Using noncommutative polynomial optimization for matrix factorization ranks

Sander Gribling (CWI/QuSoft) <u>David de Laat</u> (CWI/QuSoft) Monique Laurent (CWI/Tilburg/QuSoft)

SIAM Conference on Optimization, 25 May 2017, Vancouver

PSD matrices

 $A \in \mathbb{R}^{n \times n}$ is PSD if there are $a_1, \ldots, a_n \in \mathbb{R}^d$ with $A_{ij} = a_i^{\mathsf{T}} a_j$

PSD matrices

 $A \in \mathbb{R}^{n \times n}$ is PSD if there are $a_1, \ldots, a_n \in \mathbb{R}^d$ with $A_{ij} = a_i^T a_j$ rank(A) = smallest possible d;

PSD matrices

 $A \in \mathbb{R}^{n \times n}$ is PSD if there are $a_1, \ldots, a_n \in \mathbb{R}^d$ with $A_{ij} = a_i^T a_j$ rank(A) = smallest possible d; Easy to compute;

PSD matrices

 $A \in \mathbb{R}^{n \times n}$ is PSD if there are $a_1, \ldots, a_n \in \mathbb{R}^d$ with $A_{ij} = a_i^T a_j$ rank(A) = smallest possible d; Easy to compute; $d \le n$

PSD matrices

 $A \in \mathbb{R}^{n \times n}$ is PSD if there are $a_1, \ldots, a_n \in \mathbb{R}^d$ with $A_{ij} = a_i^T a_j$ rank(A) = smallest possible d; Easy to compute; $d \le n$

CP matrices

 $A \in \mathbb{R}^{n \times n}$ is CP if there are $a_1, \ldots, a_n \in \mathbb{R}^d_+$ with $A_{ij} = a_i^\mathsf{T} a_j$

PSD matrices

 $A \in \mathbb{R}^{n \times n}$ is PSD if there are $a_1, \ldots, a_n \in \mathbb{R}^d$ with $A_{ij} = a_i^T a_j$ rank(A) = smallest possible d; Easy to compute; $d \le n$

CP matrices

 $A \in \mathbb{R}^{n \times n}$ is CP if there are $a_1, \ldots, a_n \in \mathbb{R}^d_+$ with $A_{ij} = a_i^T a_j$ cp-rank(A) = smallest possible d;

PSD matrices

 $A \in \mathbb{R}^{n \times n}$ is PSD if there are $a_1, \ldots, a_n \in \mathbb{R}^d$ with $A_{ij} = a_i^T a_j$ rank(A) = smallest possible d; Easy to compute; $d \le n$

CP matrices

 $A \in \mathbb{R}^{n \times n}$ is CP if there are $a_1, \ldots, a_n \in \mathbb{R}^d_+$ with $A_{ij} = a_i^T a_j$ cp-rank(A) = smallest possible d; Hard to compute;

PSD matrices

 $A \in \mathbb{R}^{n \times n}$ is PSD if there are $a_1, \ldots, a_n \in \mathbb{R}^d$ with $A_{ij} = a_i^T a_j$ rank(A) = smallest possible d; Easy to compute; $d \le n$

CP matrices

 $A \in \mathbb{R}^{n \times n}$ is CP if there are $a_1, \ldots, a_n \in \mathbb{R}^d_+$ with $A_{ij} = a_i^T a_j$ cp-rank(A) = smallest possible d; Hard to compute; If A is CP, then $d \le {\binom{n+1}{2}} + 1$

PSD matrices

 $A \in \mathbb{R}^{n \times n}$ is PSD if there are $a_1, \ldots, a_n \in \mathbb{R}^d$ with $A_{ij} = a_i^T a_j$ rank(A) = smallest possible d; Easy to compute; $d \le n$

CP matrices

 $A \in \mathbb{R}^{n \times n}$ is CP if there are $a_1, \ldots, a_n \in \mathbb{R}^d_+$ with $A_{ij} = a_i^T a_j$ cp-rank(A) = smallest possible d; Hard to compute; If A is CP, then $d \le {\binom{n+1}{2}} + 1$

CPSD matrices

 $A \in \mathbb{R}^{n imes n}$ is CPSD if there are are Hermitian PSD matrices $X_1, \dots, X_n \in \mathbb{C}^{d imes d}$ with $A_{ij} = \operatorname{Tr}(X_i X_j)$

PSD matrices

 $A \in \mathbb{R}^{n \times n}$ is PSD if there are $a_1, \ldots, a_n \in \mathbb{R}^d$ with $A_{ij} = a_i^T a_j$ rank(A) = smallest possible d; Easy to compute; $d \le n$

CP matrices

 $A \in \mathbb{R}^{n \times n}$ is CP if there are $a_1, \ldots, a_n \in \mathbb{R}^d_+$ with $A_{ij} = a_i^T a_j$ cp-rank(A) = smallest possible d; Hard to compute; If A is CP, then $d \le {\binom{n+1}{2}} + 1$

CPSD matrices

 $A \in \mathbb{R}^{n \times n}$ is CPSD if there are are Hermitian PSD matrices $X_1, \dots, X_n \in \mathbb{C}^{d \times d}$ with $A_{ij} = \operatorname{Tr}(X_i X_j)$ $\operatorname{cpsd-rank}(A) = \operatorname{smallest}$ possible d;

PSD matrices

 $A \in \mathbb{R}^{n \times n}$ is PSD if there are $a_1, \ldots, a_n \in \mathbb{R}^d$ with $A_{ij} = a_i^T a_j$ rank(A) = smallest possible d; Easy to compute; $d \le n$

CP matrices

 $A \in \mathbb{R}^{n \times n}$ is CP if there are $a_1, \ldots, a_n \in \mathbb{R}^d_+$ with $A_{ij} = a_i^T a_j$ cp-rank(A) = smallest possible d; Hard to compute; If A is CP, then $d \le {\binom{n+1}{2}} + 1$

CPSD matrices

 $A \in \mathbb{R}^{n \times n}$ is CPSD if there are are Hermitian PSD matrices $X_1, \ldots, X_n \in \mathbb{C}^{d \times d}$ with $A_{ij} = \operatorname{Tr}(X_i X_j)$ cpsd-rank(A) = smallest possible d; Hard to compute;

PSD matrices

 $A \in \mathbb{R}^{n \times n}$ is PSD if there are $a_1, \ldots, a_n \in \mathbb{R}^d$ with $A_{ij} = a_i^T a_j$ rank(A) = smallest possible d; Easy to compute; $d \le n$

CP matrices

 $A \in \mathbb{R}^{n \times n}$ is CP if there are $a_1, \ldots, a_n \in \mathbb{R}^d_+$ with $A_{ij} = a_i^T a_j$ cp-rank(A) = smallest possible d; Hard to compute; If A is CP, then $d \leq \binom{n+1}{2} + 1$

CPSD matrices

 $A \in \mathbb{R}^{n \times n}$ is CPSD if there are are Hermitian PSD matrices $X_1, \ldots, X_n \in \mathbb{C}^{d \times d}$ with $A_{ij} = \operatorname{Tr}(X_i X_j)$ cpsd-rank(A) = smallest possible d; Hard to compute;

There is no upper bound on d depending only on n [Slofstra, 2017]

PSD matrices

 $A \in \mathbb{R}^{n \times n}$ is PSD if there are $a_1, \ldots, a_n \in \mathbb{R}^d$ with $A_{ij} = a_i^T a_j$ rank(A) = smallest possible d; Easy to compute; $d \le n$

CP matrices

 $A \in \mathbb{R}^{n \times n}$ is CP if there are $a_1, \ldots, a_n \in \mathbb{R}^d_+$ with $A_{ij} = a_i^T a_j$ cp-rank(A) = smallest possible d; Hard to compute; If A is CP, then $d \leq \binom{n+1}{2} + 1$

CPSD matrices

 $A \in \mathbb{R}^{n \times n}$ is CPSD if there are are Hermitian PSD matrices $X_1, \ldots, X_n \in \mathbb{C}^{d \times d}$ with $A_{ij} = \operatorname{Tr}(X_i X_j)$ cpsd-rank(A) = smallest possible d; Hard to compute;

There is no upper bound on d depending only on n [Slofstra, 2017]

PSD matrices

 $A \in \mathbb{R}^{n \times n}$ is PSD if there are $a_1, \ldots, a_n \in \mathbb{R}^d$ with $A_{ij} = a_i^T a_j$ rank(A) = smallest possible d; Easy to compute; $d \le n$

CP matrices

 $A \in \mathbb{R}^{n \times n}$ is CP if there are $a_1, \ldots, a_n \in \mathbb{R}^d_+$ with $A_{ij} = a_i^T a_j$ cp-rank(A) = smallest possible d; Hard to compute; If A is CP, then $d \leq \binom{n+1}{2} + 1$

CPSD matrices

 $A \in \mathbb{R}^{n \times n}$ is CPSD if there are are Hermitian PSD matrices $X_1, \ldots, X_n \in \mathbb{C}^{d \times d}$ with $A_{ij} = \operatorname{Tr}(X_i X_j)$ $\operatorname{cpsd-rank}(A) = \operatorname{smallest}$ possible d; Hard to compute;

There is no upper bound on d depending only on n [Slofstra, 2017]

$\textbf{CP matrices} \subseteq \textbf{CPSD matrices} \subseteq \textbf{PSD matrices}$

PSD matrices

 $A \in \mathbb{R}^{n \times n}$ is PSD if there are $a_1, \ldots, a_n \in \mathbb{R}^d$ with $A_{ij} = a_i^T a_j$ rank(A) = smallest possible d; Easy to compute; $d \le n$

CP matrices

 $A \in \mathbb{R}^{n \times n}$ is CP if there are $a_1, \ldots, a_n \in \mathbb{R}^d_+$ with $A_{ij} = a_i^\mathsf{T} a_j$ cp-rank(A) = smallest possible d; Hard to compute; If A is CP, then $d \leq \binom{n+1}{2} + 1$

CPSD matrices

 $A \in \mathbb{R}^{n \times n}$ is CPSD if there are are Hermitian PSD matrices $X_1, \ldots, X_n \in \mathbb{C}^{d \times d}$ with $A_{ij} = \operatorname{Tr}(X_i X_j)$ cpsd-rank(A) = smallest possible d; Hard to compute;

There is no upper bound on d depending only on n [Slofstra, 2017]

CP matrices \subseteq CPSD matrices \subseteq PSD matrices

Goal: Find lower bounds for matrix factorization ranks

 CPSD cone was studied by Piovesan and Laurent in relation to quantum graph parameters

- CPSD cone was studied by Piovesan and Laurent in relation to quantum graph parameters
- Connections to entanglement dimensions of bipartite quantum correlations p(a, b|s, t) [Sikora–Varvitsiotis 2015], [Mančinska–Roberson 2014]

- CPSD cone was studied by Piovesan and Laurent in relation to quantum graph parameters
- Connections to entanglement dimensions of bipartite quantum correlations p(a, b|s, t) [Sikora–Varvitsiotis 2015], [Mančinska–Roberson 2014]
- Corresponding matrix $(A_p)_{(s,a),(t,b)} = p(a,b|s,t)$

- CPSD cone was studied by Piovesan and Laurent in relation to quantum graph parameters
- Connections to entanglement dimensions of bipartite quantum correlations p(a, b|s, t) [Sikora–Varvitsiotis 2015], [Mančinska–Roberson 2014]
- Corresponding matrix $(A_p)_{(s,a),(t,b)} = p(a,b|s,t)$
- If p is a "synchronous quantum correlation", then A_p is CPSD

- CPSD cone was studied by Piovesan and Laurent in relation to quantum graph parameters
- Connections to entanglement dimensions of bipartite quantum correlations p(a, b|s, t) [Sikora–Varvitsiotis 2015], [Mančinska–Roberson 2014]
- Corresponding matrix $(A_p)_{(s,a),(t,b)} = p(a,b|s,t)$
- If p is a "synchronous quantum correlation", then A_p is CPSD
- The smallest dimension to realize it is $cpsd-rank(A_p)$

- CPSD cone was studied by Piovesan and Laurent in relation to quantum graph parameters
- Connections to entanglement dimensions of bipartite quantum correlations p(a, b|s, t) [Sikora–Varvitsiotis 2015], [Mančinska–Roberson 2014]
- Corresponding matrix $(A_p)_{(s,a),(t,b)} = p(a,b|s,t)$
- If p is a "synchronous quantum correlation", then A_p is CPSD
- The smallest dimension to realize it is $\operatorname{cpsd-rank}(A_p)$
- Combine proofs from above refs and [Paulsen-Severini-Stahlke-Todorov-Winter 2016]

 $Commutative \ polynomial \ optimization \ (Lasserre, \ Parrilo, \ \ldots):$

• Let $S \cup \{f\} \subseteq \mathbb{R}[x_1, \ldots, x_n]$

- Let $S \cup \{f\} \subseteq \mathbb{R}[x_1, \dots, x_n]$
- inf $\{f(x): x \in \mathbb{R}^n, g(x) \ge 0 \text{ for } g \in S\}$

- Let $S \cup \{f\} \subseteq \mathbb{R}[x_1, \dots, x_n]$
- inf $\{f(x): x \in \mathbb{R}^n, g(x) \ge 0 \text{ for } g \in S\}$
- Hierarchy of semidefinite programming lower bounds based on moments (primal) and sums of squares (dual)

- Let $S \cup \{f\} \subseteq \mathbb{R}[x_1, \dots, x_n]$
- inf $\{f(x): x \in \mathbb{R}^n, g(x) \ge 0 \text{ for } g \in S\}$
- Hierarchy of semidefinite programming lower bounds based on moments (primal) and sums of squares (dual)
- Asymptotic convergence under technical condition

Commutative polynomial optimization (Lasserre, Parrilo, ...):

- Let $S \cup \{f\} \subseteq \mathbb{R}[x_1, \dots, x_n]$
- inf $\{f(x): x \in \mathbb{R}^n, g(x) \ge 0 \text{ for } g \in S\}$
- Hierarchy of semidefinite programming lower bounds based on moments (primal) and sums of squares (dual)
- Asymptotic convergence under technical condition

Commutative polynomial optimization (Lasserre, Parrilo, ...):

- Let $S \cup \{f\} \subseteq \mathbb{R}[x_1, \dots, x_n]$
- inf $\{f(x): x \in \mathbb{R}^n, g(x) \ge 0 \text{ for } g \in S\}$
- Hierarchy of semidefinite programming lower bounds based on moments (primal) and sums of squares (dual)
- Asymptotic convergence under technical condition

• Let
$$S \cup \{f\} \subseteq \mathbb{R}\langle x_1, \ldots, x_n \rangle$$

Commutative polynomial optimization (Lasserre, Parrilo, ...):

- Let $S \cup \{f\} \subseteq \mathbb{R}[x_1, \dots, x_n]$
- inf $\{f(x): x \in \mathbb{R}^n, g(x) \ge 0 \text{ for } g \in S\}$
- Hierarchy of semidefinite programming lower bounds based on moments (primal) and sums of squares (dual)
- Asymptotic convergence under technical condition

- Let $S \cup \{f\} \subseteq \mathbb{R}\langle x_1, \ldots, x_n \rangle$
- ► We can evaluate a noncommutative polynomial at a tuple X = (X₁,...,X_n) of matrices

Commutative polynomial optimization (Lasserre, Parrilo, ...):

- Let $S \cup \{f\} \subseteq \mathbb{R}[x_1, \dots, x_n]$
- inf $\{f(x): x \in \mathbb{R}^n, g(x) \ge 0 \text{ for } g \in S\}$
- Hierarchy of semidefinite programming lower bounds based on moments (primal) and sums of squares (dual)
- Asymptotic convergence under technical condition

- Let $S \cup \{f\} \subseteq \mathbb{R}\langle x_1, \ldots, x_n \rangle$
- ► We can evaluate a noncommutative polynomial at a tuple X = (X₁,...,X_n) of matrices
- ▶ $\inf\{\operatorname{tr}(f(\mathbf{X})): d \in \mathbb{N}, X_1, \dots, X_n \in H^d, g(\mathbf{X}) \succeq 0 \text{ for } g \in S\}$

Commutative polynomial optimization (Lasserre, Parrilo, ...):

- Let $S \cup \{f\} \subseteq \mathbb{R}[x_1, \dots, x_n]$
- inf $\{f(x): x \in \mathbb{R}^n, g(x) \ge 0 \text{ for } g \in S\}$
- Hierarchy of semidefinite programming lower bounds based on moments (primal) and sums of squares (dual)
- Asymptotic convergence under technical condition

Eigenvalue optimization (Acín, Navascues, Pironio, ...) and tracial optimization (Burgdorf, Cafuta, Klep, Povh, Schweighofer, ...):

- Let $S \cup \{f\} \subseteq \mathbb{R}\langle x_1, \ldots, x_n \rangle$
- ► We can evaluate a noncommutative polynomial at a tuple X = (X₁,..., X_n) of matrices

▶ inf{tr($f(\mathbf{X})$) : $d \in \mathbb{N}, X_1, \ldots, X_n \in H^d, g(\mathbf{X}) \succeq 0$ for $g \in S$ } Commutative polynomial optimization is used by Nie for testing membership in the CP cone and computing tensor nuclear norms Lower bounding the cpsd-rank using tracial optimization

Let $A \in \mathbb{R}^{n \times n}$ be a CPSD matrix and set $d = \operatorname{cpsd-rank}(A)$

Lower bounding the cpsd-rank using tracial optimization

Let $A \in \mathbb{R}^{n \times n}$ be a CPSD matrix and set d = cpsd-rank(A)

 $X_1, \ldots, X_n \in \mathbb{C}^{d \times d}$ Hermitian PSD matrices with $A_{ij} = \operatorname{Tr}(X_i X_j)$

Lower bounding the cpsd-rank using tracial optimization

Let $A \in \mathbb{R}^{n \times n}$ be a CPSD matrix and set d = cpsd-rank(A)

 $X_1, \ldots, X_n \in \mathbb{C}^{d imes d}$ Hermitian PSD matrices with $A_{ij} = \operatorname{Tr}(X_i X_j)$

 $\mathbb{R}\langle x_1, \ldots, x_n \rangle$: *-algebra of noncommutative polynomials in *n* vars
Let $A \in \mathbb{R}^{n \times n}$ be a CPSD matrix and set d = cpsd-rank(A)

 $X_1, \ldots, X_n \in \mathbb{C}^{d \times d}$ Hermitian PSD matrices with $A_{ij} = \operatorname{Tr}(X_i X_j)$

 $\mathbb{R}\langle x_1, \ldots, x_n \rangle$: *-algebra of noncommutative polynomials in *n* vars Define a linear form $L_X \in \mathbb{R}\langle x_1, \ldots, x_n \rangle^*$ by

 $L_X(p) = \operatorname{Re}(\operatorname{Tr}(p(X_1,\ldots,X_n)))$

Let $A \in \mathbb{R}^{n \times n}$ be a CPSD matrix and set $d = \operatorname{cpsd-rank}(A)$

 $X_1, \ldots, X_n \in \mathbb{C}^{d \times d}$ Hermitian PSD matrices with $A_{ij} = \operatorname{Tr}(X_i X_j)$

 $\mathbb{R}\langle x_1, \ldots, x_n \rangle$: *-algebra of noncommutative polynomials in *n* vars Define a linear form $L_X \in \mathbb{R}\langle x_1, \ldots, x_n \rangle^*$ by

 $L_X(p) = \operatorname{Re}(\operatorname{Tr}(p(X_1, \ldots, X_n)))$

We have $L_X(1) = \operatorname{Re}(\operatorname{Tr}(I_d)) = d = \operatorname{cpsd-rank}(A)$

Let $A \in \mathbb{R}^{n imes n}$ be a CPSD matrix and set $d = \mathrm{cpsd}\text{-rank}(A)$

 $X_1, \ldots, X_n \in \mathbb{C}^{d \times d}$ Hermitian PSD matrices with $A_{ij} = \operatorname{Tr}(X_i X_j)$

 $\mathbb{R}\langle x_1, \ldots, x_n \rangle$: *-algebra of noncommutative polynomials in *n* vars Define a linear form $L_X \in \mathbb{R}\langle x_1, \ldots, x_n \rangle^*$ by

 $L_X(p) = \operatorname{Re}(\operatorname{Tr}(p(X_1, \ldots, X_n)))$

We have $L_X(1) = \operatorname{Re}(\operatorname{Tr}(I_d)) = d = \operatorname{cpsd-rank}(A)$

We obtain a relaxation by minimizing L(1) over all linear forms L that satisfy some computationally tractable properties of L_X

Let $A \in \mathbb{R}^{n imes n}$ be a CPSD matrix and set $d = \operatorname{cpsd-rank}(A)$

 $X_1, \ldots, X_n \in \mathbb{C}^{d imes d}$ Hermitian PSD matrices with $A_{ij} = \operatorname{Tr}(X_i X_j)$

 $\mathbb{R}\langle x_1, \ldots, x_n \rangle$: *-algebra of noncommutative polynomials in *n* vars Define a linear form $L_X \in \mathbb{R}\langle x_1, \ldots, x_n \rangle^*$ by

 $L_X(p) = \operatorname{Re}(\operatorname{Tr}(p(X_1, \ldots, X_n)))$

We have $L_X(1) = \operatorname{Re}(\operatorname{Tr}(I_d)) = d = \operatorname{cpsd-rank}(A)$

We obtain a relaxation by minimizing L(1) over all linear forms L that satisfy some computationally tractable properties of L_X

Symmetric and tracial: $L_X(p^*) = L_X(p)$ and $L_X(pq) = L_X(qp)$

Let $A \in \mathbb{R}^{n \times n}$ be a CPSD matrix and set $d = \operatorname{cpsd-rank}(A)$

 $X_1, \ldots, X_n \in \mathbb{C}^{d imes d}$ Hermitian PSD matrices with $A_{ij} = \operatorname{Tr}(X_i X_j)$

 $\mathbb{R}\langle x_1, \ldots, x_n \rangle$: *-algebra of noncommutative polynomials in *n* vars Define a linear form $L_X \in \mathbb{R}\langle x_1, \ldots, x_n \rangle^*$ by

 $L_X(p) = \operatorname{Re}(\operatorname{Tr}(p(X_1, \ldots, X_n)))$

We have $L_X(1) = \operatorname{Re}(\operatorname{Tr}(I_d)) = d = \operatorname{cpsd-rank}(A)$

We obtain a relaxation by minimizing L(1) over all linear forms L that satisfy some computationally tractable properties of L_X Symmetric and tracial: $L_X(p^*) = L_X(p)$ and $L_X(pq) = L_X(qp)$ Positive: $L_X(p^*p) \ge 0$

Let $A \in \mathbb{R}^{n \times n}$ be a CPSD matrix and set $d = \operatorname{cpsd-rank}(A)$

 $X_1, \ldots, X_n \in \mathbb{C}^{d imes d}$ Hermitian PSD matrices with $A_{ij} = \operatorname{Tr}(X_i X_j)$

 $\mathbb{R}\langle x_1, \ldots, x_n \rangle$: *-algebra of noncommutative polynomials in *n* vars Define a linear form $L_X \in \mathbb{R}\langle x_1, \ldots, x_n \rangle^*$ by

 $L_X(p) = \operatorname{Re}(\operatorname{Tr}(p(X_1, \ldots, X_n)))$

We have $L_X(1) = \operatorname{Re}(\operatorname{Tr}(I_d)) = d = \operatorname{cpsd-rank}(A)$

We obtain a relaxation by minimizing L(1) over all linear forms L that satisfy some computationally tractable properties of L_X

Symmetric and tracial: $L_X(p^*) = L_X(p)$ and $L_X(pq) = L_X(qp)$ Positive: $L_X(p^*p) \ge 0$ Linear conditions: $L_X(x_ix_i) = A_{ii}$

Let $A \in \mathbb{R}^{n \times n}$ be a CPSD matrix and set $d = \operatorname{cpsd-rank}(A)$

 $X_1, \ldots, X_n \in \mathbb{C}^{d imes d}$ Hermitian PSD matrices with $A_{ij} = \operatorname{Tr}(X_i X_j)$

 $\mathbb{R}\langle x_1, \ldots, x_n \rangle$: *-algebra of noncommutative polynomials in *n* vars Define a linear form $L_X \in \mathbb{R}\langle x_1, \ldots, x_n \rangle^*$ by

 $L_X(p) = \operatorname{Re}(\operatorname{Tr}(p(X_1, \ldots, X_n)))$

We have $L_X(1) = \operatorname{Re}(\operatorname{Tr}(I_d)) = d = \operatorname{cpsd-rank}(A)$

We obtain a relaxation by minimizing L(1) over all linear forms L that satisfy some computationally tractable properties of L_X

Symmetric and tracial: $L_X(p^*) = L_X(p)$ and $L_X(pq) = L_X(qp)$ Positive: $L_X(p^*p) \ge 0$ Linear conditions: $L_X(x_ix_j) = A_{ij}$ Localizing conditions: $L_X(p^*(\sqrt{A_{ii}}x_i - x_i^2)p) \ge 0$

 $\mathbb{R}\langle x_1,\ldots,x_n
angle_{2t}$ noncommututative polynomials with $\deg\leq 2t$

 $\mathbb{R}\langle x_1, \dots, x_n \rangle_{2t}$ noncommututative polynomials with $\deg \leq 2t$ Let $S \subseteq \mathbb{R}\langle \mathbf{x} \rangle = \mathbb{R}\langle x_1, \dots, x_n \rangle$

 $\mathbb{R}\langle x_1, \dots, x_n \rangle_{2t}$ noncommututative polynomials with $\deg \leq 2t$ Let $S \subseteq \mathbb{R}\langle \mathbf{x} \rangle = \mathbb{R}\langle x_1, \dots, x_n \rangle$

Quadratic module: $\mathcal{M}(S) = \operatorname{cone}\{p^*gp : g \in S \cup \{1\}, p \in \mathbb{R}\langle \mathbf{x} \rangle\}$

 $\mathbb{R}\langle x_1, \dots, x_n \rangle_{2t}$ noncommututative polynomials with $\deg \leq 2t$ Let $S \subseteq \mathbb{R}\langle \mathbf{x} \rangle = \mathbb{R}\langle x_1, \dots, x_n \rangle$

 $\mathsf{Quadratic\ module:}\ \mathcal{M}(S) = \mathrm{cone}\{p^*gp: g \in S \cup \{1\},\ p \in \mathbb{R}\langle \mathbf{x} \rangle\}$

Truncated quadratic module:

 $\mathcal{M}_{2t}(S) = \operatorname{cone}\{p^*gp : g \in S \cup \{1\}, \ p \in \mathbb{R}\langle \mathbf{x} \rangle, \ \operatorname{deg}(p^*gp) \leq 2t\}$

 $\mathbb{R}\langle x_1, \dots, x_n \rangle_{2t}$ noncommututative polynomials with $\deg \leq 2t$ Let $S \subseteq \mathbb{R}\langle \mathbf{x} \rangle = \mathbb{R}\langle x_1, \dots, x_n \rangle$

 $\mathsf{Quadratic\ module:}\ \mathcal{M}(S) = \mathrm{cone}\{p^*gp: g \in S \cup \{1\},\ p \in \mathbb{R}\langle \mathbf{x} \rangle\}$

Truncated quadratic module: $\mathcal{M}_{2t}(S) = \operatorname{cone} \{ p^*gp : g \in S \cup \{1\}, \ p \in \mathbb{R} \langle \mathbf{x} \rangle, \ \operatorname{deg}(p^*gp) \leq 2t \}$

$$\begin{aligned} \xi_t^{\text{cpsd}}(A) &= \min \Big\{ L(1) : L \in \mathbb{R} \langle x_1, \dots, x_n \rangle_{2t}^* \text{ tracial and symmetric,} \\ (L(x_i x_j)) &= A, \\ L &\geq 0 \quad \text{on} \quad \mathcal{M}_{2t} \big(\big\{ \sqrt{A_{ii}} x_i - x_i^2 : i \in [n] \big\} \big) \Big\} \end{aligned}$$

 $\mathbb{R}\langle x_1, \dots, x_n \rangle_{2t}$ noncommututative polynomials with $\deg \leq 2t$ Let $S \subseteq \mathbb{R}\langle \mathbf{x} \rangle = \mathbb{R}\langle x_1, \dots, x_n \rangle$

 $\mathsf{Quadratic\ module:}\ \mathcal{M}(S) = \mathrm{cone}\{p^*gp: g \in S \cup \{1\},\ p \in \mathbb{R}\langle \mathbf{x} \rangle\}$

Truncated quadratic module: $\mathcal{M}_{2t}(S) = \operatorname{cone} \{ p^*gp : g \in S \cup \{1\}, \ p \in \mathbb{R} \langle \mathbf{x} \rangle, \ \operatorname{deg}(p^*gp) \leq 2t \}$

$$\begin{aligned} \xi_t^{\text{cpsd}}(A) &= \min \Big\{ L(1) : L \in \mathbb{R} \langle x_1, \dots, x_n \rangle_{2t}^* \text{ tracial and symmetric,} \\ (L(x_i x_j)) &= A, \\ L &\geq 0 \quad \text{on} \quad \mathcal{M}_{2t} \big(\big\{ \sqrt{A_{ii}} x_i - x_i^2 : i \in [n] \big\} \big) \Big\} \end{aligned}$$

 $\xi_1^{\operatorname{cpsd}}(A) \leq \ldots \leq \xi_\infty^{\operatorname{cpsd}}(A) \leq \xi_*^{\operatorname{cpsd}}(A) \leq \operatorname{cpsd-rank}(A)$

 $\mathbb{R}\langle x_1, \dots, x_n \rangle_{2t}$ noncommututative polynomials with $\deg \leq 2t$ Let $S \subseteq \mathbb{R}\langle \mathbf{x} \rangle = \mathbb{R}\langle x_1, \dots, x_n \rangle$

 $\mathsf{Quadratic\ module:}\ \mathcal{M}(S) = \mathrm{cone}\{p^*gp: g \in S \cup \{1\},\ p \in \mathbb{R}\langle \mathbf{x} \rangle\}$

Truncated quadratic module: $\mathcal{M}_{2t}(S) = \operatorname{cone} \{ p^*gp : g \in S \cup \{1\}, \ p \in \mathbb{R} \langle \mathbf{x} \rangle, \ \operatorname{deg}(p^*gp) \leq 2t \}$

$$\begin{aligned} \xi_t^{\text{cpsd}}(A) &= \min \Big\{ L(1) : L \in \mathbb{R} \langle x_1, \dots, x_n \rangle_{2t}^* \text{ tracial and symmetric,} \\ (L(x_i x_j)) &= A, \\ L \geq 0 \quad \text{on} \quad \mathcal{M}_{2t} \big(\big\{ \sqrt{A_{ii}} x_i - x_i^2 : i \in [n] \big\} \big) \Big\} \end{aligned}$$

 $\xi_1^{\mathrm{cpsd}}(\mathcal{A}) \leq \ldots \leq \xi_\infty^{\mathrm{cpsd}}(\mathcal{A}) \leq \xi_*^{\mathrm{cpsd}}(\mathcal{A}) \leq \mathrm{cpsd-rank}(\mathcal{A})$

 $\xi^{
m cpsd}_{*}(A)$ is $\xi^{
m cpsd}_{\infty}(A)$ with the extra constraint ${
m rank}(M(L)) < \infty$

 $\xi^{\mathrm{cpsd}}_{\infty}(A)$ and $\xi^{\mathrm{cpsd}}_{*}(A)$

▶ We have $\xi_t^{\text{cpsd}}(A) \to \xi_{\infty}^{\text{cpsd}}(A)$, and if $\xi_t^{\text{cpsd}}(A)$ admits a flat optimal solution, then $\xi_t^{\text{cpsd}}(A) = \xi_t^{\text{cpsd}}(A)$

$\xi^{\mathrm{cpsd}}_{\infty}(A)$ and $\xi^{\mathrm{cpsd}}_{*}(A)$

- ► We have $\xi_t^{\text{cpsd}}(A) \to \xi_{\infty}^{\text{cpsd}}(A)$, and if $\xi_t^{\text{cpsd}}(A)$ admits a flat optimal solution, then $\xi_t^{\text{cpsd}}(A) = \xi_t^{\text{cpsd}}(A)$
- ► $\xi_*^{\text{cpsd}}(A)$ is the minimum of L(1) over all conic combinations L of trace evaluations at elements of the matrix positivity domain of $\{\sqrt{A_{ii}}x_i x_i^2 : i \in [n]\}$ such that $A = (L(x_i x_j))$

$\xi^{\mathrm{cpsd}}_{\infty}(A)$ and $\xi^{\mathrm{cpsd}}_{*}(A)$

- ▶ We have $\xi_t^{\text{cpsd}}(A) \to \xi_{\infty}^{\text{cpsd}}(A)$, and if $\xi_t^{\text{cpsd}}(A)$ admits a flat optimal solution, then $\xi_t^{\text{cpsd}}(A) = \xi_t^{\text{cpsd}}(A)$
- ► $\xi_*^{\text{cpsd}}(A)$ is the minimum of L(1) over all conic combinations L of trace evaluations at elements of the matrix positivity domain of $\{\sqrt{A_{ii}}x_i x_i^2 : i \in [n]\}$ such that $A = (L(x_i x_j))$

$$\xi^{\text{cpsd}}_{*}(A) = \inf \bigg\{ \sum_{m=1}^{M} d_m \cdot \max_{i \in [n]} \frac{\|X_i^m\|^2}{A_{ii}} : M \in \mathbb{N}, \, d_1, \dots, d_M \in \mathbb{N}, \\ X_i^m \in \mathcal{H}_+^{d_m} \text{ for } i \in [n], \, m \in [M], \\ A = \operatorname{Gram} \bigg(\bigoplus_{m=1}^{M} X_1^m, \dots, \bigoplus_{m=1}^{M} X_n^m \bigg) \bigg\}.$$

Lower bound [Prakash-Sikora-Varvitsiotis-Wei 2016]:

$$\frac{\left(\sum_{i=1}^{n}\sqrt{A_{ii}}\right)^{2}}{\sum_{i,j=1}^{n}A_{ij}} \leq \text{cpsd-rank}(A)$$

Lower bound [Prakash-Sikora-Varvitsiotis-Wei 2016]:

$$\frac{\left(\sum_{i=1}^{n}\sqrt{A_{ii}}\right)^{2}}{\sum_{i,j=1}^{n}A_{ij}} \leq \text{cpsd-rank}(A)$$

We have

$$\xi_1^{\text{cpsd}}(A) \geq \frac{\left(\sum_{i=1}^n \sqrt{A_{ii}}\right)^2}{\sum_{i,j=1}^n A_{ij}}$$

Lower bound [Prakash-Sikora-Varvitsiotis-Wei 2016]:

$$\frac{\left(\sum_{i=1}^{n}\sqrt{A_{ii}}\right)^{2}}{\sum_{i,j=1}^{n}A_{ij}} \leq \text{cpsd-rank}(A)$$

We have

$$\xi_1^{ ext{cpsd}}(A) \geq rac{\left(\sum_{i=1}^n \sqrt{A_{ii}}
ight)^2}{\sum_{i,j=1}^n A_{ij}}$$

Sharp for the matrix $A \in \mathbb{R}^{5 imes 5}$ given by $A_{ij} = \cos \left(4 \pi / 5 (i-j)
ight)^2$

Extra constraints to go beyond $\xi^{\mathrm{cpsd}}_*(A)$

Let X_1, \ldots, X_n be Hermitian PSD matrices s.t. $A_{ij} = \text{Tr}(X_i X_j)$

Let X_1, \ldots, X_n be Hermitian PSD matrices s.t. $A_{ij} = \text{Tr}(X_i X_j)$ For each $v \in \mathbb{R}^n$, the following matrix is psd:

$$v^{\mathsf{T}}AvI - \left(\sum_{i=1}^{n} v_i X_i\right)^2$$

Let X_1, \ldots, X_n be Hermitian PSD matrices s.t. $A_{ij} = \text{Tr}(X_i X_j)$ For each $v \in \mathbb{R}^n$, the following matrix is psd:

$$v^{\mathsf{T}}AvI - \left(\sum_{i=1}^{n} v_i X_i\right)^2$$

We can use this to add additional constraints to $\xi_t^{\text{cpsd}}(A)$ by extending the quadratic module

Let X_1, \ldots, X_n be Hermitian PSD matrices s.t. $A_{ij} = \text{Tr}(X_i X_j)$ For each $v \in \mathbb{R}^n$, the following matrix is psd:

$$v^{\mathsf{T}}AvI - \Big(\sum_{i=1}^{n} v_i X_i\Big)^2$$

We can use this to add additional constraints to $\xi_t^{\text{cpsd}}(A)$ by extending the quadratic module

For a subset $V \subseteq S^{n-1}$ we have the stronger bound $\xi_{t,V}^{\text{cpsd}}(A)$

Let X_1, \ldots, X_n be Hermitian PSD matrices s.t. $A_{ij} = \text{Tr}(X_i X_j)$ For each $v \in \mathbb{R}^n$, the following matrix is psd:

$$v^{\mathsf{T}}AvI - \Big(\sum_{i=1}^{n} v_i X_i\Big)^2$$

We can use this to add additional constraints to $\xi_t^{\text{cpsd}}(A)$ by extending the quadratic module

For a subset $V \subseteq S^{n-1}$ we have the stronger bound $\xi_{t,V}^{\text{cpsd}}(A)$ Example:

$$A = egin{pmatrix} 1 & 1/2 & 0 & 0 & 1/2 \ 1/2 & 1 & 1/2 & 0 & 0 \ 0 & 1/2 & 1 & 1/2 & 0 \ 0 & 0 & 1/2 & 1 & 1/2 \ 1/2 & 0 & 0 & 1/2 & 1 \ 1/2 & 0 & 0 & 1/2 & 1 \ \end{pmatrix}$$
 $^{
m sd}(A) = \xi^{
m cpsd}_*(A) = rac{5}{2}$

 ξ_1^{cp}

Let X_1, \ldots, X_n be Hermitian PSD matrices s.t. $A_{ij} = \text{Tr}(X_i X_j)$ For each $v \in \mathbb{R}^n$, the following matrix is psd:

$$v^{\mathsf{T}}AvI - \Big(\sum_{i=1}^{n} v_i X_i\Big)^2$$

We can use this to add additional constraints to $\xi_t^{\text{cpsd}}(A)$ by extending the quadratic module

For a subset $V \subseteq S^{n-1}$ we have the stronger bound $\xi_{t,V}^{\operatorname{cpsd}}(A)$ Example:

$$A = \begin{pmatrix} 1 & 1/2 & 0 & 0 & 1/2 \\ 1/2 & 1 & 1/2 & 0 & 0 \\ 0 & 1/2 & 1 & 1/2 & 0 \\ 0 & 0 & 1/2 & 1 & 1/2 \\ 1/2 & 0 & 0 & 1/2 & 1 \end{pmatrix}$$
$$\xi_{1}^{\text{cpsd}}(A) = \xi_{*}^{\text{cpsd}}(A) = \frac{5}{2}, \ V = \left\{ \frac{e_{i} + e_{j}}{\sqrt{2}} : i, j \in [5] \right\}$$

Let X_1, \ldots, X_n be Hermitian PSD matrices s.t. $A_{ij} = \text{Tr}(X_i X_j)$ For each $v \in \mathbb{R}^n$, the following matrix is psd:

$$v^{\mathsf{T}}AvI - \Big(\sum_{i=1}^{n} v_i X_i\Big)^2$$

We can use this to add additional constraints to $\xi_t^{\text{cpsd}}(A)$ by extending the quadratic module

For a subset $V \subseteq S^{n-1}$ we have the stronger bound $\xi_{t,V}^{\operatorname{cpsd}}(A)$ Example:

$$A = \begin{pmatrix} 1 & 1/2 & 0 & 0 & 1/2 \\ 1/2 & 1 & 1/2 & 0 & 0 \\ 0 & 1/2 & 1 & 1/2 & 0 \\ 0 & 0 & 1/2 & 1 & 1/2 \\ 1/2 & 0 & 0 & 1/2 & 1 \end{pmatrix}$$
$$\xi_{1}^{\text{cpsd}}(A) = \xi_{*}^{\text{cpsd}}(A) = \frac{5}{2}, \ V = \left\{ \frac{e_{i} + e_{j}}{\sqrt{2}} : i, j \in [5] \right\}, \ \xi_{2,V}^{\text{cpsd}}(A) = \frac{10}{3}$$

The completely positive rank (cp-rank)

Fawzi and Parrilo (2014) give this SDP to lower bound cp-rank(A):

$$\begin{aligned} \tau_{\rm cp}^{\rm sos}(A) &= \inf \Big\{ \alpha : \alpha \in \mathbb{R}, \, X \in \mathbb{R}^{n^2 \times n^2}, \\ \begin{pmatrix} \alpha & \operatorname{vec}(A)^{\mathsf{T}} \\ \operatorname{vec}(A) & X \end{pmatrix} \succeq 0, \\ X_{(i,j),(i,j)} &\leq A_{ij}^2 \quad \text{for} \quad 1 \leq i, j \leq n, \\ X_{(i,j),(k,l)} &= X_{(i,l),(k,j)} \quad \text{for} \quad 1 \leq i < k \leq n, \, 1 \leq j < l \leq n, \\ X \leq A \otimes A \Big\}. \end{aligned}$$

The completely positive rank (cp-rank)

Fawzi and Parrilo (2014) give this SDP to lower bound cp-rank(A):

$$\begin{split} \tau_{\rm cp}^{\rm sos}(A) &= \inf \Big\{ \alpha : \alpha \in \mathbb{R}, \, X \in \mathbb{R}^{n^2 \times n^2}, \\ \begin{pmatrix} \alpha & \operatorname{vec}(A)^{\mathsf{T}} \\ \operatorname{vec}(A) & X \end{pmatrix} \succeq 0, \\ X_{(i,j),(i,j)} &\leq A_{ij}^2 \quad \text{for} \quad 1 \leq i, j \leq n, \\ X_{(i,j),(k,l)} &= X_{(i,l),(k,j)} \quad \text{for} \quad 1 \leq i < k \leq n, \, 1 \leq j < l \leq n, \\ X \leq A \otimes A \Big\}. \end{split}$$

They derive $\tau_{\rm cp}^{\rm sos}(A)$ as an SDP relaxation of

$$\tau_{\rm cp}(A) = \min\left\{\alpha: \alpha > 0, \ \frac{1}{\alpha}A \in \operatorname{conv}\left\{R \in \mathcal{S}^n: 0 \le R \le A, \ R \preceq A, \ \operatorname{rank}(R) \le 1\right\}\right\}$$

The completely positive rank (cp-rank)

Fawzi and Parrilo (2014) give this SDP to lower bound cp-rank(A):

$$\begin{split} \tau_{\rm cp}^{\rm sos}(A) &= \inf \Big\{ \alpha : \alpha \in \mathbb{R}, \, X \in \mathbb{R}^{n^2 \times n^2}, \\ \begin{pmatrix} \alpha & \operatorname{vec}(A)^{\mathsf{T}} \\ \operatorname{vec}(A) & X \end{pmatrix} \succeq 0, \\ X_{(i,j),(i,j)} &\leq A_{ij}^2 \quad \text{for} \quad 1 \leq i, j \leq n, \\ X_{(i,j),(k,l)} &= X_{(i,l),(k,j)} \quad \text{for} \quad 1 \leq i < k \leq n, \, 1 \leq j < l \leq n, \\ X \leq A \otimes A \Big\}. \end{split}$$

They derive $au_{
m cp}^{
m sos}(A)$ as an SDP relaxation of

$$\tau_{\rm cp}(A) = \min\left\{\alpha: \alpha > 0, \ \frac{1}{\alpha}A \in \operatorname{conv}\left\{R \in \mathcal{S}^n: 0 \le R \le A, \ R \preceq A, \ \operatorname{rank}(R) \le 1\right\}\right\}$$

 $au_{
m cp}(A)$ is at least the rank of A and the fractional edge-clique cover number of the support graph of A

Suppose
$$A_{ij} = v_i^{\mathsf{T}} v_j$$
 for $v_1, \ldots, v_n \in \mathbb{R}^d_+$

Adapting our hierarchy for the <code>cp-rank</code>

Suppose
$$A_{ij} = v_i^T v_j$$
 for $v_1, \dots, v_n \in \mathbb{R}^d_+$
Then, $A_{ij} = \operatorname{Tr}(X_i X_j)$ for diagonal PSD matrices $X_i = \operatorname{Diag}(v_i)$

Suppose $A_{ij} = v_i^T v_j$ for $v_1, \ldots, v_n \in \mathbb{R}^d_+$ Then, $A_{ij} = \operatorname{Tr}(X_i X_j)$ for diagonal PSD matrices $X_i = \operatorname{Diag}(v_i)$ Use ideas for cpsd-rank to derive a hierarchy for cp-rank

Suppose $A_{ij} = v_i^T v_j$ for $v_1, \dots, v_n \in \mathbb{R}^d_+$ Then, $A_{ij} = \operatorname{Tr}(X_i X_j)$ for diagonal PSD matrices $X_i = \operatorname{Diag}(v_i)$ Use ideas for cpsd-rank to derive a hierarchy for cp-rank $\mathcal{M}_{2t}(S) = \operatorname{cone}\{gp^2 : g \in S \cup \{1\}, p \in \mathbb{R}[\mathbf{x}], \deg(gp^2) \leq 2t\}$

Suppose $A_{ij} = v_i^T v_j$ for $v_1, \dots, v_n \in \mathbb{R}^d_+$ Then, $A_{ij} = \text{Tr}(X_i X_j)$ for diagonal PSD matrices $X_i = \text{Diag}(v_i)$ Use ideas for cpsd-rank to derive a hierarchy for cp-rank $\mathcal{M}_{2t}(S) = \text{cone}\{gp^2 : g \in S \cup \{1\}, p \in \mathbb{R}[\mathbf{x}], \deg(gp^2) \leq 2t\}$ $S = \{\sqrt{A_{ii}}x_i - x_i^2\} \cup \{A_{ij} - x_i x_j : 1 \leq i < j \leq n\}$

Suppose $A_{ii} = v_i^{\mathsf{T}} v_i$ for $v_1, \ldots, v_n \in \mathbb{R}^d_+$ Then, $A_{ii} = \text{Tr}(X_i X_i)$ for diagonal PSD matrices $X_i = \text{Diag}(v_i)$ Use ideas for cpsd-rank to derive a hierarchy for cp-rank $\mathcal{M}_{2t}(S) = \operatorname{cone}\{gp^2 : g \in S \cup \{1\}, p \in \mathbb{R}[\mathbf{x}], \deg(gp^2) < 2t\}$ $S = \{\sqrt{A_{ii}}x_i - x_i^2\} \cup \{A_{ii} - x_ix_i : 1 \le i \le j \le n\}$ $egin{aligned} &\xi^{ ext{cp}}_t(A) = \min \Big\{ L(1): L \in \mathbb{R}[x_1, \dots, x_n]^*_{2t}, \ & (L(x_i x_j)) = A, \ & L \geq 0 \quad ext{on} \quad \mathcal{M}_{2t}(S) \Big\} \end{aligned}$
Adapting our hierarchy for the cp-rank

Suppose $A_{ii} = v_i^{\mathsf{T}} v_i$ for $v_1, \ldots, v_n \in \mathbb{R}^d_+$ Then, $A_{ii} = \text{Tr}(X_i X_i)$ for diagonal PSD matrices $X_i = \text{Diag}(v_i)$ Use ideas for cpsd-rank to derive a hierarchy for cp-rank $\mathcal{M}_{2t}(S) = \operatorname{cone}\{gp^2 : g \in S \cup \{1\}, p \in \mathbb{R}[\mathbf{x}], \deg(gp^2) < 2t\}$ $S = \{\sqrt{A_{ii}}x_i - x_i^2\} \cup \{A_{ii} - x_ix_i : 1 \le i \le j \le n\}$ $egin{aligned} &\xi^{ ext{cp}}_t(\mathcal{A}) = \miniggl\{ L(1): L \in \mathbb{R}[x_1, \dots, x_n]^*_{2t}, \ & (L(x_i x_j)) = \mathcal{A}, \ & L \geq 0 \quad ext{on} \quad \mathcal{M}_{2t}(\mathcal{S}) iggr\} \end{aligned}$

 $\xi_1^{\operatorname{cp}}(A) \leq \ldots \leq \xi_\infty^{\operatorname{cp}}(A) = \xi_*^{\operatorname{cp}}(A) \leq \operatorname{cp-rank}(A)$

As in the cpsd-rank case we can add extra constraints for a set $V \subseteq S^{n-1}$ giving the stronger bound $\xi_{t,V}^{cp}(A)$

As in the cpsd-rank case we can add extra constraints for a set $V \subseteq S^{n-1}$ giving the stronger bound $\xi_{t,V}^{cp}(A)$

We have
$$\xi^{\mathrm{cp}}_{*,\mathcal{S}^{n-1}}(\mathcal{A}) = au_{\mathrm{cp}}(\mathcal{A})$$

As in the cpsd-rank case we can add extra constraints for a set $V \subseteq S^{n-1}$ giving the stronger bound $\xi_{t,V}^{cp}(A)$

We have
$$\xi^{\mathrm{cp}}_{*,\mathcal{S}^{n-1}}(\mathcal{A}) = au_{\mathrm{cp}}(\mathcal{A})$$

Let $V_1 \subseteq V_2 \subseteq \ldots \subseteq S^{n-1}$ be finite subsets such that $\bigcup_k V_k$ is dense in S^{n-1}

We have
$$\xi^{\mathrm{cp}}_{*,V_k}(A) o \xi^{\mathrm{cp}}_{*,\mathcal{S}^{n-1}}(A)$$
 as $k o \infty$

As in the cpsd-rank case we can add extra constraints for a set $V \subseteq S^{n-1}$ giving the stronger bound $\xi_{t,V}^{cp}(A)$

We have
$$\xi^{\mathrm{cp}}_{*,\mathcal{S}^{n-1}}(\mathcal{A}) = au_{\mathrm{cp}}(\mathcal{A})$$

Let $V_1 \subseteq V_2 \subseteq \ldots \subseteq S^{n-1}$ be finite subsets such that $\bigcup_k V_k$ is dense in S^{n-1}

We have
$$\xi^{\mathrm{cp}}_{*,V_k}(A) o \xi^{\mathrm{cp}}_{*,\mathcal{S}^{n-1}}(A)$$
 as $k o \infty$

This gives a (doubly indexed) sequence of finite semidefinite programs converging asymptotically to $\tau_{\rm cp}(A)$

Let $\xi_{t,+}^{cp}(A)$ be the following strengthening of $\xi_t^{cp}(A)$:

Let $\xi_{t,+}^{cp}(A)$ be the following strengthening of $\xi_t^{cp}(A)$:

Add entrywise nonnegativity constraints

Let $\xi_{t,+}^{cp}(A)$ be the following strengthening of $\xi_t^{cp}(A)$:

- Add entrywise nonnegativity constraints
- Add the tensor constraint $X \preceq A \otimes A$ from $\tau_{cp}^{sos}(A)$:

$$(L(ww'))_{w,w'\in\langle {f x}
angle_{=l}}\preceq A^{\otimes l}$$
 for $2\leq l\leq t$

Let $\xi_{t,+}^{cp}(A)$ be the following strengthening of $\xi_t^{cp}(A)$:

- Add entrywise nonnegativity constraints
- Add the tensor constraint $X \preceq A \otimes A$ from $\tau_{cp}^{sos}(A)$:

$$(L(ww'))_{w,w'\in \langle \mathbf{x} \rangle_{=l}} \preceq A^{\otimes l}$$
 for $2 \leq l \leq t$

Implement this constraint more efficiently by exploiting symmetry:

$$(L(mm'))_{m,m'\in [\mathbf{x}]_{=l}} \preceq Q_l A^{\otimes l} Q_l^{\mathsf{T}}$$
 for $2 \leq l \leq t$

Let $\xi_{t,+}^{cp}(A)$ be the following strengthening of $\xi_t^{cp}(A)$:

- Add entrywise nonnegativity constraints
- Add the tensor constraint $X \preceq A \otimes A$ from $\tau_{cp}^{sos}(A)$:

$$(L(ww'))_{w,w'\in\langle \mathbf{x}
angle_{=l}}\preceq A^{\otimes l}$$
 for $2\leq l\leq t$

Implement this constraint more efficiently by exploiting symmetry:

$$(L(mm'))_{m,m'\in[\mathbf{x}]_{=l}} \preceq Q_l A^{\otimes l} Q_l^{\mathsf{T}}$$
 for $2 \leq l \leq t$

Then $\xi_{2,+}^{\mathrm{cp}}(A)$ is a more efficient strengthening of $au_{\mathrm{cp}}^{\mathrm{sos}}(A)$

The nonnegative rank $\operatorname{rank}_+(A)$ is the smallest d for which there are vectors $u_1, \ldots, u_n, v_1, \ldots, v_n \in \mathbb{R}^d_+$ such that $A_{ij} = u_i^{\mathsf{T}} v_j$

The nonnegative rank $\operatorname{rank}_+(A)$ is the smallest d for which there are vectors $u_1, \ldots, u_n, v_1, \ldots, v_n \in \mathbb{R}^d_+$ such that $A_{ij} = u_i^{\mathsf{T}} v_j$

Relevant for the extension complexity of linear programs

The nonnegative rank $\operatorname{rank}_+(A)$ is the smallest d for which there are vectors $u_1, \ldots, u_n, v_1, \ldots, v_n \in \mathbb{R}^d_+$ such that $A_{ij} = u_i^{\mathsf{T}} v_j$

Relevant for the extension complexity of linear programs

Fawzi and Parrilo (2014) define relaxations $au_{+}^{sos}(A) \leq au_{+}(A) \leq \operatorname{rank}_{+}(A)$

The nonnegative rank $\operatorname{rank}_+(A)$ is the smallest d for which there are vectors $u_1, \ldots, u_n, v_1, \ldots, v_n \in \mathbb{R}^d_+$ such that $A_{ij} = u_i^{\mathsf{T}} v_j$

Relevant for the extension complexity of linear programs

Fawzi and Parrilo (2014) define relaxations $au_+^{
m sos}(A) \leq au_+(A) \leq {
m rank}_+(A)$

For $A \in \mathbb{R}^{m \times n}_+$ there are positive semidefinite diagonal matrices X_1, \ldots, X_{m+n} with $A_{ij} = \operatorname{Tr}(X_i X_{m+j})$ and $\lambda_{\max}(X_i)^2 \leq \max_{i,j} A_{ij}$

The nonnegative rank $\operatorname{rank}_+(A)$ is the smallest d for which there are vectors $u_1, \ldots, u_n, v_1, \ldots, v_n \in \mathbb{R}^d_+$ such that $A_{ij} = u_i^{\mathsf{T}} v_j$

Relevant for the extension complexity of linear programs

Fawzi and Parrilo (2014) define relaxations $au_+^{
m sos}(A) \leq au_+(A) \leq {
m rank}_+(A)$

For $A \in \mathbb{R}^{m \times n}_+$ there are positive semidefinite diagonal matrices X_1, \ldots, X_{m+n} with $A_{ij} = \operatorname{Tr}(X_i X_{m+j})$ and $\lambda_{\max}(X_i)^2 \leq \max_{i,j} A_{ij}$

We can use this to adapt the above techniques to give a hiearchy

$$\xi_1^+(A) \leq \ldots \leq \xi_\infty^+(A) = \xi_*^+(A) = \tau_+(A) \leq \operatorname{rank}_+(A).$$

The nonnegative rank $\operatorname{rank}_+(A)$ is the smallest d for which there are vectors $u_1, \ldots, u_n, v_1, \ldots, v_n \in \mathbb{R}^d_+$ such that $A_{ij} = u_i^{\mathsf{T}} v_j$

Relevant for the extension complexity of linear programs

Fawzi and Parrilo (2014) define relaxations $au_+^{
m sos}(A) \leq au_+(A) \leq {
m rank}_+(A)$

For $A \in \mathbb{R}^{m \times n}_+$ there are positive semidefinite diagonal matrices X_1, \ldots, X_{m+n} with $A_{ij} = \operatorname{Tr}(X_i X_{m+j})$ and $\lambda_{\max}(X_i)^2 \leq \max_{i,j} A_{ij}$

We can use this to adapt the above techniques to give a hiearchy

$$\xi_1^+(A) \leq \ldots \leq \xi_\infty^+(A) = \xi_*^+(A) = \tau_+(A) \leq \operatorname{rank}_+(A).$$

Going back to tracial optimization we can adapt this to the psd-rank – still work in progress

Nested rectangle problem [Fawzi-Parrilo, 2016]:

Nested rectangle problem [Fawzi-Parrilo, 2016]:

Such a triangle exists if and only if

$$\operatorname{rank}_{+}\left(\begin{pmatrix}1-a & 1+a & 1+a & 1-a\\1+a & 1-a & 1-a & 1+a\\1-b & 1-b & 1+b & 1+b\\1+b & 1+b & 1-b & 1-b\end{pmatrix}\right) \leq 3$$

Nested rectangle problem [Fawzi–Parrilo, 2016]:

Such a triangle exists if and only if

$$\operatorname{rank}_{+}\left(\begin{pmatrix}1-a & 1+a & 1+a & 1-a\\1+a & 1-a & 1-a & 1+a\\1-b & 1-b & 1+b & 1+b\\1+b & 1+b & 1-b & 1-b\end{pmatrix}\right) \leq 3$$

In fact, such a triangle exists if and only if $(1 + a)(1 + b) \le 2$

Nested rectangle problem [Fawzi-Parrilo, 2016]:

Thank you!