is CP, then d ≤
(n+1

2

)
+ 1

CPSD matrices
A ∈ Rn×n is CPSD if there are are Hermitian PSD matrices

X1, . . . ,Xn ∈ Cd×d with Aij = Tr(XiXj)
cpsd-rank(A) = smallest possible d ; Hard to compute;

There is no upper bound on d depending only on n [Slofstra, 2017]

CP matrices ⊆ CPSD matrices ⊆ PSD matrices

Goal: Find lower bounds for matrix factorization ranks
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Connection to quantum information theory

I CPSD cone was studied by Piovesan and Laurent in relation
to quantum graph parameters

I Connections to entanglement dimensions of bipartite quantum
correlations p(a, b|s, t) [Sikora–Varvitsiotis 2015],
[Mančinska–Roberson 2014]

I Corresponding matrix (Ap)(s,a),(t,b) = p(a, b|s, t)

I If p is a “synchronous quantum correlation”, then Ap is CPSD

I The smallest dimension to realize it is cpsd-rank(Ap)

I Combine proofs from above refs and
[Paulsen–Severini–Stahlke–Todorov–Winter 2016]
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Polynomial optimization

Commutative polynomial optimization (Lasserre, Parrilo, ...):

I Let S ∪ {f } ⊆ R[x1, . . . , xn]

I inf
{
f (x) : x ∈ Rn, g(x) ≥ 0 for g ∈ S

}
I Hierarchy of semidefinite programming lower bounds based on

moments (primal) and sums of squares (dual)

I Asymptotic convergence under technical condition

Eigenvalue optimization (Aćın, Navascues, Pironio, ...) and tracial
optimization (Burgdorf, Cafuta, Klep, Povh, Schweighofer, ...):

I Let S ∪ {f } ⊆ R〈x1, . . . , xn〉
I We can evaluate a noncommutative polynomial at a tuple

X = (X1, . . . ,Xn) of matrices

I inf{tr(f (X)) : d ∈ N, X1, . . . ,Xn ∈ Hd , g(X) � 0 for g ∈ S}
Commutative polynomial optimization is used by Nie for testing
membership in the CP cone and computing tensor nuclear norms
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X = (X1, . . . ,Xn) of matrices

I inf{tr(f (X)) : d ∈ N, X1, . . . ,Xn ∈ Hd , g(X) � 0 for g ∈ S}
Commutative polynomial optimization is used by Nie for testing
membership in the CP cone and computing tensor nuclear norms



Lower bounding the cpsd-rank using tracial optimization

Let A ∈ Rn×n be a CPSD matrix and set d = cpsd-rank(A)

X1, . . . ,Xn ∈ Cd×d Hermitian PSD matrices with Aij = Tr(XiXj)

R〈x1, . . . , xn〉: ∗-algebra of noncommutative polynomials in n vars

Define a linear form LX ∈ R〈x1, . . . , xn〉∗ by

LX (p) = Re(Tr(p(X1, . . . ,Xn)))

We have LX (1) = Re(Tr(Id)) = d = cpsd-rank(A)

We obtain a relaxation by minimizing L(1) over all linear forms L
that satisfy some computationally tractable properties of LX

Symmetric and tracial: LX (p∗) = LX (p) and LX (pq) = LX (qp)

Positive: LX (p∗p) ≥ 0

Linear conditions: LX (xixj) = Aij

Localizing conditions: LX (p∗(
√
Aiixi − x2i )p) ≥ 0
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Truncate to obtain a semidefinite programming hierarchy

R〈x1, . . . , xn〉2t noncommututative polynomials with deg ≤ 2t

Let S ⊆ R〈x〉 = R〈x1, . . . , xn〉

Quadratic module: M(S) = cone{p∗gp : g ∈ S ∪ {1}, p ∈ R〈x〉}

Truncated quadratic module:
M2t(S) = cone{p∗gp : g ∈ S ∪ {1}, p ∈ R〈x〉, deg(p∗gp) ≤ 2t}

ξcpsdt (A) = min
{
L(1) : L ∈ R〈x1, . . . , xn〉∗2t tracial and symmetric,

(L(xixj)) = A,

L ≥ 0 on M2t

({√
Aiixi − x2i : i ∈ [n]

})}

ξcpsd1 (A) ≤ . . . ≤ ξcpsd∞ (A) ≤ ξcpsd∗ (A) ≤ cpsd-rank(A)

ξcpsd∗ (A) is ξcpsd∞ (A) with the extra constraint rank(M(L)) <∞
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ξcpsd∞ (A) and ξcpsd∗ (A)

I We have ξcpsdt (A)→ ξcpsd∞ (A), and if ξcpsdt (A) admits a flat

optimal solution, then ξcpsdt (A) = ξcpsd∗ (A)

I ξcpsd∗ (A) is the minimum of L(1) over all conic combinations L
of trace evaluations at elements of the matrix positivity
domain of {

√
Aiixi − x2i : i ∈ [n]} such that A = (L(xixj))

ξcpsd∗ (A) = inf
{ M∑

m=1

dm ·max
i∈[n]

‖Xm
i ‖2

Aii
: M ∈ N, d1, . . . , dM ∈ N,

Xm
i ∈ H

dm
+ for i ∈ [n],m ∈ [M],

A = Gram
( M⊕

m=1

Xm
1 , . . . ,

M⊕
m=1

Xm
n

)}
.
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Lower bound [Prakash–Sikora–Varvitsiotis–Wei 2016]:(∑n
i=1

√
Aii

)2∑n
i ,j=1 Aij

≤ cpsd-rank(A)

We have

ξcpsd1 (A) ≥
(∑n

i=1

√
Aii

)2∑n
i ,j=1 Aij

Sharp for the matrix A ∈ R5×5 given by Aij = cos
(
4π/5(i − j)

)2
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Extra constraints to go beyond ξcpsd∗ (A)

Let X1, . . . ,Xn be Hermitian PSD matrices s.t. Aij = Tr(XiXj)

For each v ∈ Rn, the following matrix is psd:

vTAvI −
( n∑

i=1

viXi

)2
We can use this to add additional constraints to ξcpsdt (A) by
extending the quadratic module

For a subset V ⊆ Sn−1 we have the stronger bound ξcpsdt,V (A)

Example:

A =


1 1/2 0 0 1/2

1/2 1 1/2 0 0
0 1/2 1 1/2 0
0 0 1/2 1 1/2

1/2 0 0 1/2 1


ξcpsd1 (A) = ξcpsd∗ (A) =

5

2
, V =

{ei + ej√
2

: i , j ∈ [5]
}
, ξcpsd2,V (A) =

10

3
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The completely positive rank (cp-rank)

Fawzi and Parrilo (2014) give this SDP to lower bound cp-rank(A):

τ soscp (A) = inf
{
α : α ∈ R, X ∈ Rn2×n2 ,(

α vec(A)T

vec(A) X

)
� 0,

X(i,j),(i,j) ≤ A2
ij for 1 ≤ i , j ≤ n,

X(i,j),(k,l) = X(i,l),(k,j) for 1 ≤ i < k ≤ n, 1 ≤ j < l ≤ n,

X � A⊗ A
}
.

They derive τ soscp (A) as an SDP relaxation of

τcp(A) = min
{
α : α > 0,

1

α
A ∈ conv

{
R ∈ Sn : 0 ≤ R ≤ A, R � A, rank(R) ≤ 1

}}
τcp(A) is at least the rank of A and the fractional edge-clique

cover number of the support graph of A
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Adapting our hierarchy for the cp-rank

Suppose Aij = vTi vj for v1, . . . , vn ∈ Rd
+

Then, Aij = Tr(XiXj) for diagonal PSD matrices Xi = Diag(vi )

Use ideas for cpsd-rank to derive a hierarchy for cp-rank

M2t(S) = cone{gp2 : g ∈ S ∪ {1}, p ∈ R[x], deg(gp2) ≤ 2t}

S = {
√
Aiixi − x2i } ∪ {Aij − xixj : 1 ≤ i < j ≤ n}

ξcpt (A) = min
{
L(1) : L ∈ R[x1, . . . , xn]∗2t ,

(L(xixj)) = A,

L ≥ 0 on M2t(S)
}

ξcp1 (A) ≤ . . . ≤ ξcp∞(A) = ξcp∗ (A) ≤ cp-rank(A)
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Extra constraints for the cp-rank

As in the cpsd-rank case we can add extra constraints for a set
V ⊆ Sn−1 giving the stronger bound ξcpt,V (A)

We have ξcp∗,Sn−1(A) = τcp(A)

Let V1 ⊆ V2 ⊆ . . . ⊆ Sn−1 be finite subsets such that
⋃

k Vk is
dense in Sn−1

We have ξcp∗,Vk
(A)→ ξcp∗,Sn−1(A) as k →∞

This gives a (doubly indexed) sequence of finite semidefinite
programs converging asymptotically to τcp(A)



Extra constraints for the cp-rank

As in the cpsd-rank case we can add extra constraints for a set
V ⊆ Sn−1 giving the stronger bound ξcpt,V (A)

We have ξcp∗,Sn−1(A) = τcp(A)

Let V1 ⊆ V2 ⊆ . . . ⊆ Sn−1 be finite subsets such that
⋃

k Vk is
dense in Sn−1

We have ξcp∗,Vk
(A)→ ξcp∗,Sn−1(A) as k →∞

This gives a (doubly indexed) sequence of finite semidefinite
programs converging asymptotically to τcp(A)



Extra constraints for the cp-rank

As in the cpsd-rank case we can add extra constraints for a set
V ⊆ Sn−1 giving the stronger bound ξcpt,V (A)

We have ξcp∗,Sn−1(A) = τcp(A)

Let V1 ⊆ V2 ⊆ . . . ⊆ Sn−1 be finite subsets such that
⋃

k Vk is
dense in Sn−1

We have ξcp∗,Vk
(A)→ ξcp∗,Sn−1(A) as k →∞

This gives a (doubly indexed) sequence of finite semidefinite
programs converging asymptotically to τcp(A)



Extra constraints for the cp-rank

As in the cpsd-rank case we can add extra constraints for a set
V ⊆ Sn−1 giving the stronger bound ξcpt,V (A)

We have ξcp∗,Sn−1(A) = τcp(A)

Let V1 ⊆ V2 ⊆ . . . ⊆ Sn−1 be finite subsets such that
⋃

k Vk is
dense in Sn−1

We have ξcp∗,Vk
(A)→ ξcp∗,Sn−1(A) as k →∞

This gives a (doubly indexed) sequence of finite semidefinite
programs converging asymptotically to τcp(A)



More efficient tensor constraints

Let ξcpt,+(A) be the following strengthening of ξcpt (A):

I Add entrywise nonnegativity constraints

I Add the tensor constraint X � A⊗ A from τ soscp (A):

(L(ww ′))w ,w ′∈〈x〉=l
� A⊗l for 2 ≤ l ≤ t

I Implement this constraint more efficiently by exploiting
symmetry:

(L(mm′))m,m′∈[x]=l
� QlA

⊗lQT
l for 2 ≤ l ≤ t

Then ξcp2,+(A) is a more efficient strengthening of τ soscp (A)
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The nonnegative rank

The nonnegative rank rank+(A) is the smallest d for which there
are vectors u1, . . . , un, v1, . . . , vn ∈ Rd

+ such that Aij = uTi vj

Relevant for the extension complexity of linear programs

Fawzi and Parrilo (2014) define relaxations
τ sos+ (A) ≤ τ+(A) ≤ rank+(A)

For A ∈ Rm×n
+ there are positive semidefinite diagonal matrices

X1, . . . ,Xm+n with Aij = Tr(XiXm+j) and λmax(Xi )
2 ≤ maxi ,j Aij

We can use this to adapt the above techniques to give a hiearchy

ξ+1 (A) ≤ . . . ≤ ξ+∞(A) = ξ+∗ (A) = τ+(A) ≤ rank+(A).

Going back to tracial optimization we can adapt this to the
psd-rank – still work in progress
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Nested rectangle problem [Fawzi–Parrilo, 2016]:
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(
1− a 1 + a 1 + a 1− a
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1− b 1− b 1 + b 1 + b
1 + b 1 + b 1− b 1− b

) ≤ 3

In fact, such a triangle exists if and only if (1 + a)(1 + b) ≤ 2
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Nested rectangle problem [Fawzi–Parrilo, 2016]:
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Thank you!


